Computer Science Theory

(Master Course)

Chapter 2:

Programs and Computable Functions

Mohammad Farshi
Department of Computer Science
Yazd University

1395-1

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

 Computability theory is based on a specific programming language L.

Assumptions and Definitions:

- numbers: positive integers.
- X_is: input variables
- Y: output variable
- Z_i s: local variables
- The subscript 1 is often omitted (i.e. X is X_1).
- The output variable Y and the local variables Z_i initially have the value 0.
- A "program" of L will then consist of a list (i.e., a finite sequence) of instructions.
- Each line of a program can have a "label", which comes at the begining of instruction and within [].

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

List of instructions of \mathcal{L} :

instruction	intrepretation
$V \leftarrow V + 1$	increment
$V \leftarrow V - 1$	decrement
If $V \neq 0$ GOTO L	conditional branch

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

List of instructions of \mathcal{L} :

instruction	intrepretation
$V \leftarrow V + 1$	increment
$V \leftarrow V - 1$	decrement
If $V \neq 0$ GOTO L	conditional branch

Example:

$$\begin{array}{ccc} [A] & X \leftarrow X - 1 \\ & Y \leftarrow Y + 1 \\ & \text{IF } X \neq 0 \text{ GOTO } A \end{array}$$

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

List of instructions of \mathcal{L} :

instruction	intrepretation
$V \leftarrow V + 1$	increment
$V \leftarrow V - 1$	decrement
If $V \neq 0$ GOTO L	conditional branch

Example:

$$\begin{array}{ll} [A] & X \leftarrow X - 1 \\ & Y \leftarrow Y + 1 \\ & \text{IF } X \neq 0 \text{ GOTO } A \end{array}$$

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

List of instructions of \mathcal{L} :

instruction	intrepretation
$V \leftarrow V + 1$	increment
$V \leftarrow V - 1$	decrement
If $V \neq 0$ GOTO L	conditional branch

Example:

$$[A] \quad \begin{array}{ccc} X \leftarrow X - 1 \\ Y \leftarrow Y + 1 \\ \text{IF } X \neq 0 \text{ GOTO } A \end{array}$$

Output of the Program:

- If $X \neq 0$, the output is x (i.e. Y has the value of X).
- If X = 0, the output is 1 (i.e. Y has the value of 1).

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

List of instructions of \mathcal{L} :

instruction	intrepretation
$V \leftarrow V + 1$	increment
$V \leftarrow V - 1$	decrement
If $V \neq 0$ GOTO L	conditional branch

Example:

$$\begin{aligned} [A] \quad & X \leftarrow X - 1 \\ & Y \leftarrow Y + 1 \\ & \text{IF } X \neq 0 \text{ GOTO } A \end{aligned}$$

Output of the Program:

The program computes the function:

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ x & \text{otherwise.} \end{cases}$$

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

$$[A] \quad \begin{array}{cc} X \leftarrow X - 1 \\ Y \leftarrow Y + 1 \\ \text{IF } X \neq 0 \text{ GOTO } A \end{array}$$

Output of the Program:

If one consider the above program to copy the value of X to Y, then it has a "bug": it does not work correctly when the input is 0.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

Example:

$$[A] \quad \begin{array}{ccc} X \leftarrow X - 1 \\ Y \leftarrow Y + 1 \\ \text{IF } X \neq 0 \text{ GOTO } A \end{array}$$

New Program:

[A] IF
$$X \neq 0$$
 GOTO B
 $Z \leftarrow Z + 1$
IF $Z \neq 0$ GOTO E

$$[B] \quad \begin{array}{c} X \leftarrow X - 1 \\ Y \leftarrow Y + 1 \\ Z \leftarrow Z + 1 \\ \text{IF } Z \neq 0 \text{ GOTO } A \end{array}$$

Note: We use Z because we can not use instructions like GOTO A.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Macro Expansion

Yazd Univ

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of **Programs**

Computable

More about Macros

Macro expansion:

 We can use GOTO A in our programs, but we replace it with

$$Z \leftarrow Z + 1$$

IF $Z \neq 0$ GOTO A that satisfies in \mathcal{L} .

 Later, we will talk about the way we choose variable Z distinct to all other local variables.

Some Examples of Programs

New Program:

$$[A] \quad \text{IF } X \neq 0 \text{ GOTO } B$$

$$Z \leftarrow Z + 1$$

$$\text{IF } Z \neq 0 \text{ GOTO } E$$

$$[B] \quad X \leftarrow X - 1$$

$$Y \leftarrow Y + 1$$

$$Z \leftarrow Z + 1$$

IF $Z \neq 0$ GOTO A

Note: The program does copy the value of X into Y but it destroyes X (i.e. the value of X is 0 at the end).

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

Fixed Program:

[A] IF
$$X \neq 0$$
 GOTO B GOTO C

$$[B] \quad X \leftarrow X - 1$$
$$Y \leftarrow Y + 1$$
$$Z \leftarrow Z + 1$$

$$\mathsf{GOTO}\ A$$

[C] IF
$$Z \neq 0$$
 GOTO D
GOTO E

$$\begin{array}{ccc} [D] & Z \leftarrow Z - 1 \\ & X \leftarrow X + 1 \\ & \text{GOTO } C \end{array}$$

Note: Later, we will use $V \leftarrow V'$ with above code as a macro.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

Macro for $V \leftarrow 0$:

 $[L] \quad V \leftarrow V - 1$ $\text{IF } V \neq 0 \text{ GOTO } L$

Macro for $V \leftarrow V'$:

$$V \leftarrow 0$$

[A] IF $V' \neq 0$ GOTO B
GOTO C

[B] $V' \leftarrow V' - 1$

$$V \leftarrow V + 1 \\ Z \leftarrow Z + 1$$

GOTO A $[C] \quad \text{IF } Z \neq 0 \text{ GOTO } D$

GOTO E $[D] \quad Z \leftarrow Z - 1$

$$V' \leftarrow V' + 1$$
GOTO C

Yazd Univ.

Chapter 2: Programs and Computable Functions M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

Macro for $V \leftarrow V'$:

$$V \leftarrow 0$$

 $\begin{array}{ccc} [A] & \mathsf{IF} \ V' \neq 0 \ \mathsf{GOTO} \ B \\ & \mathsf{GOTO} \ C \end{array}$

$$[B] \quad V' \leftarrow V' - 1$$

$$V \leftarrow V + 1$$

$$Z \leftarrow Z + 1$$
GOTO A

 $\begin{array}{ccc} [C] & \text{IF } Z \neq 0 \text{ GOTO } D \\ & \text{GOTO } E \end{array}$

$$[D] \quad Z \leftarrow Z - 1$$

$$V' \leftarrow V' + 1$$
GOTO C

Notes:

- Adding Z ← 0 at the beginning of the macro is unnecessary.
- Z should be distinct from all local variables of the main program.
- Same for Labels in the marco.
- Label E in the macro should replace by label of the instruction after the macro in the main program.

Yazd Univ.

Chapter 2:

Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

A Program for

$$f(x_1, x_2) = x_1 + x_2$$
:

$$Y \leftarrow X_1$$

 $Z \leftarrow X_2$

[B] IF
$$Z \neq 0$$
 GOTO A GOTO E

$$[A] \quad Z \leftarrow Z - 1 \\ Y \leftarrow Y + 1$$

$$Y \leftarrow Y +$$
GOTO B

A Program for

 $f(x_1, x_2) = x_1 \times x_2$

$$Z_2 \leftarrow X_2$$

$$[B] \quad \text{IF } Z_2 \neq 0 \text{ GOTO } A$$
 GOTO E

$$[A] \quad Z_2 \leftarrow Z_2 - 1$$

$$Z_1 \leftarrow X_1 + Y$$

$$Y \leftarrow Z_1$$
GOTO B

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

More about Macros

Note:

We used
$$Z_1 \leftarrow X_1 + Y$$

 $Y \leftarrow Z_1$

instead of $Y \leftarrow X_1 + Y$ since in the summation macro all 3 variables should be distinct. If not, the result is not correct.

Some Examples of Programs

A Program for

$$f(x_1, x_2) = x_1 + x_2$$
:

$$Y \leftarrow X_1$$
 $Z \leftarrow X_2$

$$[B] \quad \text{IF } Z \neq 0 \text{ GOTO } A \\ \quad \text{GOTO } E$$

[A]
$$Z \leftarrow Z - 1$$

$$[A] \quad Z \leftarrow Z - 1$$
$$Y \leftarrow Y + 1$$
GOTO B

A Program for

$$f(x_1, x_2) = x_1 \times x_2$$
:

$$Z_2 \leftarrow X_2$$

[B] IF $Z_2 \neq 0$ GOTO A GOTO E

[A]
$$Z_2 \leftarrow Z_2 - 1$$

 $Z_1 \leftarrow X_1 + Y$
 $Y \leftarrow Z_1$
GOTO B

Yazd Univ

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

More about Macros

Note

We used
$$Z_1 \leftarrow X_1 + Y$$

instead of $Y \leftarrow X_1 + Y$ since in the summation macro all 3 variables should be distinct. If not, the result is not correct.

Some Examples of Programs

A Program for

$$f(x_1, x_2) = x_1 + x_2$$
:

$$Y \leftarrow X_1$$

 $Z \leftarrow X_2$

$$[B] \quad \text{IF } Z \neq 0 \text{ GOTO } A$$

$$\text{GOTO } E$$

$$[A] \quad Z \leftarrow Z - 1$$

$$Y \leftarrow Y + 1$$
GOTO B

A Program for

$$f(x_1, x_2) = x_1 \times x_2$$
:

$$Z_2 \leftarrow X_2$$

[B] IF $Z_2 \neq 0$ GOTO A GOTO E

[A]
$$Z_2 \leftarrow Z_2 - 1$$

 $Z_1 \leftarrow X_1 + Y$
 $Y \leftarrow Z_1$
GOTO B

Yazd Univ

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

More about Macros

Note:

We used $Z_1 \leftarrow X_1 + Y$

 $Y \leftarrow Z_1$

instead of $Y \leftarrow X_1 + Y$ since in the summation macro all 3 variables should be distinct. If not, the result is not correct.

Some Examples of Programs

A Program for

$$f(x_1, x_2) = x_1 + x_2$$
:

$$Y \leftarrow X_1$$

 $Z \leftarrow X_2$

$$[B] \quad \text{IF } Z \neq 0 \text{ GOTO } A$$

$$\text{GOTO } E$$

$$[A] \quad Z \leftarrow Z - 1 \\ Y \leftarrow Y + 1 \\ \text{GOTO } B$$

Macro for $Y \leftarrow X_1 + Y$:

$$Y \leftarrow X_1 \\ Z \leftarrow Y$$

[B] IF $Z \neq 0$ GOTO A GOTO E

$$[A] \quad Z \leftarrow Z - 1$$
$$Y \leftarrow Y + 1$$
$$GOTO B$$

دانشڪاويزد

Yazd Univ.
Chapter 2:

Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

More about Macros

Note

It computes $2x_1$ instead of $x_1 + y$.

Some Examples of Programs

A Program for

$$f(x_1, x_2) = x_1 + x_2$$
:

$$Y \leftarrow X_1$$

 $Z \leftarrow X_2$

 $[B] \quad \text{IF } Z \neq 0 \text{ GOTO } A$ GOTO E

$$[A] \quad Z \leftarrow Z - 1$$
$$Y \leftarrow Y + 1$$
$$GOTO B$$

Macro for $Y \leftarrow X_1 + Y$:

$$\begin{array}{c} Y \leftarrow X_1 \\ Z \leftarrow Y \end{array}$$

[B] IF $Z \neq 0$ GOTO A GOTO E

[A]
$$Z \leftarrow Z - 1$$

 $Y \leftarrow Y + 1$
GOTO B

داشت کاویزد

Yazd Univ.
Chapter 2:

Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

More about

Note:

It computes $2x_1$ instead of $x_1 + y$.

A Program for

$$f(x_1, x_2) = x_1 \times x_2$$
:

$$Z_2 \leftarrow X_2$$
 [B] IF $Z_2 \neq 0$ GOTO A GOTO E

[A]
$$Z_2 \leftarrow Z_2 - 1$$

 $Z_1 \leftarrow X_1 + Y$
 $Y \leftarrow Z_1$
GOTO B

A Program for $f(x_1, x_2) = x_1 + x_2$:

$$Y \leftarrow X_1 \\ Z \leftarrow X_2$$

 $[B] \quad \text{IF } Z \neq 0 \text{ GOTO } A$ GOTO E

$$[A] \quad Z \leftarrow Z - 1 \\ Y \leftarrow Y + 1 \\ \text{GOTO } B$$

The program with macro expansion:

$$\begin{array}{ccc} & Z_2 \leftarrow X_2 \\ [B] & \text{IF } Z_2 \neq 0 \text{ GOTO } A \\ & \text{GOTO } E \end{array}$$

$$egin{array}{ll} Z_2 \leftarrow Z_2 - 1 \ Z_1 \leftarrow X_1 \ Z_3 \leftarrow Y \end{array}$$

[
$$A_2$$
] $Z_3 \leftarrow Z_3 - 1$

$$Z_1 \leftarrow Z_3 - 1$$

$$Z_1 \leftarrow Z_1 + 1$$

$$[E_2] \quad Y \leftarrow Z_1$$

$$\mathsf{GOTO} \ B$$

Yazd Univ.

Chapter 2: Programs and Computable Functions

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

A Program for $f(x_1, x_2) = x_1 \times x_2$:

$$Z_2 \leftarrow X_2$$
[B] IF $Z_2 \neq 0$ GOTO A
GOTO E

[A]
$$Z_2 \leftarrow Z_2 - 1$$

 $Z_1 \leftarrow X_1 + Y$
 $Y \leftarrow Z_1$
GOTO B

A Program for $f(x_1, x_2) = x_1 + x_2$:

$$Y \leftarrow X_1 \\ Z \leftarrow X_2$$

 $[B] \quad \begin{array}{l} E < A_2 \\ \text{IF } Z \neq 0 \text{ GOTO } A \\ \text{GOTO } E \end{array}$

[A]
$$Z \leftarrow Z - 1$$

 $Y \leftarrow Y + 1$
GOTO B

The program with macro expansion:

 $Z_2 \leftarrow X_2$ [B] IF $Z_2 \neq 0$ GOTO A

 $[A] \quad Z_2 \leftarrow Z_2 - 1$ $Z_1 \leftarrow X_1$

 $Z_3 \leftarrow Y$ IF $Z_3 \neq 0$ GOTO A_2

GOTO E_2 $[A_2] \quad Z_3 \leftarrow Z_3 - 1$

 $[B_2]$

 $Z_1 \leftarrow Z_1 + 1$ GOTO B_2

 $[E_2] \quad Y \leftarrow Z_1$ GOTO B

Yazd Univ.

Chapter 2: Programs and Computable Functions M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

A Program for $f(x_1, x_2) = x_1 \times x_2$:

$$Z_2 \leftarrow X_2$$
[B] IF $Z_2 \neq 0$ GOTO A
GOTO E

[A]
$$Z_2 \leftarrow Z_2 - 1$$

 $Z_1 \leftarrow X_1 + Y$
 $Y \leftarrow Z_1$
GOTO B

A Program for $f(x_1, x_2) = x_1 + x_2$:

$$Y \leftarrow X_1 \\ Z \leftarrow X_2$$

 $[B] \quad \begin{array}{l} E < A_2 \\ \text{IF } Z \neq 0 \text{ GOTO } A \\ \text{GOTO } E \end{array}$

[A]
$$Z \leftarrow Z - 1$$

 $Y \leftarrow Y + 1$
GOTO B

The program with macro expansion:

 $Z_2 \leftarrow X_2$ [B] IF $Z_2 \neq 0$ GOTO A

 $[A] \quad Z_2 \leftarrow Z_2 - 1$ $Z_1 \leftarrow X_1$

 $Z_3 \leftarrow Y$ IF $Z_3 \neq 0$ GOTO A_2

GOTO E_2 $[A_2] \quad Z_3 \leftarrow Z_3 - 1$

 $[B_2]$

 $Z_1 \leftarrow Z_1 + 1$ GOTO B_2

 $[E_2] \quad Y \leftarrow Z_1$ GOTO B

Yazd Univ.

Chapter 2: Programs and Computable Functions M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Some Examples of Programs

A program for $f(x_1, x_2) = x_1 - x_2$:

$$Y \leftarrow X_1$$

$$Z \leftarrow X_2$$

[C] IF
$$Z \neq 0$$
 GOTO A GOTO E

[A] IF
$$Y \neq 0$$
 GOTO B GOTO A

[B]
$$Y \leftarrow Y - 1$$

 $Z \leftarrow Z - 1$
GOTO C

Notes:

If $x_1 < x_2$, then the program will never terminate. So it

computes $f(x_1, x_2) = \begin{cases} x_1 - x_2 & \text{If } x_1 \ge x_2 \\ \text{undefined} & \text{If } x_1 < x_2. \end{cases}$

Yazd Univ

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming

Some Examples of **Programs**

Computable

Definitions and assumptions:

- L: Language
- Xis: Input variables
- Z_is: Local variables
- Y: Output variable
- A_i, B_i, C_i, D_i : labels
- statements: (V: any variable, L: any label)

$$V \leftarrow V + 1$$

$$V \leftarrow V - 1$$

 $V \leftarrow V$ (dummy statement)

IF $V \neq 0$ GOTO L

- Instructions: Either an statement or a label followed by statement.
- program: a list (i.e., a finite sequence) of instructions.
- state of a program: value of all the variables of the program.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Definitions and assumptions:

- Instructions: Either an statement or a label followed by statement.
- program: a list (i.e., a finite sequence) of instructions.
- state of a program: value of all the variables of the program.
- snapshot of a program of length n: status of the program in each step. (σ, i) : status σ at the point that ith instruction is about to be executed.
- $(n+1,\sigma)$: Terminal (n is the length of the program).
- $(i+1,\sigma)$ is the seccessor of (i,σ) .

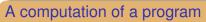
والمشكاويزو

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language


Some Examples of Programs

Syntax

Computable Functions

Seccessor of (i, σ) :

If <i>i</i> th instruction is	successor
$V \leftarrow V + 1$	$(i+1,\tau), \tau$ is σ except that the value
	of V incremented by 1.
$V \leftarrow V - 1$	$(i+1,\tau), \tau$ is σ except that the value
	of V decremented by 1.
$V \leftarrow V$	$(i+1,\sigma)$.
IF $V \neq 0$ GOTO L	If $V = 0$, then $(i + 1, \sigma)$.
	If $V \neq 0$, then
	if there is instruction with label L
	and j is the number of it, (j, σ) ,
	and otherwise $(n+1,\sigma)$ (stop).

a sequence (i.e., a list) s_1, s_2, \ldots, s_k of snapshots of the program such that s_{i+1} is the successor of s_i , for $i=1,2,\ldots,k-1$ and s_k is terminal.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Note:

We have not forbidden a program to contain more than one instruction having the same label. But only the first occurance of the label take effect, i.e. the following programs are the same:

[A]
$$X \leftarrow X - 1$$

IF $X \neq 0$ GOTO A
[A] $X \leftarrow X + 1$

$$[A] \quad \begin{array}{ccc} X \leftarrow X - 1 \\ \text{IF } X \neq 0 \text{ GOTO } A \\ X \leftarrow X + 1 \end{array}$$

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

- Consider a function of m variables.
- Let P be a program and r_1, \ldots, r_m be m inputs.
- initial state σ : $X_1 = r_1, \dots, X_m = r_m, Y = 0$ plus V = 0 for all other variables.
- $(1, \sigma)$: initial snapshot.
- Case 1: \exists computation s_1, s_2, \ldots, s_k of P beginning with $s_1 = (1, \sigma)$. Then $f_P^{(m)}(r_1, r_2, \ldots, r_m)$ is the value of Y at the (terminal) snapshot s_k .
- Case 2: There is no such computation; i.e., the sequence of snapshots is infinite. In this case $f_P^{(m)}(r_1,r_2,\ldots,r_m)$ is undefined.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Program: f(x) = x

[A] IF
$$X \neq 0$$
 GOTO B (1)

$$Z \leftarrow Z + 1$$
 (2)

IF
$$Z \neq 0$$
 GOTO E (3)

$$[B] \quad X \leftarrow X - 1 \tag{4}$$

$$Y \leftarrow Y + 1 \tag{5}$$

$$Z \leftarrow Z + 1$$
 (6)

$\mathsf{IF}\ Z \neq 0\ \mathsf{GOTO}\ A \quad (7)$

Assumptions:

- If # inputs is less than # input variables, it assigns 0 to the rest of input variables.
- If it is more, the rest are ignored.

Computation for input r

	Status		
#	X	Y	Z
1	r	0	0
4	r	0	0
5	r-1	0	0
6	r-1	1	0
7	r-1	1	1
1	r-1	1	1
	÷		
1	0	r	r
2	0	r	r
3	0	r	r+1
8	0	r	r+1

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

More about

Program: f(x) = x

[A] IF
$$X \neq 0$$
 GOTO B (1)

$$Z \leftarrow Z + 1$$
 (2)

$$\mathsf{IF}\ Z \neq 0\ \mathsf{GOTO}\ E \quad (3)$$

$$[B] \quad X \leftarrow X - 1 \tag{4}$$

$$Y \leftarrow Y + 1 \tag{5}$$

$$Z \leftarrow Z + 1$$
 (6)

IF
$$Z \neq 0$$
 GOTO A (7)

Assumptions:

- If # inputs is less than # input variables, it assigns 0 to the rest of input variables.
- If it is more, the rest are ignored.

Computation for input r

	Status			
#	X	Y	Z	
1	r	0	0	
4	r	0	0	
5	r-1	0	0	
6	r-1	1	0	
7	r-1	1	1	
1	r-1	1	1	
	i i			
1	0	r	r	
2	0	r	r	
3	0	r	r+1	
8	0	r	r+1	

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Definitions:

- For any program P and any m, the function $F_P^{(m)}(x_1, \ldots, x_m)$ is said to be computed by P.
- A given partial function g is said to be partially computable or partial recursive if it is computed by some program.
- A given total function g is said to be computable or recursive if it is computed by some program.
- So far, it is shown that x, x + y, $x \times y$ and x y is (partial) computable.
- Computability theory (also called recursion theory) studies the class of partially computable functions.

دانشكاديرد

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

- Let $f(x_1, ..., x_n)$ be some partially computable function computed by P.
- The variables that occur in P are included in $Y, X_1, \dots, X_n, Z_1, \dots, Z_k$.
- The labels that occur in P are all included in E, A_1, \ldots, A_{ℓ} .
- for each instruction IF $V \neq 0$ GOTO A_i there is an instruction labeled A_i .
- E is the only "exit" label.
- $P = P(Y, X_1, \dots, X_n, Z_1, \dots, Z_k, E, A_1, \dots, A_\ell)$
- We replace all variables and labels by others:

$$Q_m = P(Z_m, Z_{m+1}, \dots, Z_{m+n}, Z_{m+n+1}, Z_{m+n+k}, E_m, A_{m+1}, \dots, A_{m+\ell})$$

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

- $P = P(Y, X_1, \dots, X_n, Z_1, \dots, Z_k, E, A_1, \dots, A_\ell)$
- We replace all variables and labels by others:

$$Q_m =$$

 $P(Z_m, Z_{m+1}, \dots, Z_{m+n}, Z_{m+n+1}, Z_{m+n+k}, E_m, A_{m+1}, \dots, A_{m+\ell})$

We replace $W \leftarrow f(V_1, \dots, V_n)$ by

$$Z_m \leftarrow 0$$

$$Z_{m+1} \leftarrow V_1$$

÷

$$Z_{m+n} \leftarrow V_n$$

$$Z_{m+n+1} \leftarrow 0$$

÷

$$Z_{m+n+k} \leftarrow 0$$

 Q_m

 $[E_m]$ $W \leftarrow Z_m$

Notes

- The variables and labels used in Q_m should be unique.
- The expansion should sets output and local variables to 0.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

- $P = P(Y, X_1, \dots, X_n, Z_1, \dots, Z_k, E, A_1, \dots, A_\ell)$
- We replace all variables and labels by others:

$$Q_m =$$

$$P(Z_m, Z_{m+1}, \dots, Z_{m+n}, Z_{m+n+1}, Z_{m+n+k}, E_m, A_{m+1}, \dots, A_{m+\ell})$$

We replace $W \leftarrow f(V_1, \dots, V_n)$ by

$$Z_m \leftarrow 0$$

$$Z_{m+1} \leftarrow V_1$$

:

$$Z_{m+n} \leftarrow V_n$$

$$Z_{m+n+1} \leftarrow 0$$

:

$$Z_{m+n+k} \leftarrow 0$$

 Q_m

 $[E_m]$ $W \leftarrow Z_m$

Notes:

- The variables and labels used in Q_m should be unique.
- The expansion should sets output and local variables to 0.

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Note:

 If one of the macros of the program is undefined, then the program will not terminate.

Example:

$$Z \leftarrow X_1 - X_2$$
$$Y \leftarrow Z + X_3$$

does not work if $x_1 < x_2$.

دانشگادیزد

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Macros of the form IF $P(V_1, \ldots, V_n)$ GOTO L

- Let $P(x_1, ..., x_n)$ be any computable predicate (its output is 1 (=TRUE) or 0(=FALSE).
- The macro expansion of

IF
$$P(V_1,\ldots,V_n)$$
 GOTO L

is simply

$$Z \leftarrow P(V_1, \dots, V_n)$$

IF $Z \neq 0$ GOTO L

Note that, now we know how to expand

$$Z \leftarrow P(V_1, \dots, V_n)$$

واستحاديره

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions

Example: IF V = 0 GOTO L

- Note that it is not an instruction in the language.
- Define

$$P(x) = \begin{cases} \text{TRUE} & \text{if } x = 0\\ \text{FALSE} & \text{otherwise} \end{cases}$$

• The following program computes P(x):

IF
$$X \neq 0$$
 GOTO E
 $Y \leftarrow Y + 1$

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

yntax

Computable Functions

Yazd Univ.

Chapter 2: Programs and Computable Functions

M. Farshi

A Programming Language

Some Examples of Programs

Syntax

Computable Functions