Computer Science Theory

(Master Course)

Chapter 3:

Primitive Recursive Functions

Mohammad Farshi
Department of Computer Science
Yazd University

1395-1

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

Composition-Recursion

Recursion

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Composition

• **Definition:** Let f be a function of k variables and let g_1, \ldots, g_k be functions of n variables. Let

$$h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)).$$

Then h is said to be obtained from f and g_1, \ldots, g_k by composition.

• **Theorem 1.1.** If h is obtained from the (partially) computable functions f, g_1, \ldots, g_k by composition, then h is (partially) computable.

Proof.

The following program obviously computes *h*:

$$Z_1 \leftarrow g_1(X_1, \dots, X_n)$$

$$\vdots$$

$$Z_k \leftarrow g_k(X_1, \dots, X_n)$$

$$Y \leftarrow f(Z_1, \dots, Z_k)$$

Yazd Univ.

Chapter 3: Primitive Recursive Functions M. Farshi

Composition-Recursion

Recursion

PRC Classes

Some Prim. Rec.

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Definition: Let

g: a total function of two variables

k: a fixed number

Then h is said to be obtained from g by primitive recursion, or simply recursion if

$$h(0) = k,$$

$$h(t+1) = g(t, h(t)).$$

• Theorem 2.1. If g is computable, then h is also computable.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

ompositionecursion

Recursion

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Theorem 2.1. If g is computable, then h is computable.

Proof.

- The constant function f(x) = k is computable (by a program with k statement $Y \leftarrow Y + 1$). So we have macro $Y \leftarrow k$.
- The following program computes *h*:

$$\begin{array}{c} Y \leftarrow k \\ [A] \quad \text{IF } X = 0 \text{ GOTO } E \\ Y \leftarrow g(Z,Y) \\ Z \leftarrow Z + 1 \\ X \leftarrow X - 1 \\ \text{GOTO } A \end{array}$$

Yazd Univ.

Chapter 3: Primitive Recursive Functions M. Farshi

...

Recursion

Recursion

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Definition: Let

f: a total function of *n* variables a: a total function of n+2 variables Then h is said to be obtained from q by primitive recursion, or simply recursion if

$$\begin{array}{lcl} h(x_1,\ldots,x_n,0) & = & f(x_1,\ldots,x_n), \\ h(x_1,\ldots,x_n,t+1) & = & g(t,h(x_1,\ldots,x_n,t),x_1,\ldots,x_n), \\ \end{array}$$

• Theorem 2.1. If q is computable, then h is also computable.

Chapter 3: Primitive Recursive Functions

Yazd Univ

M. Farshi

Some Prim. Rec. **Functions** Prim Rec

Predicates Iterated Oper, and

Bounded Quantifiers

Minimalization

Theorem 2.1. If g is computable, then h is computable.

Proof.

• The following program computes *h*:

$$Y \leftarrow f(X_1, \dots, X_n)$$

$$[A] \quad \mathsf{IF} \ X_{n+1} = 0 \ \mathsf{GOTO} \ E$$

$$Y \leftarrow g(Z, Y, X_1, \dots, X_n)$$

$$Z \leftarrow Z + 1$$

$$X_{n+1} \leftarrow X_{n+1} - 1$$

$$\mathsf{GOTO} \ A$$

Yazd Univ.

Chapter 3: Primitive Recursive Functions M. Farshi

position-

Recursion

Recursion

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Primitive Recursively Closed

Initial Function

- s(x) = x + 1
- n(x) = 0
- (projection functions) for each $1 \le i \le n$, $u_i^n(x_1, \ldots, x_n) = x_i$

A PRC class:

A class ϕ of total functions is called a PRC class if

- The initial functions belongs to ϕ ,
- It is closed under composition and recursion.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

Composition-Recursion

Recursion

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Primitive Recursively Closed

Theorem 3.1. The class of computable functions is a PRC class.

Proof. By Theorems 1.1, 2.1, and 2.2, we need only verify that the initial functions are computable.

- s(x) = x + 1 is computed by $Y \leftarrow X + 1$.
- n(x) is computed by the empty program.
- $u_i^n(x_1,\ldots,x_n)$ is computed by the program $Y \leftarrow X_i$.

Definition: primitive recursive function

A function is called **primitive recursive** if it can be obtained from the initial functions by a finite number of composition and recursion.

Corollary 3.2.

The class of primitive recursive functions is a PRC class.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

Recursion

PRC Classes

Some Prim. Rec.

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Primitive Recursively Closed

Theorem 3.3. A function f is primitive recursive if and only if f belongs to every PRC class.

Proof. (\Leftarrow) If f belongs to every PRC class, then, in particular, by Corollary 3.2, it belongs to the class of primitive recursive functions.

 (\Rightarrow) Let f be a primitive recursive function and let ϕ be some PRC class. We want to show that f belongs to ϕ . Since f is a primitive recursive function, there is a list f_1, f_2, \ldots, f_n of functions such that $f_n = f$ and each f_i is either an initial function or can be obtained from preceding functions in the list by composition or recursion.

Now the initial functions certainly belong to the PRC class ϕ . Moreover ϕ is closed under composition and recursion. Hence each function in the list f_1,\ldots,f_n belongs to ϕ . Since $f_n=f$, f belongs to ϕ .

Yazd Univ

Chapter 3: Primitive Recursive Functions

M. Farshi

Composition-Recursion

recursion

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Primitive Recursively Closed

Corollary 3.4.

Every primitive recursive function is computable.

In Chapter 4 we shall show how to obtain a computable function that is not primitive recursive. Hence it will follow that the set of primitive recursive functions is a proper subset of the set of computable functions.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

compositionlecursion

Recursion

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

$$f(x,y) = x + y$$

 We have to show how to obtain f from the initial functions using composition and recursion.

Initial Functions

$$s(x) = x + 1, n(x) = 0, u_i^n(x_1, ..., x_n) = x_i, (1 \le i \le n)$$

• Step 1: Define *f* recursively:

$$f(x,0) = x$$

$$f(x,y+1) = f(x,y) + 1$$

Step 2: Use initial functions :

$$f(x,0) = u_1^1(x)$$

$$f(x,y+1) = g(y,f(x,y),x),$$
 where $g(x_1,x_2,x_3) = s(u_2^3(x_1,x_2,x_3)).$

• So, f(x,y) = x + y is a primitive recursive function.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

composition-Recursion

Recursion

PRC Classes
Some Prim Rec.

Functions
Prim Rec

Predicates
Iterated Oper, and

Bounded Quantifiers

Minimalization
Pairing Functions

$$h(x,y) = x \times y$$

 We have to show how to obtain h from the initial functions using composition and recursion.

Initial Functions

$$s(x) = x + 1, n(x) = 0, u_i^n(x_1, \dots, x_n) = x_i, (1 \le i \le n)$$

• Step 1: Define h recursively:

$$h(x,0) = 0$$

$$h(x,y+1) = h(x,y) + x$$

Step 2: Use initial functions :

$$\begin{array}{rcl} h(x,0)&=&n(x)\\ h(x,y+1)&=&g(y,h(x,y),x),\\ \text{where }g(x_1,x_2,x_3)=f(u_2^3(x_1,x_2,x_3),u_3^3(x_1,x_2,x_3))\\ \text{and }f(x_1,x_2)=x_1+x_2. \end{array}$$

• So, $h(x,y) = x \times y$ is a primitive recursive function.

Yazd Univ

Chapter 3: Primitive Recursive **Functions**

M. Farshi

Some Prim Rec.

Functions Prim Rec

Predicates

and Gödel

Iterated Oper, and Bounded Quantifiers

Minimalization Pairing Functions

$$h(x) = x!$$

 We have to show how to obtain h from the initial functions using composition and recursion.

Initial Functions

$$s(x) = x + 1, n(x) = 0, u_i^n(x_1, ..., x_n) = x_i, (1 \le i \le n)$$

• Step 1: Define *h* recursively:

$$h(0) = 0! = 1$$

 $h(x+1) = (x+1)! = x! \times s(x)$

Step 2: Use initial functions :

$$h(0) = 1$$

 $h(t+1) = g(t, h(t)),$

where

$$g(x_1, x_2) = s(x_1) \times x_2 = s(u_1^2(x_1, x_2)) \times u_2^2(x_1, x_2)$$
.

• So, h(x) = x! is a primitive recursive function.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

Composition-Recursion

.000.0.0.

PRC Classes
Some Prim Rec.

Functions
Prim Rec

Predicates

Iterated Oper. and

Bounded
Quantifiers

Pairing Functions

Minimalization

$$h(x,y) = x^y$$

 We have to show how to obtain h from the initial functions using composition and recursion.

Initial Functions

$$s(x) = x + 1, n(x) = 0, u_i^n(x_1, \dots, x_n) = x_i, (1 \le i \le n)$$

• Step 1: Define *h* recursively:

$$h(x,0) = 1$$

$$h(x,y+1) = h(x,y) \times x$$

Step 2: Use initial functions:

$$\begin{array}{rcl} h(x,0)&=&1\\ h(x,y+1)&=&g(x,h(x,y),y),\\ \text{where }g(x_1,x_2,x_3)=u_2^3(x_1,x_2,x_3)\times u_1^3(x_1,x_2,x_3)). \end{array}$$

• So, $h(x,y) = x^y$ is a primitive recursive function.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

Composition-Recursion

ecursion

PRC Classes
Some Prim Rec.

Functions
Prim Rec

Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Predecessor function

 We have to show how to obtain p from the initial functions using composition and recursion.

Initial Functions

$$s(x) = x + 1, n(x) = 0, u_i^n(x_1, \dots, x_n) = x_i, (1 \le i \le n)$$

• Step 1: Define *p* recursively:

$$p(0) = 0$$
$$p(t+1) = t$$

• So, p(x) is a primitive recursive function.

Yazd Univ.

Chapter 3: Primitive Recursive Functions M. Farshi

ecursion

Recursion

PRC Classes
Some Prim Rec

Functions
Prim. Rec.
Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

$$h(x,y) = x - y$$

- $h(x,y) = x y = \begin{cases} x-y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$
- We have to show how to obtain h from the initial functions using composition and recursion.

Initial Functions

$$s(x) = x + 1, n(x) = 0, u_i^n(x_1, ..., x_n) = x_i, (1 \le i \le n)$$

Step 1: Define h recursively:

$$h(x,0) = x - 0 = x$$

$$h(x,y+1) = x - y - 1 = p(x - y) = p(h(x,y)).$$

• So, h(x,y) = x - y is a primitive recursive function.

Yazd Univ.

Chapter 3: Primitive Recursive Functions M. Farshi

Composition-Recursion

Recursion

Some Prim Rec

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

•
$$h(x,y) = |x-y|$$

•
$$h(x,y) = |x - y| = x - y + y - x$$

• So, h(x,y) = |x-y| is a primitive recursive function.

- \bullet $\alpha(x) = 1 x$
- or, $\alpha(0) = 1, \alpha(t+1) = 0.$
- So, $\alpha(x)$ is a primitive recursive function.

Yazd Univ.

Chapter 3: Primitive Recursive **Functions** M. Farshi

Some Prim Rec.

Functions Prim Rec **Predicates**

Iterated Oper, and Bounded Quantifiers

Minimalization

Pairing Functions and Gödel

- Predicates= Boolean-valued functions
- x = y or $d(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
 - $d(x,y) = \alpha(|x-y|) \Rightarrow$ primitive recursive.
- $\bullet \ \, x \leq y \sim \alpha(x \stackrel{.}{-} y) \Rightarrow \text{primitive recursive}.$

Theorem 5.1. If P,Q are predicates that belong to a PRC class ϕ , then so are $\sim P, P \vee Q$, and $P \wedge Q$.

Proof.

- $\bullet \sim P = \alpha(P).$
- $P \wedge Q = P \times Q.$
- $\bullet \ P \lor Q = \sim (\sim P \land \sim Q).$

Corollaries:

- If P, Q are PR predicates, then so are $\sim P$, $P \vee Q$, and $P \wedge Q$.
- If P, Q are computable predicates, then so are $\sim P, P \vee Q$, and $P \wedge Q$.

Yazd Univ.

Chapter 3: Primitive Recursive Functions M. Farshi

position-

Recursion

PRC Classes
Some Prim Rec

Prim. Rec. Predicates

Quantifiers

Iterated Oper. and Bounded

Minimalization

- Predicates= Boolean-valued functions
- x = y or $d(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
 - $d(x,y) = \alpha(|x-y|) \Rightarrow$ primitive recursive.
- $x \le y \sim \alpha(x y) \Rightarrow$ primitive recursive.

Theorem 5.1. If P,Q are predicates that belong to a PRC class ϕ , then so are $\sim P, P \vee Q$, and $P \wedge Q$.

Proof.

- $\bullet \sim P = \alpha(P).$
- $P \wedge Q = P \times Q.$
- $P \lor Q = \sim (\sim P \land \sim Q).$
- $x < y \equiv (x \le y \land \sim (x = y)) \equiv \sim (y \le x) \Rightarrow$ primitive recursive.

Yazd Univ.

Chapter 3: Primitive Recursive Functions M. Farshi

Composition-Recursion

Recursion

Some Prim Rec

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Pairing Functions and Gödel 19/26

Theorem 5.4. (Definition by Cases).

If the functions g, h and the predicate P belong to a

PRC class
$$\phi$$
, then
$$f(x_1,\ldots,x_n) = \left\{ \begin{array}{ll} g(x_1,\ldots,x_n) & \text{if } P(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{otherwise} \end{array} \right.$$
 belongs to ϕ .

Proof. $f(x_1, ..., x_n) = g(x_1, ..., x_n) \times P(x_1, ..., x_n) +$ $h(x_1,\ldots,x_n)\times\alpha(P(x_1,\ldots,x_n)).$

Yazd Univ.

Chapter 3: Primitive Recursive **Functions** M. Farshi

Some Prim Rec.

Functions Prim. Rec.

Predicates Iterated Oper. and Bounded

Minimalization

Quantifiers

Pairing Functions and Gödel 20/26

Corollary 5.5.

If the functions g_1, \ldots, g_m, h and the predicate P_1, \ldots, P_m belong to a PRC class ϕ and $\forall 1 \leq i < j \leq m$ and $\forall x_1, \ldots, x_n$,

$$P_i(x_1,\ldots,x_n) \wedge P_i(x_1,\ldots,x_n) = 0$$
 then

$$f(x_1,\ldots,x_n) = \begin{cases} g_1(x_1,\ldots,x_n) & \text{if } P_1(x_1,\ldots,x_n) \\ \vdots & \vdots \\ g_m(x_1,\ldots,x_n) & \text{if } P_m(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{otherwise} \end{cases}$$

belongs to ϕ .

Proof. (By induction on m)

Base step: m = 1 (Previous Theorem).

Induction hypothesis: It is true for m.

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

Recursion

PRC Classes

Some Prim Rec

Functions
Prim. Rec.
Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Proof. (Cont.)

$$f(x_1,\ldots,x_n) = \left\{ \begin{array}{ll} g_1(x_1,\ldots,x_n) & \text{if } P_1(x_1,\ldots,x_n) \\ \vdots & \vdots \\ g_{m+1}(x_1,\ldots,x_n) & \text{if } P_{m+1}(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{otherwise} \end{array} \right.$$

Let

$$h'(x_1,\ldots,x_n) = \left\{ \begin{array}{ll} g_{m+1}(x_1,\ldots,x_n) & \text{if } P_{m+1}(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{otherwise} \end{array} \right.$$

Then

$$f(x_1,\ldots,x_n) = \left\{ \begin{array}{ll} g_1(x_1,\ldots,x_n) & \text{if } P_1(x_1,\ldots,x_n) \\ \vdots & \vdots \\ g_m(x_1,\ldots,x_n) & \text{if } P_m(x_1,\ldots,x_n) \\ h'(x_1,\ldots,x_n) & \text{otherwise} \end{array} \right.$$

Done!

Yazd Univ.
Chapter 3:

Primitive Recursive Functions

Composition-Recursion

ecursion

PRC Classes

Some Prim. Rec.

Prim. Rec. Predicates

Iterated Oper. and Bounded

Minimalization

Pairing Functions and Gödel 22/26

Quantifiers

Iterated Operations and Bounded Quantifiers

Theorem 6.1. If $f(t, x_1, \ldots, x_n)$ belongs to a PRC class, then so do the functions

$$g(y, x_1, \dots, x_n) = \sum_{t \in \mathcal{S}} f(t, x_1, \dots, x_n)$$

and

$$h(y,x_1,\ldots,x_n)=\prod_{i=1}^n f(t,x_1,\ldots,x_n).$$

Proof. Note: we cannot use induction for the proof, because it proves that $\forall i, g(i, x_1, \dots, x_n)$ belongs yo the PRC class.

Consider the following recursion:

$$g(0,x_1,\ldots,x_n)=f(0,x_1,\ldots,x_n)$$
 $g(t+1,x_1,\ldots,x_n)=g(t,x_1,\ldots,x_n)+f(t+1,x_1,\ldots,x_n)$ Prim. Rec. Predicates $h(0,x_1,\ldots,x_n)=f(0,x_1,\ldots,x_n)$

Yazd Univ

Chapter 3: Primitive Recursive **Functions** M. Farshi

PRC Classes

Some Prim. Rec. **Functions** Prim Rec

Predicates Bounded

Quantifiers

Minimalization $h(t+1,x_1,\ldots,x_n) = h(t,x_1,\ldots,x_n) \times f(t+1,x_1,\ldots,x_n)$

Minimalization

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

ompositionecursion

Recursion

PRC Classes

Some Prim. Rec.

Functions
Prim. Rec.
Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Pairing Functions and Gödel 24/26

Pairing Functions and Gödel Numbers

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

ecursion

000.0.0..

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Pairing Functions and Gödel 25/26

Yazd Univ.

Chapter 3: Primitive Recursive Functions

M. Farshi

Composition-Recursion

Recursion

. ..

PRC Classes

Some Prim. Rec. Functions

Prim. Rec. Predicates

Iterated Oper. and Bounded Quantifiers

Minimalization

Pairing Functions and Gödel 26/26