Applications of Well-Separated Pairs

Faranak Tohidi

Department of Computer Science Yazd University

January 18, 2016

Outline

- Reminders
- Spanners of bounded degree
- Spanner with logarithmic spanner diameter
- Applications to other proximity problems

- Let s > 0 be a real number and A, B are two finite sets of points in R^d .
- A and B are well separated with respect to s if there are 2 disjoint d-dimensional balls Ca and Cb such that:
- Ca and Cb have the same radius
- Ca contains the axes parallel bounding box R(A) of A
- Cb contains the axes parallel bounding box R(B) of E
- The distance between Ca and Cb is greater than or equal to s times the radius of Ca

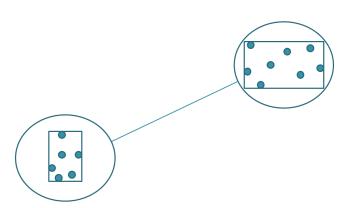
- Let s > 0 be a real number and A, B are two finite sets of points in R^d .
- A and B are well separated with respect to s if there are 2 disjoint d-dimensional balls Ca and Cb such that:
- Ca and Cb have the same radius
- Ca contains the axes parallel bounding box R(A) of A
- Cb contains the axes parallel bounding box R(B) of B
- The distance between Ca and Cb is greater than or equal to s times the radius of Ca

- Let s > 0 be a real number and A, B are two finite sets of points in \mathbb{R}^d .
- A and B are well separated with respect to s if there are 2 disjoint d-dimensional balls Ca and Cb such that:
- Ca and Cb have the same radius
- Ca contains the axes parallel bounding box R(A) of A
- Cb contains the axes parallel bounding box R(B) of B
- The distance between Ca and Cb is greater than or equal to s times the radius of Ca

- Let s > 0 be a real number and A, B are two finite sets of points in \mathbb{R}^d .
- A and B are well separated with respect to s if there are 2 disjoint d-dimensional balls Ca and Cb such that:
- Ca and Cb have the same radius
- Ca contains the axes parallel bounding box R(A) of A
- Cb contains the axes parallel bounding box R(B) of B
- The distance between Ca and Cb is greater than or equal to s times the radius of Ca

- Let s > 0 be a real number and A, B are two finite sets of points in \mathbb{R}^d .
- A and B are well separated with respect to s if there are 2 disjoint d-dimensional balls Ca and Cb such that:
- Ca and Cb have the same radius
- Ca contains the axes parallel bounding box R(A) of A
- Cb contains the axes parallel bounding box R(B) of B
- The distance between Ca and Cb is greater than or equal to s times the radius of Ca

- Let s > 0 be a real number and A, B are two finite sets of points in R^d .
- A and B are well separated with respect to s if there are 2 disjoint d-dimensional balls Ca and Cb such that:
- Ca and Cb have the same radius
- Ca contains the axes parallel bounding box R(A) of A
- Cb contains the axes parallel bounding box R(B) of B
- The distance between Ca and Cb is greater than or equal to s times the radius of Ca



- Let S be a set of n points in R^d , and let s > 0 be a real number. A WSPD for S in respect to s is a sequence $\{A_1, B_1\}, \{A_2, B_2\}, \dots, \{A_m, B_m\}$ of pairs of nonempty subsets of S, for some integer m such that:
- For each $1 \le i \le m$, A_i and B_i are well separated with respect to s
- For any two distinct points p and q, there is exactly one index $1 \le i \le m$ such that $p \in A_i$ and $q \in B_i$ or the opposite
- The integer m is called the size of the WSPD

WSPD

- Let S be a set of n points in R^d , and let s > 0 be a real number. A WSPD for S in respect to s is a sequence $\{A_1, B_1\}, \{A_2, B_2\}, ..., \{A_m, B_m\}$ of pairs of nonempty subsets of S, for some integer m such that:
- For each $1 \le i \le m$, A_i and B_i are well separated with respect to s
- For any two distinct points p and q, there is exactly one index $1 \le i \le m$ such that $p \in A_i$ and $q \in B_i$ or the opposite
- The integer m is called the size of the WSPD

WSPD

- Let S be a set of n points in R^d , and let s > 0 be a real number. A WSPD for S in respect to s is a sequence $\{A_1, B_1\}, \{A_2, B_2\}, ..., \{A_m, B_m\}$ of pairs of nonempty subsets of S, for some integer m such that:
- For each $1 \le i \le m$, A_i and B_i are well separated with respect to s
- For any two distinct points p and q, there is exactly one index $1 \le i \le m$ such that $p \in A_i$ and $q \in B_i$ or the opposite
- The integer m is called the size of the WSPE

WSPD

- Let S be a set of n points in R^d , and let s > 0 be a real number. A WSPD for S in respect to s is a sequence $\{A_1, B_1\}, \{A_2, B_2\}, ..., \{A_m, B_m\}$ of pairs of nonempty subsets of S, for some integer m such that:
- For each $1 \le i \le m$, A_i and B_i are well separated with respect to s
- For any two distinct points p and q, there is exactly one index $1 \le i \le m$ such that $p \in A_i$ and $q \in B_i$ or the opposite
- The integer m is called the size of the WSPD

- \bigcirc R(S) is the bounding box of the set S
- 2 The split tree for S is a binary tree containing the points of S in its leaves
- 3 If S = 1, the node consists of the single point
- Else, the node consists of S, and its 2 sons consist of 2 equal halves S1 S2.
- 5 The split tree is used to find WSPD

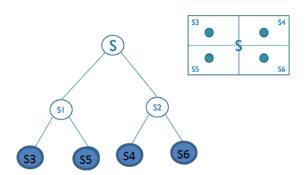
- \bullet R(S) is the bounding box of the set S
- 2 The split tree for S is a binary tree containing the points of S in its leaves
- 3 If S = 1, the node consists of the single point
- Else, the node consists of S, and its 2 sons consist of 2 equal halves S1 S2.
- 5 The split tree is used to find WSPD

- \bullet R(S) is the bounding box of the set S
- 2 The split tree for S is a binary tree containing the points of S in its leaves
- 3 If S = 1, the node consists of the single point
- Else, the node consists of S, and its 2 sons consist of 2 equal halves S1 S2.
- 5 The split tree is used to find WSPD

Split Tree

- \bigcirc R(S) is the bounding box of the set S
- 2 The split tree for S is a binary tree containing the points of S in its leaves
- 3 If S = 1, the node consists of the single point
- Selse, the node consists of S, and its 2 sons consist of 2 equal halves S1 S2.
- 5 The split tree is used to find WSPD

- \bigcirc R(S) is the bounding box of the set S
- 2 The split tree for S is a binary tree containing the points of S in its leaves
- 3 If S = 1, the node consists of the single point
- Selse, the node consists of S, and its 2 sons consist of 2 equal halves S1 S2.
- The split tree is used to find WSPD



- ① Let S be a set of n points in R^d
- 2 Compute a split tree T for S
- 3 Construct a WSPD from T
- 4 Choose the pairs representatives wisely
- 5 Connect the representatives
- 6 We get a t-spanner with special properties

- ① Let S be a set of n points in R^d
- Compute a split tree T for S
- 3 Construct a WSPD from T
- 4 Choose the pairs representatives wisely
- 5 Connect the representatives
- We get a t-spanner with special properties

- ① Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD from T
- 4 Choose the pairs representatives wisely
- 5 Connect the representatives
- 6 We get a *t*-spanner with special properties

- ① Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD from T
- 4 Choose the pairs representatives wisely
- 5 Connect the representatives
- We get a t-spanner with special properties

- ① Let S be a set of n points in R^d
- Compute a split tree T for S
- 3 Construct a WSPD from T
- 4 Choose the pairs representatives wisely
- 6 Connect the representatives
- 6 We get a *t*-spanner with special properties

- ① Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD from T
- 4 Choose the pairs representatives wisely
- 6 Connect the representatives
- We get a t-spanner with special properties

- ① Let S be a set of n points in R^d
- 2 Compute a split tree T for S
- Construct a WSPD with $s = \frac{4(\sqrt{t}+1)}{(\sqrt{t}-1)}$
- 4 size of WSPD: $m = O(s^d n)$
- **5** Time complexity $O(nlogn + s^d n)$
- As (section 9.2), G = (S, E), where $E := \{\{a_i, b_i\} : 1 \le i \le m\}$, is a \sqrt{t} -spanner for S

- ① Let S be a set of n points in R^d
- 2 Compute a split tree T for S
- ① Construct a WSPD with $s = \frac{4(\sqrt{t}+1)}{(\sqrt{t}-1)}$
- 4 size of WSPD: $m = O(s^d n)$
- **5** Time complexity $O(nlogn + s^d n)$
- As (section 9.2), G = (S, E), where $E := \{\{a_i, b_i\} : 1 \le i \le m\}$, is a \sqrt{t} -spanner for S

- ① Let S be a set of n points in R^d
- Compute a split tree T for S
- 3 Construct a WSPD with $s = \frac{4(\sqrt{t}+1)}{(\sqrt{t}-1)}$
- 4 size of WSPD: $m = O(s^d n)$
- **5** Time complexity $O(nlogn + s^d n)$
- 6 As (section 9.2), G = (S, E), where $E := \{\{a_i, b_i\} : 1 \le i \le m\}$, is a \sqrt{t} -spanner for S

- ① Let S be a set of n points in R^d
- 2 Compute a split tree T for S
- 3 Construct a WSPD with $s = \frac{4(\sqrt{t}+1)}{(\sqrt{t}-1)}$
- 4 size of WSPD: $m = O(s^d n)$
- **5** Time complexity $O(nlogn + s^d n)$
- **6** As (section 9.2), G = (S, E), where $E := \{\{a_i, b_i\} : 1 \le i \le m\}$, is a \sqrt{t} -spanner for S

- ① Let S be a set of n points in R^d
- 2 Compute a split tree T for S
- 3 Construct a WSPD with $s = \frac{4(\sqrt{t}+1)}{(\sqrt{t}-1)}$
- 4 size of WSPD: $m = O(s^d n)$
- **5** Time complexity $O(nlogn + s^d n)$
- As (section 9.2), G = (S, E), where $E := \{\{a_i, b_i\} : 1 \le i \le m\}$, is a \sqrt{t} -spanner for S

- \bigcirc Let S be a set of n points in R^d
- Compute a split tree T for S
- 3 Construct a WSPD with $s = \frac{4(\sqrt{t}+1)}{(\sqrt{t}-1)}$
- 4 size of WSPD: $m = O(s^d n)$
- **5** Time complexity $O(nlogn + s^d n)$
- **9** As (section 9.2), G = (S, E), where $E := \{\{a_i, b_i\} : 1 \le i \le m\}$, is a \sqrt{t} -spanner for S

- **1** For each leaf u in T, let r(u) be the point of S stored in it.
- 2 For each internal node u of T, let r(u) be the point of S that is stored in the rightmost leaf of the left sub-tree of u.
- \odot Since every internal node of T has 2 children, r(u) is distinct for every internal node.
- in O(n) total time can compute r(u) for each node of T.
- **6** Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- **6** A_i, B_i are the set of points stored in the sub-trees of u_i and v_i .
- We take $r(u_i)A_i$ to be its representative. We do the same for $r(v_i)B_i$.

- **1** For each leaf u in T, let r(u) be the point of S stored in it.
- ② For each internal node u of T, let r(u) be the point of S that is stored in the rightmost leaf of the left sub-tree of u.
- \odot Since every internal node of T has 2 children, r(u) is distinct for every internal node.
- in O(n) total time can compute r(u) for each node of T.
- **5** Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- **6** A_i, B_i are the set of points stored in the sub-trees of u_i and v_i .
- We take $r(u_i)A_i$ to be its representative. We do the same for $r(v_i)B_i$.

- **9** For each leaf u in T, let r(u) be the point of S stored in it.
- ② For each internal node u of T, let r(u) be the point of S that is stored in the rightmost leaf of the left sub-tree of u.
- **3** Since every internal node of T has 2 children, r(u) is distinct for every internal node.
- in O(n) total time can compute r(u) for each node of T.
- **5** Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- **6** A_i, B_i are the set of points stored in the sub-trees of u_i and v_i .
- We take $r(u_i)A_i$ to be its representative. We do the same for $r(v_i)B_i$.

- **1** For each leaf u in T, let r(u) be the point of S stored in it.
- ② For each internal node u of T, let r(u) be the point of S that is stored in the rightmost leaf of the left sub-tree of u.
- **3** Since every internal node of T has 2 children, r(u) is distinct for every internal node.
- **4** in O(n) total time can compute r(u) for each node of T.
- **5** Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- **6** A_i, B_i are the set of points stored in the sub-trees of u_i and v_i .
- We take $r(u_i)A_i$ to be its representative. We do the same for $r(v_i)B_i$.

- **1** For each leaf u in T, let r(u) be the point of S stored in it.
- ② For each internal node u of T, let r(u) be the point of S that is stored in the rightmost leaf of the left sub-tree of u.
- **3** Since every internal node of T has 2 children, r(u) is distinct for every internal node.
- **4** in O(n) total time can compute r(u) for each node of T.
- **9** Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- **6** A_i, B_i are the set of points stored in the sub-trees of u_i and v_i .
- We take $r(u_i)A_i$ to be its representative. We do the same for $r(v_i)B_i$.

- **1** For each leaf u in T, let r(u) be the point of S stored in it.
- ② For each internal node u of T, let r(u) be the point of S that is stored in the rightmost leaf of the left sub-tree of u.
- **3** Since every internal node of T has 2 children, r(u) is distinct for every internal node.
- **4** in O(n) total time can compute r(u) for each node of T.
- **9** Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- **6** A_i, B_i are the set of points stored in the sub-trees of u_i and v_i .
- We take $r(u_i)A_i$ to be its representative. We do the same for $r(v_i)B_i$.

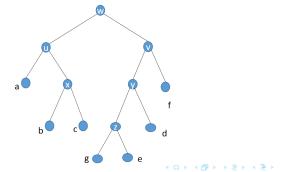
- **1** For each leaf u in T, let r(u) be the point of S stored in it.
- ② For each internal node u of T, let r(u) be the point of S that is stored in the rightmost leaf of the left sub-tree of u.
- **3** Since every internal node of T has 2 children, r(u) is distinct for every internal node.
- **4** in O(n) total time can compute r(u) for each node of T.
- **9** Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- **6** A_i, B_i are the set of points stored in the sub-trees of u_i and v_i .
- **10** We take $r(u_i)A_i$ to be its representative. We do the same for $r(v_i)B_i$.

• In O(n) total time, we can compute, for each node u of T, the point r(u), and store t with u.

$$r(a) = a$$

 $r(u) = a$
 $r(v) = d$

In order traversal of ${\mathcal T}$:aubxcwgzeydvf



Lemma 10.1.1

Let p be a point of S. There are at most 2 nodes u in T for which r(u) = p

Proof

Follows from the way we selected the representatives.

Lemma 10.1.1

Let p be a point of S. There are at most 2 nodes u in T for which r(u) = p

Proof.

Follows from the way we selected the representatives.

- For each $i, 1 \le i \le m$, we direct the pair $\{A_i, B_i\}$
- \bullet as (lemma 9.4.4). We denote the directed graph as G'

Lemma 10.1.2

The out degree of ofeach vertex in G' is less than or equal to $2((2s+4)\sqrt{d}+4)^d$

- Let p be an arbitrary vertex in G'. We have seen that there are at most 2 nodes u in T such that r(u) = p
- As shown (lemma 9.4.5 the packing lemma), for each node u in T, there are at most $((2s+4)\sqrt{d}+4)^d$ nodes v in T such that (S_u,S_v) is a pair in WSPD.

- For each $i,1 \le i \le m$, we direct the pair $\{A_i, B_i\}$
- ullet as (lemma 9.4.4). We denote the directed graph as G'

Lemma 10.1.2

The out degree of ofeach vertex in G' is less than or equal to $2((2s+4)\sqrt{d}+4)^d$

- Let p be an arbitrary vertex in G'. We have seen that there are at most 2 nodes u in T such that r(u) = p
- As shown (lemma 9.4.5 the packing lemma), for each node u in T, there are at most $((2s+4)\sqrt{d}+4)^d$ nodes v in T such that (S_u,S_v) is a pair in WSPD.

- For each $i,1 \le i \le m$, we direct the pair $\{A_i, B_i\}$
- ullet as (lemma 9.4.4). We denote the directed graph as G'

Lemma 10.1.2

The out degree of ofeach vertex in G' is less than or equal to $2((2s+4)\sqrt{d}+4)^d$

- Let p be an arbitrary vertex in G'. We have seen that there are at most 2 nodes u in T such that r(u) = p
- As shown (lemma 9.4.5 the packing lemma), for each node u in T, there are at most $((2s+4)\sqrt{d}+4)^d$ nodes v in T such that (S_u,S_v) is a pair in WSPD.

- For each $i,1 \le i \le m$, we direct the pair $\{A_i, B_i\}$
- ullet as (lemma 9.4.4). We denote the directed graph as G'

Lemma 10.1.2

The out degree of ofeach vertex in G' is less than or equal to $2((2s+4)\sqrt{d}+4)^d$

- Let p be an arbitrary vertex in G'. We have seen that there are at most 2 nodes u in T such that r(u) = p
- As shown (lemma 9.4.5 the packing lemma), for each node u in T, there are at most $((2s+4)\sqrt{d}+4)^d$ nodes v in T such that (S_u,S_v) is a pair in WSPD.

- For each $i,1 \le i \le m$, we direct the pair $\{A_i, B_i\}$
- ullet as (lemma 9.4.4). We denote the directed graph as G'

Lemma 10.1.2

The out degree of ofeach vertex in G' is less than or equal to $2((2s+4)\sqrt{d}+4)^d$

- Let p be an arbitrary vertex in G'. We have seen that there are at most 2 nodes u in T such that r(u) = p
- As shown (lemma 9.4.5 the packing lemma), for each node u in T, there are at most $((2s+4)\sqrt{d}+4)^d$ nodes v in T such that (S_u,S_v) is a pair in WSPD.

Lemma 9.4.5

Let a be any node of the split tree T. There are at most $((2s+4)\sqrt{d}+4)^d$ nodes b in T such that (S_a,S_b) is a directed pair in the WSPD computed by algorithm ComputeWSPD(T,s).

- WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6)
- Representative selection: O(n)
- Undirected t-spanner of bounded degree transformation: O(nlogn)
- All in all : O(nlogn)

Lemma 9.4.5

Let a be any node of the split tree T. There are at most $((2s+4)\sqrt{d}+4)^d$ nodes b in T such that (S_a,S_b) is a directed pair in the WSPD computed by algorithm ComputeWSPD(T,s).

- WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6)
- Representative selection: O(n)
- Undirected t-spanner of bounded degree transformation: O(nlogn)
- All in all : O(nlogn)

Lemma 9.4.5

Let a be any node of the split tree T. There are at most $((2s+4)\sqrt{d}+4)^d$ nodes b in T such that (S_a,S_b) is a directed pair in the WSPD computed by algorithm ComputeWSPD(T,s).

- WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6)
- Representative selection: O(n)
- Undirected t-spanner of bounded degree transformation: O(nlogn)
- All in all : O(nlogn)

Lemma 9.4.5

Let a be any node of the split tree T. There are at most $((2s+4)\sqrt{d}+4)^d$ nodes b in T such that (S_a,S_b) is a directed pair in the WSPD computed by algorithm ComputeWSPD(T,s).

- WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6)
- Representative selection: O(n)
- Undirected t-spanner of bounded degree transformation: O(nlogn)
- All in all : O(nlogn)

Lemma 9.4.5

Let a be any node of the split tree T. There are at most $((2s+4)\sqrt{d}+4)^d$ nodes b in T such that (S_a,S_b) is a directed pair in the WSPD computed by algorithm ComputeWSPD(T,s).

- WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6)
- Representative selection: O(n)
- Undirected t-spanner of bounded degree transformation: O(nlogn)
- All in all : O(nlogn)

Lemma 9.4.5

Let a be any node of the split tree T. There are at most $((2s+4)\sqrt{d}+4)^d$ nodes b in T such that (S_a,S_b) is a directed pair in the WSPD computed by algorithm ComputeWSPD(T,s).

- WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6)
- Representative selection: O(n)
- Undirected t-spanner of bounded degree transformation: O(nlogn)
- All in all : O(nlogn)

Lemma 10.1.4

Let θ , w, and t be real numbers such that $0 < \theta < \pi/4$, $0 \le w < (\cos \theta - \sin \theta)/2$, and $t \ge 1/(\cos \theta - \sin \theta - 2w)$. Let S be a set of n points in the R^d , and let G = (S, E) be a directed graph, such that the following holds: For any two distinct points p and q of S, there is an edge $(r, s) \in E$, such that

- **1** angle $(pq, xy) \le \theta$,
- $|xy| \le |pq|/\cos\theta$, and
- $|px| \le w|xy|$

Then, the graph G is a t-spanner for S.

Let S be a set of n points in R^d , and let t > 1 be a real number

•
$$0 < \theta < \pi/4$$
 and $\cos \theta - \sin \theta > 1/t$

•
$$s := max(\frac{4\cos\theta}{1-\cos\theta}, \frac{4}{\sin(\theta/2)}, \frac{4}{\cos\theta-\sin\theta-1/t})$$

•
$$w = 2/s$$

Lemma 10.1.5

- **1** $1 + 4/s \le 1/\cos\theta$
- $4/s \le \sin(\theta/2)$
- $3 t \ge 1/(\cos\theta \sin\theta 2w)$
- **9** $0 < w < (\cos \theta \sin \theta)/2$

- compute the split tree T together with the corresponding WSPD
- For each node ${\bf u}$ of ${\bf T}$, let S_u be the set of all points of ${\bf S}$ that are stored in the subtree of ${\bf u}$.
- For each i with $1 \le i \le m$, let u_i and v_i be the nodes of T such that $S_{ui} = A_i$ and $S_{vi} = B_i$.
- choose the representatives $a_i \in A_i$, $b_i \in B_i$, $1 \le i \le m$ by picking the rightmost leaf of the left subtree
- Let $G_0 = (S, E_0)$ be the directed graph with edge set
- $E_0 = \{(a_i, b_i) : 1 \le i \le m\} \cup \{(b_i, a_i) : 1 \le i \le m\}$
- We number the edges of E_0 arbitrarily, from one to $|E_0|$

- compute the split tree T together with the corresponding WSPD
- For each node u of T , let S_u be the set of all points of S that are stored in the subtree of u.
- For each i with $1 \le i \le m$, let u_i and v_i be the nodes of T such that $S_{ui} = A_i$ and $S_{vi} = B_i$.
- choose the representatives $a_i \in A_i$, $b_i \in B_i$, $1 \le i \le m$ by picking the rightmost leaf of the left subtree
- Let $G_0 = (S, E_0)$ be the directed graph with edge set
- $E_0 = \{(a_i, b_i) : 1 \le i \le m\} \cup \{(b_i, a_i) : 1 \le i \le m\}$
- We number the edges of E_0 arbitrarily, from one to $|E_0|$

- compute the split tree T together with the corresponding WSPD
- For each node u of T , let S_u be the set of all points of S that are stored in the subtree of u.
- For each i with $1 \le i \le m$, let u_i and v_i be the nodes of T such that $S_{ui} = A_i$ and $S_{vi} = B_i$.
- choose the representatives $a_i \in A_i$, $b_i \in B_i$, $1 \le i \le m$ by picking the rightmost leaf of the left subtree
- Let $G_0 = (S, E_0)$ be the directed graph with edge set
- $E_0 = \{(a_i, b_i) : 1 \le i \le m\} \cup \{(b_i, a_i) : 1 \le i \le m\}$
- We number the edges of E_0 arbitrarily, from one to $|E_0|$

- compute the split tree T together with the corresponding WSPD
- For each node u of T , let S_u be the set of all points of S that are stored in the subtree of u.
- For each i with $1 \le i \le m$, let u_i and v_i be the nodes of T such that $S_{ui} = A_i$ and $S_{vi} = B_i$.
- choose the representatives $a_i \in A_i$, $b_i \in B_i$, $1 \le i \le m$ by picking the rightmost leaf of the left subtree
- Let $G_0 = (S, E_0)$ be the directed graph with edge set
- $E_0 = \{(a_i, b_i) : 1 \le i \le m\} \cup \{(b_i, a_i) : 1 \le i \le m\}$
- We number the edges of E_0 arbitrarily, from one to $|E_0|$

- compute the split tree T together with the corresponding WSPD
- For each node u of T , let S_u be the set of all points of S that are stored in the subtree of u.
- For each i with $1 \le i \le m$, let u_i and v_i be the nodes of T such that $S_{ui} = A_i$ and $S_{vi} = B_i$.
- choose the representatives $a_i \in A_i$, $b_i \in B_i$, $1 \le i \le m$ by picking the rightmost leaf of the left subtree
- Let $G_0 = (S, E_0)$ be the directed graph with edge set
- $E_0 = \{(a_i, b_i) : 1 \le i \le m\} \cup \{(b_i, a_i) : 1 \le i \le m\}$
- We number the edges of E_0 arbitrarily, from one to $|E_0|$

- compute the split tree T together with the corresponding WSPD
- For each node u of T, let S_u be the set of all points of S that are stored in the subtree of u.
- For each i with $1 \le i \le m$, let u_i and v_i be the nodes of T such that $S_{ui} = A_i$ and $S_{vi} = B_i$.
- choose the representatives $a_i \in A_i$, $b_i \in B_i$, $1 \le i \le m$ by picking the rightmost leaf of the left subtree
- Let $G_0 = (S, E_0)$ be the directed graph with edge set
- $E_0 = \{(a_i, b_i) : 1 \le i \le m\} \cup \{(b_i, a_i) : 1 \le i \le m\}$
- We number the edges of E_0 arbitrarily, from one to $|E_0|$

- compute the split tree T together with the corresponding WSPD
- For each node u of T , let S_u be the set of all points of S that are stored in the subtree of u.
- For each i with $1 \le i \le m$, let u_i and v_i be the nodes of T such that $S_{ui} = A_i$ and $S_{vi} = B_i$.
- choose the representatives $a_i \in A_i$, $b_i \in B_i$, $1 \le i \le m$ by picking the rightmost leaf of the left subtree
- Let $G_0 = (S, E_0)$ be the directed graph with edge set
- $E_0 = \{(a_i, b_i) : 1 \le i \le m\} \cup \{(b_i, a_i) : 1 \le i \le m\}$
- We number the edges of E_0 arbitrarily, from one to $|E_0|$

- Let $k = k_{d,\theta/2}$
- Let C_k be the $\frac{\theta}{2}$ -frame consisting of $k = O(1/\theta^{d-1})$ cones.
- C_k is a collection of k simplicial cones of angular diameter $\frac{\theta}{2}$, having their apex at the origin, and that cover R^d . For each cone $C \in C_k$, let
- $E_0(C) = \{(p,q) \in E_0 : q p \in C\}$

- Let $k = k_{d,\theta/2}$
- Let C_k be the $\frac{\theta}{2}$ -frame consisting of $k = O(1/\theta^{d-1})$ cones.
- C_k is a collection of k simplicial cones of angular diameter $\frac{\theta}{2}$, having their apex at the origin, and that cover R^d . For each cone $C \in C_k$, let
- $E_0(C) = \{(p,q) \in E_0 : q p \in C\}$

- Let $k = k_{d,\theta/2}$
- Let C_k be the $\frac{\theta}{2}$ -frame consisting of $k = O(1/\theta^{d-1})$ cones.
- C_k is a collection of k simplicial cones of angular diameter $\frac{\theta}{2}$, having their apex at the origin, and that cover R^d . For each cone $C \in C_k$, let
- $E_0(C) = \{(p,q) \in E_0 : q p \in C\}$

- Let $k = k_{d,\theta/2}$
- Let C_k be the $\frac{\theta}{2}$ -frame consisting of $k = O(1/\theta^{d-1})$ cones.
- C_k is a collection of k simplicial cones of angular diameter $\frac{\theta}{2}$, having their apex at the origin, and that cover R^d . For each cone $C \in C_k$, let
- $E_0(C) = \{(p,q) \in E_0 : q p \in C\}$

- 1 u is on the path from the root to the leaf storing p
- 2 there is a node v in T, such that
 - $\{S_u, S_v\}$ is a pair in our WSPD, and
 - if x_u and y_v are the representatives of S_u and S_v , respectively, then edge (x_u, y_v) is contained in $E_0(C)$.
- **3** among all edges (x_u, y_v) obtained in this way, we mark the shortest one. In case of ties, we mark the shortest edge whose index is minimum.
- Let E be the set of all marked edges. the directed graph G = (S, E) is a t-spanner for S

- \bigcirc *u* is on the path from the root to the leaf storing *p*
- 2 there is a node v in T, such that
 - $\{S_u, S_v\}$ is a pair in our WSPD, and
 - if x_u and y_v are the representatives of S_u and S_v , respectively, then edge (x_u, y_v) is contained in $E_0(C)$.
- **3** among all edges (x_u, y_v) obtained in this way, we mark the shortest one. In case of ties, we mark the shortest edge whose index is minimum.
- Let E be the set of all marked edges. the directed graph G = (S, E) is a t-spanner for S

- $oldsymbol{0}$ u is on the path from the root to the leaf storing p
- $oldsymbol{2}$ there is a node v in T, such that
 - $\{S_u, S_v\}$ is a pair in our WSPD, and
 - if x_u and y_v are the representatives of S_u and S_v , respectively, then edge (x_u, y_v) is contained in $E_0(C)$.
- **3** among all edges (x_u, y_v) obtained in this way, we mark the shortest one. In case of ties, we mark the shortest edge whose index is minimum.
- Let E be the set of all marked edges. the directed graph G = (S, E) is a t-spanner for S

- $oldsymbol{0}$ u is on the path from the root to the leaf storing p
- 2 there is a node v in T, such that
 - $\{S_u, S_v\}$ is a pair in our WSPD, and
 - if x_u and y_v are the representatives of S_u and S_v , respectively, then edge (x_u, y_v) is contained in $E_0(C)$.
- **3** among all edges (x_u, y_v) obtained in this way, we mark the shortest one. In case of ties, we mark the shortest edge whose index is minimum.
- Let E be the set of all marked edges. the directed graph G = (S, E) is a t-spanner for S

- $oldsymbol{0}$ u is on the path from the root to the leaf storing p
- 2 there is a node v in T, such that
 - $\{S_u, S_v\}$ is a pair in our WSPD, and
 - if x_u and y_v are the representatives of S_u and S_v , respectively, then edge (x_u, y_v) is contained in $E_0(C)$.
- **3** among all edges (x_u, y_v) obtained in this way, we mark the shortest one. In case of ties, we mark the shortest edge whose index is minimum.
- Let E be the set of all marked edges. the directed graph G = (S, E) is a t-spanner for S

- $oldsymbol{0}$ u is on the path from the root to the leaf storing p
- 2 there is a node v in T, such that
 - $\{S_u, S_v\}$ is a pair in our WSPD, and
 - if x_u and y_v are the representatives of S_u and S_v , respectively, then edge (x_u, y_v) is contained in $E_0(C)$.
- 3 among all edges (x_u, y_v) obtained in this way, we mark the shortest one. In case of ties, we mark the shortest edge whose index is minimum.
- Let E be the set of all marked edges. the directed graph G = (S, E) is a t-spanner for S

- u is on the path from the root to the leaf storing p
- 2 there is a node v in T, such that
 - $\{S_u, S_v\}$ is a pair in our WSPD, and
 - if x_u and y_v are the representatives of S_u and S_v , respectively, then edge (x_u, y_v) is contained in $E_0(C)$.
- **3** among all edges (x_u, y_v) obtained in this way, we mark the shortest one. In case of ties, we mark the shortest edge whose index is minimum.
- 4 Let E be the set of all marked edges. the directed graph G = (S, E) is a t-spanner for S

Lemma 10.1.6

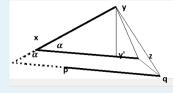
Let A and B be two finite sets of points in R^d that are well-separated with respect to a separation ratio S>0. Let p and x be two points in A, and let q and y be two points in B. Then,

$$sin(angle(pq, xy)) \le 4/s$$

- If $s \le 4$, then the claim clearly holds. assume that s > 4.
- Let α = angle(pq, xy). Let I be the ray emanating from x that is parallel to pq.

$$\bullet \sin \alpha = \frac{|yy'|}{|xy|} \le \frac{|yz|}{|xy|} \le \frac{|yq| + |qz|}{|xy|} = \frac{|yq| + |px|}{|xy|}$$

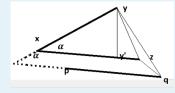
- Since A and B are well-separated, Lemma 9.1.2:
- $|yq| \le (2/s)|xy|$ and $|pq| \le (2/s)|xy|$
- This implies that $\sin \alpha \le 4/s$



- If $s \le 4$, then the claim clearly holds. assume that s > 4.
- Let $\alpha = angle(pq, xy)$. Let I be the ray emanating from x that is parallel to pq.

$$\bullet \sin \alpha = \frac{|yy'|}{|xy|} \le \frac{|yz|}{|xy|} \le \frac{|yq| + |qz|}{|xy|} = \frac{|yq| + |px|}{|xy|}$$

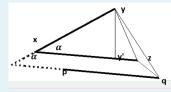
- Since A and B are well-separated, Lemma 9.1.2:
- $|yq| \le (2/s)|xy|$ and $|pq| \le (2/s)|xy|$
- This implies that $\sin \alpha \le 4/s$



- If $s \le 4$, then the claim clearly holds. assume that s > 4.
- Let $\alpha = angle(pq, xy)$. Let I be the ray emanating from x that is parallel to pq.

$$\bullet \sin \alpha = \frac{|yy'|}{|xy|} \le \frac{|yz|}{|xy|} \le \frac{|yq| + |qz|}{|xy|} = \frac{|yq| + |px|}{|xy|}$$

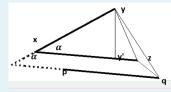
- Since A and B are well-separated, Lemma 9.1.2:
- $|yq| \le (2/s)|xy|$ and $|pq| \le (2/s)|xy|$
- This implies that $\sin \alpha \le 4/s$



- If $s \le 4$, then the claim clearly holds. assume that s > 4.
- Let $\alpha = angle(pq, xy)$. Let I be the ray emanating from x that is parallel to pq.

$$\bullet \sin \alpha = \frac{|yy'|}{|xy|} \le \frac{|yz|}{|xy|} \le \frac{|yq| + |qz|}{|xy|} = \frac{|yq| + |px|}{|xy|}$$

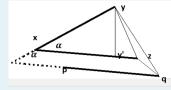
- Since A and B are well-separated, Lemma 9.1.2:
- $|yq| \le (2/s)|xy|$ and $|pq| \le (2/s)|xy|$
- This implies that $\sin \alpha \le 4/s$



- If $s \le 4$, then the claim clearly holds. assume that s > 4.
- Let $\alpha = angle(pq, xy)$. Let I be the ray emanating from x that is parallel to pq.

$$\bullet \sin \alpha = \frac{|yy'|}{|xy|} \le \frac{|yz|}{|xy|} \le \frac{|yq| + |qz|}{|xy|} = \frac{|yq| + |px|}{|xy|}$$

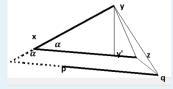
- Since A and B are well-separated, Lemma 9.1.2:
- $|yq| \le (2/s)|xy|$ and $|pq| \le (2/s)|xy|$
- This implies that $\sin \alpha \le 4/s$



- If $s \le 4$, then the claim clearly holds. assume that s > 4.
- Let $\alpha = angle(pq, xy)$. Let I be the ray emanating from x that is parallel to pq.

$$\bullet \sin \alpha = \frac{|yy'|}{|xy|} \le \frac{|yz|}{|xy|} \le \frac{|yq| + |qz|}{|xy|} = \frac{|yq| + |px|}{|xy|}$$

- Since A and B are well-separated, Lemma 9.1.2:
- $|yq| \le (2/s)|xy|$ and $|pq| \le (2/s)|xy|$
- This implies that $\sin \alpha \le 4/s$



Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos\theta \sin\theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $sin(angle(pq, a_ib_i)) \le 4/s \le sin \theta/2$ hence
- angle(pq, a_ib_i) $\leq \theta/2$

Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos \theta \sin \theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $sin(angle(pq, a_ib_i)) \le 4/s \le sin \theta/2$ hence
- angle $(pq, a_ib_i) \le \theta/2$

Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos\theta \sin\theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $sin(angle(pq, a_ib_i)) \le 4/s \le sin \theta/2$ hence
- angle(pq, a_ib_i) $\leq \theta/2$

Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos\theta \sin\theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $sin(angle(pq, a_ib_i)) \le 4/s \le sin \theta/2$ hence
- $angle(pq, a_ib_i) \leq \theta/2$

Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos\theta \sin\theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $sin(angle(pq, a_ib_i)) \le 4/s \le sin \theta/2$ hence
- angle(pq, $a_i b_i$) $\leq \theta/2$

Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos\theta \sin\theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $sin(angle(pq, a_ib_i)) \le 4/s \le sin \theta/2$ hence
- angle(pq, $a_i b_i$) $\leq \theta/2$

Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos\theta \sin\theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $\sin(angle(pq, a_ib_i)) \le 4/s \le \sin\theta/2$ hence,
- $angle(pq, a_ib_i) \le \theta/2$

Lemma 10.1.7

The graph G = (S, E) is a t-spanner for S.

- We will show that the edges of E satisfy the condition of Lemma 10.1.4.
 First observe that, by Lemma 10.1.5:
- $0 < w < (\cos \theta \sin \theta)/2$ and
- $t \ge 1/(\cos\theta \sin\theta 2w)$
- Let p and q be any two distinct points of S, and let i be the integer such that (i)p ∈ A_i and q ∈ B_i or (ii) p ∈ B_i and q ∈ A_i.
- Assume (i) holds.
- Consider the representatives a_i and b_i of A_i and B_i , respectively.
- Then $sin(angle(pq, a_ib_i)) \le 4/s \le sin \theta/2$ hence,
- angle(pq, a_ib_i) $\leq \theta/2$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_i b_i| \le (1 + 4/s)|pq|$
- $|a_ib_i| \leq |pq|/\cos\theta$
- in particular $|xy| \le |pq|/\cos\theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated , $|a_ib_i| \leq (1+4/s)|pq|$
- $|a_i b_i| \le |pq|/\cos \theta$
- in particular $|xy| \le |pq|/\cos\theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_i b_i| \le (1 + 4/s)|pq|$
- $|a_ib_i| \leq |pq|/\cos\theta$
- in particular $|xy| \le |pq|/\cos\theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_i b_i| \le (1 + 4/s)|pq|$
- $|a_ib_i| \leq |pq|/\cos\theta$
- in particular $|xy| \le |pq|/\cos \theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_ib_i| \le (1+4/s)|pq|$
- $|a_ib_i| \leq |pq|/\cos\theta$
- in particular $|xy| \le |pq|/\cos \theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_ib_i| \le (1+4/s)|pq|$
- $|a_i b_i| \leq |pq|/\cos \theta$
- in particular $|xy| \le |pq|/\cos \theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_i b_i| \le (1 + 4/s)|pq|$
- $|a_i b_i| \leq |pq|/\cos \theta$
- in particular $|xy| \le |pq|/\cos \theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_i b_i| \le (1 + 4/s)|pq|$
- $|a_i b_i| \leq |pq|/\cos \theta$
- in particular $|xy| \le |pq|/\cos \theta$

- Let C be the cone of C_k such that $(a_i, b_i) \in E_0(C)$
- Recall that u_i is the node of the split tree T for which $s_u = A_i$. It is clear that u_i is on the path from the root to the leaf storing p.
- Therefore, when we considered the cone C and the point p, (a_i, b_i) was one of the edges that satisfied conditions 1. and 2. above.
- Let (x, y) be the edges of E₀(C) that was marked when we considered C and p.
- Then (x, y) is an edges of E, and $|xy| \le |a_i b_i|$
- $angle(pq, xy) \le angle(pq, a_ib_i) + angle(a_ib_i, xy) \le \theta/2 + \theta/2 = \theta$
- Since A_i and B_i are well-separated, $|a_ib_i| \leq (1+4/s)|pq|$
- $|a_i b_i| \leq |pq|/\cos \theta$
- in particular $|xy| \le |pq|/\cos\theta$

- Finally, let j be the integer such that (i) x ∈ A_i and y ∈ B_i ,or (ii) y ∈ A_i and x ∈ B_i
- Assume (i) holds.
- When we considered the cone C and the point p, we marked (x,y)
- Therefore, u_j is on the path in T from the root to the leaf storing p and hence, p ∈ A_i.
- Since A_j and B_j are well-separated $|pq| \le (2/S)|xy| = w|xy|$
- Since all the premises of Lemma 10.1.4 are satisfied, we have proved that G is a t-spanner.

- Finally, let j be the integer such that (i) x ∈ A_i and y ∈ B_i ,or (ii) y ∈ A_i and x ∈ B_i
- Assume (i) holds.
- When we considered the cone C and the point p, we marked (x, y)
- Therefore, u_j is on the path in T from the root to the leaf storing p and hence, $p \in A_i$.
- Since A_j and B_j are well-separated $|pq| \le (2/S)|xy| = w|xy|$
- Since all the premises of Lemma 10.1.4 are satisfied, we have proved that G is a t-spanner.

- Finally, let j be the integer such that (i) x ∈ A_i and y ∈ B_i ,or (ii) y ∈ A_i and x ∈ B_i
- Assume (i) holds.
- When we considered the cone C and the point p, we marked (x, y)
- Therefore, u_j is on the path in T from the root to the leaf storing p and, hence, p ∈ A_i.
- Since A_j and B_j are well-separated $|pq| \le (2/S)|xy| = w|xy|$
- Since all the premises of Lemma 10.1.4 are satisfied, we have proved that G is a t-spanner.

- Finally, let j be the integer such that (i) x ∈ A_i and y ∈ B_i ,or (ii) y ∈ A_i and x ∈ B_i
- Assume (i) holds.
- When we considered the cone C and the point p, we marked (x, y)
- Therefore, u_j is on the path in T from the root to the leaf storing p and, hence, p ∈ A_i.
- Since A_j and B_j are well-separated $|pq| \le (2/S)|xy| = w|xy|$
- Since all the premises of Lemma 10.1.4 are satisfied, we have proved that G is a t-spanner.

- Finally, let j be the integer such that (i) x ∈ A_i and y ∈ B_i ,or (ii) y ∈ A_i and x ∈ B_i
- Assume (i) holds.
- When we considered the cone C and the point p, we marked (x, y)
- Therefore, u_j is on the path in T from the root to the leaf storing p and, hence, $p \in A_i$.
- Since A_j and B_j are well-separated $|pq| \le (2/S)|xy| = w|xy|$
- Since all the premises of Lemma 10.1.4 are satisfied, we have proved that G is a t-spanner.

- Finally, let j be the integer such that (i) x ∈ A_i and y ∈ B_i ,or (ii) y ∈ A_i and x ∈ B_i
- Assume (i) holds.
- When we considered the cone C and the point p, we marked (x, y)
- Therefore, u_j is on the path in T from the root to the leaf storing p and, hence, p ∈ A_i.
- Since A_j and B_j are well-separated $|pq| \le (2/S)|xy| = w|xy|$
- Since all the premises of Lemma 10.1.4 are satisfied, we have proved that G is a t-spanner.

Lemma 10.1.8

The out degree of each vertex of the graph G = (S, E) is less than or equal to $2|C_k| = O(1/\theta^{d-1})$

- Let x be a point of S, and let C be a cone of C_k. Clearly, it is sufficient to show that, in G, x is the source of at most two edges in cone C.
- Assume that the edge set E contains three pairwise distinct edges (x,y),(x,y') and (x,y'') that are all contained in $E_0(C)$ We may assume without loss of generality that $|xy| \le |xy''| \le |xy''|$
- Moreover, in case |xy| = |xy'|, we may assume without loss of generality that (x,y) has a lower index than (x,y'). similarly in case |xy'| = |xy''| we may assume without loss of generality that (x,y') has a lower index than (x,y'')

Lemma 10.1.8

The out degree of each vertex of the graph G = (S, E) is less than or equal to $2|C_k| = O(1/\theta^{d-1})$

- Let x be a point of S, and let C be a cone of C_k . Clearly, it is sufficient to show that, in G, x is the source of at most two edges in cone C.
- Assume that the edge set E contains three pairwise distinct edges
 (x,y),(x,y') and (x,y") that are all contained in E₀(C) We may assume
 without loss of generality that |xy| ≤ |xy'| ≤ |xy"|
- Moreover, in case |xy|=|xy'|, we may assume without loss of generality that (x,y) has a lower index than (x,y'). similarly in case |xy'|=|xy''| we may assume without loss of generality that (x,y') has a lower index than (x,y'')

Lemma 10.1.8

The out degree of each vertex of the graph G = (S, E) is less than or equal to $2|C_k| = O(1/\theta^{d-1})$

- Let x be a point of S, and let C be a cone of C_k . Clearly, it is sufficient to show that, in G, x is the source of at most two edges in cone C.
- Assume that the edge set E contains three pairwise distinct edges (x,y),(x,y') and (x,y'') that are all contained in $E_0(C)$ We may assume without loss of generality that $|xy| \le |xy''| \le |xy''|$
- Moreover, in case |xy| = |xy'|, we may assume without loss of generality that (x,y) has a lower index than (x,y'). similarly in case |xy'| = |xy''| we may assume without loss of generality that (x,y') has a lower index than (x,y'')

Lemma 10.1.8

The out degree of each vertex of the graph G = (S, E) is less than or equal to $2|C_k| = O(1/\theta^{d-1})$

- Let x be a point of S, and let C be a cone of C_k. Clearly, it is sufficient to show that, in G, x is the source of at most two edges in cone C.
- Assume that the edge set E contains three pairwise distinct edges (x,y),(x,y') and (x,y'') that are all contained in $E_0(C)$ We may assume without loss of generality that $|xy| \le |xy''| \le |xy''|$
- Moreover, in case |xy|=|xy'|, we may assume without loss of generality that (x,y) has a lower index than (x,y'). similarly in case |xy'|=|xy''| we may assume without loss of generality that (x,y') has a lower index than (x,y'')

- Let p be $\in S$, such that marked edge (x, y) when considered the cone C and the point p. Consider nodes u and v of T such that $(x_u, y_v) = (x, y)$
- u is on the path from the root to the leaf storing p. Define the point p of S, and the nodes u and v of T similarly with respect to the edge (x,y). Assume that u = u'. Then u is on the path from the root to the leaf storing p. Since |xy| ≤ |xy|, could not have marked edge (x, y) when considered C and p, which is a contradiction. Therefore, u' ≠ u. By symmetric arguments, it follows that u' ≠ u" and u" ≠ u. Hence the set
- $\{u_i \in T : 1 \le i \le m, a_i = x\} \cup \{v_i \in T : 1 \le i \le m, b_i = x\}$
- contains at least three nodes. This contradicts Lemma 10.1.

Proof.

- Let p be $\in S$, such that marked edge (x, y) when considered the cone C and the point p. Consider nodes u and v of T such that $(x_u, y_v) = (x, y)$
- u is on the path from the root to the leaf storing p. Define the point p of S, and the nodes u and v of T similarly with respect to the edge (x,y). Assume that u = u'. Then u is on the path from the root to the leaf storing p. Since |xy| ≤ |xy|, could not have marked edge (x, y) when considered C and p, which is a contradiction. Therefore, u' ≠ u. By symmetric arguments, it follows that u' ≠ u" and u" ≠ u. Hence the set
- $\{u_i \in T : 1 \le i \le m, a_i = x\} \cup \{v_i \in T : 1 \le i \le m, b_i = x\}$
- contains at least three nodes. This contradicts Lemma 10.1.

r

Proof.

- Let p be $\in S$, such that marked edge (x, y) when considered the cone C and the point p. Consider nodes u and v of T such that $(x_u, y_v) = (x, y)$
- u is on the path from the root to the leaf storing p. Define the point p of S, and the nodes u and v of T similarly with respect to the edge (x,y). Assume that u = u'. Then u is on the path from the root to the leaf storing p. Since |xy| ≤ |xy|, could not have marked edge (x, y) when considered C and p, which is a contradiction. Therefore, u' ≠ u. By symmetric arguments, it follows that u' ≠ u" and u" ≠ u. Hence the set
- $\{u_i \in T : 1 \le i \le m, a_i = x\} \cup \{v_i \in T : 1 \le i \le m, b_i = x\}$
- contains at least three nodes. This contradicts Lemma 10.1.

r

Proof.

- Let p be ∈ S, such that marked edge (x, y) when considered the cone C and the point p. Consider nodes u and v of T such that (x_u, y_v) = (x, y)
- u is on the path from the root to the leaf storing p. Define the point p of S, and the nodes u and v of T similarly with respect to the edge (x,y). Assume that u=u'. Then u is on the path from the root to the leaf storing p. Since $|xy| \le |xy|$, could not have marked edge (x, y) when considered C and p, which is a contradiction. Therefore, $u' \ne u$. By symmetric arguments, it follows that $u' \ne u''$ and $u'' \ne u$. Hence the set
- $\{u_i \in T : 1 \le i \le m, a_i = x\} \cup \{v_i \in T : 1 \le i \le m, b_i = x\}$
- contains at least three nodes. This contradicts Lemma 10.1.1

• assume that each edge $(x, y) \in E_0(C)$ has a pointer to the node u_i (or v_i) of the split tree T such that x is the representative of A_i (or B_i)

- compute the subsets $E_0(C)$, $C \in C$
- for each cone *C* of *C* separately do:
- Following these pointers, and store with each node e_u of T , a list L_u containing all edges (x, y) ∈ E₀(C) such that x is the representative of S_u for some pair {S_u, S_v} in our WSPD.
- ullet By considering all nodes u of T , compute the shortest edge, which denote by e_u , in the list L_u
- compute for each node u the shortest edge among all edges e_{ν} ,where ν ranges over the ancestors of u. Denote this shortest edge by $e_{u}{}'$

• assume that each edge $(x, y) \in E_0(C)$ has a pointer to the node u_i (or v_i) of the split tree T such that x is the representative of A_i (or B_i)

- compute the subsets $E_0(C)$, $C \in C$
- for each cone *C* of *C* separately do:
- Following these pointers, and store with each node e_u of T, a list L_u containing all edges $(x,y) \in E_0(C)$ such that x is the representative of S_u for some pair $\{S_u, S_v\}$ in our WSPD.
- By considering all nodes u of T , compute the shortest edge, which denote by e_u , in the list L_u
- compute for each node u the shortest edge among all edges e_v ,where v ranges over the ancestors of u. Denote this shortest edge by $e_u{}'$

• assume that each edge $(x, y) \in E_0(C)$ has a pointer to the node u_i (or v_i) of the split tree T such that x is the representative of A_i (or B_i)

- compute the subsets $E_0(C)$, $C \in C$
- for each cone C of C separately do:
- Following these pointers, and store with each node e_u of T, a list L_u containing all edges $(x,y) \in E_0(C)$ such that x is the representative of S_u for some pair $\{S_u, S_v\}$ in our WSPD.
- ullet By considering all nodes u of T , compute the shortest edge, which denote by e_u , in the list L_u
- ullet compute for each node u the shortest edge among all edges e_{v} ,where v ranges over the ancestors of u. Denote this shortest edge by $e_{u}{}'$

• assume that each edge $(x, y) \in E_0(C)$ has a pointer to the node u_i (or v_i) of the split tree T such that x is the representative of A_i (or B_i)

- compute the subsets $E_0(C)$, $C \in C$
- for each cone *C* of *C* separately do:
- Following these pointers, and store with each node e_u of T, a list L_u containing all edges $(x,y) \in E_0(C)$ such that x is the representative of S_u , for some pair $\{S_u, S_v\}$ in our WSPD.
- ullet By considering all nodes u of T , compute the shortest edge, which denote by e_u , in the list L_u
- compute for each node u the shortest edge among all edges e_v ,where v ranges over the ancestors of u. Denote this shortest edge by $e_u{}'$

• assume that each edge $(x, y) \in E_0(C)$ has a pointer to the node u_i (or v_i) of the split tree T such that x is the representative of A_i (or B_i)

- compute the subsets $E_0(C)$, $C \in C$
- for each cone *C* of *C* separately do:
- Following these pointers, and store with each node e_u of T, a list L_u containing all edges $(x,y) \in E_0(C)$ such that x is the representative of S_u , for some pair $\{S_u, S_v\}$ in our WSPD.
- ullet By considering all nodes u of T , compute the shortest edge, which denote by e_u , in the list L_u
- compute for each node u the shortest edge among all edges e_v ,where v ranges over the ancestors of u. Denote this shortest edge by $e_u{}'$

• assume that each edge $(x, y) \in E_0(C)$ has a pointer to the node u_i (or v_i) of the split tree T such that x is the representative of A_i (or B_i)

- compute the subsets $E_0(C)$, $C \in C$
- for each cone C of C separately do:
- Following these pointers, and store with each node e_u of T, a list L_u containing all edges $(x,y) \in E_0(C)$ such that x is the representative of S_u , for some pair $\{S_u, S_v\}$ in our WSPD.
- \bullet By considering all nodes u of T , compute the shortest edge, which denote by e_u ,in the list L_u
- ullet compute for each node u the shortest edge among all edges $e_{
 u}$,where u ranges over the ancestors of u. Denote this shortest edge by e_u

- ① O(nlogn + m), where $m = O(s^d n)$. the time for computing the split tree and the WSPD
- 2 O(n+m) = O(m). the time for computing the graph $G_0 = (S, E_0)$
- 3 $O(1/\theta^{d-1} + mlog(1/\theta))$. the time for computing the subsets $E_0(C), C \in C$.
- $O(n/\theta^{d-1} + m)$. the time for computing the set E of marked edges

- ① O(nlogn + m), where $m = O(s^d n)$. the time for computing the split tree and the WSPD
- ② O(n+m) = O(m). the time for computing the graph $G_0 = (S, E_0)$
- 3 $O(1/\theta^{d-1} + mlog(1/\theta))$. the time for computing the subsets $E_0(C), C \in C$.
- $O(n/\theta^{d-1} + m)$. the time for computing the set E of marked edges

- ① O(nlogn + m), where $m = O(s^d n)$. the time for computing the split tree and the WSPD
- ② O(n+m) = O(m). the time for computing the graph $G_0 = (S, E_0)$
- 3 $O(1/\theta^{d-1} + mlog(1/\theta))$. the time for computing the subsets $E_0(C), C \in C$.
- 4 $O(n/\theta^{d-1} + m)$. the time for computing the set E of marked edges

- ① O(nlogn + m), where $m = O(s^d n)$. the time for computing the split tree and the WSPD
- ② O(n+m) = O(m). the time for computing the graph $G_0 = (S, E_0)$
- 3 $O(1/\theta^{d-1} + mlog(1/\theta))$. the time for computing the subsets $E_0(C), C \in C$.
- 4 $O(n/\theta^{d-1} + m)$. the time for computing the set E of marked edges

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T_i
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let S be a set of n points in R^d
- Compute a split tree T for S
- Construct a WSPD with s = 4(t+1)/(t-1)
- G = (S, E) where $E = \{\{a_i, b_i\}\}: 1 \le i \le m\}$, is a t-spanner for S (section 9.2)
- We will choose a_i , b_i from A_i , B_i wisely, using the split tree T.
- Let u be any internal node of T
- Let u_l and u_r be u left and right sons
- Let e_l and e_r be the edges that connect u to u_l and u_r respectively

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u.
- Let r(u) be the point of S stored in I(u).

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light.
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u.
- Let r(u) be the point of S stored in I(u).

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light.
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u.
- Let r(u) be the point of S stored in I(u)

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light.
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u
- Let r(u) be the point of S stored in I(u)

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light.
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u
- Let r(u) be the point of S stored in I(u)

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light.
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u.
- Let r(u) be the point of S stored in I(u)

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light.
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u.
- Let r(u) be the point of S stored in I(u).

- Let n_l and n_r be number of leaves in the sub-trees rooted by n_l and n_r respectively.
- If $n_l \ge n_r$, we label e_l as heavy, and e_r as light.
- If $n_l < n_r$, we label e_r as heavy, and e_l as light.
- Each internal node is connected by exactly one heavy edge to one of its children.
- Each internal node has a unique chain of heavy edges down to the bottom of T.
- Let I(u) be the leaf whose chain contains u.
- Let r(u) be the point of S stored in I(u).

- Let *i* be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- A_i, B_i are the set of points stored in the sub-trees of u_i and v_i
- We take $r(u_i) \in A_i$ to be its representative. We do the same for $r(v_i) \in B_i$.
- Now G = (S, E) is a t-spanner. We need to prove its diameter is logarithmic.

Lemma 10.2.1

- Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- A_i, B_i are the set of points stored in the sub-trees of u_i and v_i
- We take $r(u_i) \in A_i$ to be its representative. We do the same for $r(v_i) \in B_i$.
- Now G = (S, E) is a t-spanner. We need to prove its diameter is logarithmic.

Lemma 10.2.1

- Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- A_i, B_i are the set of points stored in the sub-trees of u_i and v_i
- We take $r(u_i) \in A_i$ to be its representative. We do the same for $r(v_i) \in B_i$.
- Now G = (S, E) is a t-spanner. We need to prove its diameter is logarithmic.

Lemma 10.2.1

- Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- A_i, B_i are the set of points stored in the sub-trees of u_i and v_i
- We take $r(u_i) \in A_i$ to be its representative. We do the same for $r(v_i) \in B_i$.
- Now G = (S, E) is a t-spanner. We need to prove its diameter is logarithmic.

Lemma 10.2.1

- Let i be $1 \le i \le m$, the pair A_i , B_i is represented implicitly by 2 nodes of T, u_i and v_i , respectively.
- A_i, B_i are the set of points stored in the sub-trees of u_i and v_i
- We take $r(u_i) \in A_i$ to be its representative. We do the same for $r(v_i) \in B_i$.
- Now G = (S, E) is a t-spanner. We need to prove its diameter is logarithmic.

Lemma 10.2.1

Proof.

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise. Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a
- Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow \text{we are done}$
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

Proof.

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a
- Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$.
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow \text{we are done.}$
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- ullet Recursively construct a path Q_1 between p and its representative a_j
- Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow \text{we are done.}$
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j
- Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_i, b_i\}, Q_2$
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow we are done.$
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j
- Recursively construct a path Q_2 between a_i and its representative b_i
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow we are done.$
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j
- ullet Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$.
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow we are done.$
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

Proof.

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j
- ullet Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$.
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i .
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow \text{we are done}$
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

П

Proof.

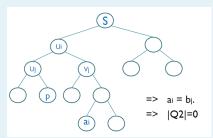
- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j
- ullet Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$.
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i .
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow$ we are done.
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges

П

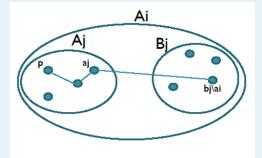
- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j
- ullet Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$.
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i .
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow$ we are done.
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges.

- From construction, there is a t-spanner path between p and a_i (Section 9.2).
- If $p = a_i$, we are done. Assume otherwise.Let j be the index such that
- (i) $p \in A_j$ and $a_i \in B_j$ Or (ii) $a_i \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j
- Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1, \{a_j, b_j\}, Q_2$.
- We will show that $|Q| \leq log|Ai|$, $(p \in A_i)$. Induction on the size of set A_i .
- Base: $A_i = \{a_i\} \longrightarrow p = a_i \longrightarrow$ we are done.
- Let i be an index such that $|A_i| > 1$, $p \neq a_i$ Assume, for all k such that $|A_k| < |A_i|$, and for all $x \in A_k$, the algorithm constructs a t-spanner path between x and a_k with at most log|Ak| edges.

- Let u_i , u_j , v_j be the nodes of T whose sub-trees store the sets A_i , A_j , B_j respectively.
- u_i is a common ancestor of the leaves storing p and a_i .
- u_j lies on the path from root to the leaf of p.
- V_j lies on the path from root to the leaf of a_i
- A_j, B_j are disjoint → u_j, v_j are both in the sub-tree of u_i, and neither is an ancestor of the other



- $|Aj| \le |Ai|/2$. Otherwise all the edges between u_i and u_j would be heavy.
- But then, the representative of A_i would be an element of A_j , but its not $(a_i \in B_j \text{ represents } A_i)$.
- By induction hypothesis, the path Q_1 between p and a_j contains at most $log |A_j|$ edge, which is
- $\bullet \le log|A_i| 1$ We add $\{a_j, b_j\}$ and get that $|Q| \le log|A_i|$



Lemma 10.2.2

G is a t-spanner for S, whose diameter is less than equal to 2logn - 1

- Let p and q be 2 distinct points in G. We will show that there is a t-spanner path between them with at most 2logn1 edges
- Let *j* be the index such that:

(i)
$$p \in A_j$$
 and $q \in B_j$. Or (ii) $q \in A_j$ and $p \in B_j$.

- ullet Recursively construct a path Q_1 between p and its representative a_j
- Recursively construct a path Q_2 between a_i and its representative b_j .
- Return $Q = Q_1$, $\{a_j, b_j\}$, Q_2 .
- We proved that $|Q_1| \leq log |A_j|$.

Lemma 10.2.2

G is a t-spanner for S, whose diameter is less than equal to 2logn - 1

- Let p and q be 2 distinct points in G. We will show that there is a t-spanner path between them with at most 2logn1 edges
- Let j be the index such that:
 (i) p ∈ A_i and q ∈ B_i. Or (ii) q ∈ A_j and p ∈
- ullet Recursively construct a path Q_1 between p and its representative a_i .
- Recursively construct a path Q_2 between a_i and its representative b_j .
- Return $Q = Q_1$, $\{a_j, b_j\}$, Q_2 .
- We proved that $|Q_1| \leq log|A_j|$.

Lemma 10.2.2

G is a t-spanner for S, whose diameter is less than equal to 2logn - 1

- Let p and q be 2 distinct points in G. We will show that there is a t-spanner path between them with at most 2logn1 edges
- Let j be the index such that:
 - (i) $p \in A_j$ and $q \in B_j$. Or (ii) $q \in A_j$ and $p \in B_j$.
- ullet Recursively construct a path Q_1 between p and its representative a_j
- Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1$, $\{a_j, b_j\}$, Q_2
- We proved that $|Q_1| \leq log|A_j|$

Lemma 10.2.2

G is a t-spanner for S, whose diameter is less than equal to 2logn - 1

- Let p and q be 2 distinct points in G. We will show that there is a t-spanner path between them with at most 2logn1 edges
- Let j be the index such that:
 - (i) $p \in A_j$ and $q \in B_j$. Or (ii) $q \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j .
- Recursively construct a path Q_2 between a_i and its representative b_j
- Return $Q = Q_1$, $\{a_i, b_i\}$, Q_2
- We proved that $|Q_1| \leq log|A_j|$

Lemma 10.2.2

G is a t-spanner for S, whose diameter is less than equal to 2logn - 1

- Let p and q be 2 distinct points in G. We will show that there is a t-spanner path between them with at most 2logn1 edges
- Let j be the index such that:
 - (i) $p \in A_j$ and $q \in B_j$. Or (ii) $q \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j .
- Recursively construct a path Q_2 between a_i and its representative b_j .
- Return $Q = Q_1$, $\{a_j, b_j\}$, Q_2
- We proved that $|Q_1| \leq log|A_j|$.

Lemma 10.2.2

G is a t-spanner for S, whose diameter is less than equal to 2logn - 1

- Let p and q be 2 distinct points in G. We will show that there is a t-spanner path between them with at most 2logn1 edges
- Let *j* be the index such that:
 - (i) $p \in A_j$ and $q \in B_j$. Or (ii) $q \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j .
- Recursively construct a path Q_2 between a_i and its representative b_j .
- Return $Q = Q_1$, $\{a_j, b_j\}$, Q_2 .
- We proved that $|Q_1| \leq log|A_j|$

Lemma 10.2.2

G is a t-spanner for S, whose diameter is less than equal to 2logn - 1

- Let p and q be 2 distinct points in G. We will show that there is a t-spanner path between them with at most 2logn1 edges
- Let *j* be the index such that:
 - (i) $p \in A_j$ and $q \in B_j$. Or (ii) $q \in A_j$ and $p \in B_j$.
- Recursively construct a path Q_1 between p and its representative a_j .
- Recursively construct a path Q_2 between a_i and its representative b_j .
- Return $Q = Q_1$, $\{a_j, b_j\}$, Q_2 .
- We proved that $|Q_1| \leq log|A_j|$.

Proof.

- Similarly, $|Q2| \leq log|B_j|$
- Hence, $|Q| \le log |A_j| + log |B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $\log |A_j| + \log |B_j| \le \log |A_j| + \log |n A_j| \le 2\log(n/2) = 2\log n 2$
- Hence, Q contains at most 2logn 1 edges

- 1 WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

Proof.

- Similarly, $|Q2| \leq log|B_j|$
- Hence, $|Q| \leq log|A_j| + log|B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $\log |A_j| + \log |B_j| \le \log |A_j| + \log |n A_j| \le 2\log(n/2) = 2\log n 2$
- Hence, Q contains at most 2logn 1 edges

- 1 WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

Proof.

- Similarly, $|Q2| \leq log|B_i|$
- Hence, $|Q| \leq log|A_j| + log|B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $\log |A_j| + \log |B_j| \le \log |A_j| + \log |n A_j| \le 2\log(n/2) = 2\log n 2$
- Hence, Q contains at most 2logn 1 edges

- 1 WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

Proof.

- Similarly, $|Q2| \leq log|B_i|$
- Hence, $|Q| \leq log|A_j| + log|B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $log|A_j| + log|B_j| \le log|A_j| + log|n A_j| \le 2log(n/2) = 2logn 2$
- Hence, Q contains at most 2logn 1 edges

- 1 WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

Proof.

- Similarly, $|Q2| \leq log|B_j|$
- Hence, $|Q| \leq log|A_j| + log|B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $log|A_j| + log|B_j| \le log|A_j| + log|n A_j| \le 2log(n/2) = 2logn 2$
- Hence, Q contains at most 2logn 1 edges

- 1 WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

Proof.

- Similarly, $|Q2| \leq log|B_j|$
- Hence, $|Q| \le log |A_j| + log |B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $log|A_j| + log|B_j| \le log|A_j| + log|n A_j| \le 2log(n/2) = 2logn 2$
- Hence, Q contains at most 2logn 1 edges

- **4** WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

Proof.

- Similarly, $|Q2| \leq log|B_j|$
- Hence, $|Q| \leq log|A_j| + log|B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $log|A_j| + log|B_j| \le log|A_j| + log|n A_j| \le 2log(n/2) = 2logn 2$
- Hence, Q contains at most 2logn 1 edges

- **4** WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

Proof.

- Similarly, $|Q2| \leq log|B_j|$
- Hence, $|Q| \le log |A_j| + log |B_j| + 1$.
- A_j, B_j are disjoint $\longrightarrow |A_j| + |B_j| \le n$
- $log|A_i| + log|B_i| \le log|A_i| + log|n A_i| \le 2log(n/2) = 2logn 2$
- Hence, Q contains at most 2logn 1 edges

- **1** WSPD construction: $O(nlogn + s^d n)$ (Theorem 9.4.6).
- 2 Representative selection: O(m).
- 3 All in all : O(nlogn).

- its possible to compute a WSPD t-spanner of O(n) edges in O(nLogn) time.(corollary 9.4.7)
- In a t-spanner where $1 \le t \le 2$ the smallest edge in the graph is always present in the t-spanner.
- By creating a t-spanner of t = 2, we know one of its edges is the smallest in the graph, and we can scan all its edges in O(n)
- find the closest pair in O(nLogn) + O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in \mathbb{R}^d ,algorithm ClosestPair(S) computes a closest pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points in \mathbb{R}^d and a real number s > 2, computes a WSPD for S with separation ratio s, has a worst-case running time of O(nlogn).

- its possible to compute a WSPD t-spanner of O(n) edges in O(nLogn) time.(corollary 9.4.7)
- In a t-spanner where $1 \le t \le 2$ the smallest edge in the graph is always present in the t-spanner.
- By creating a t-spanner of t = 2, we know one of its edges is the smallest in the graph, and we can scan all its edges in O(n)
- find the closest pair in O(nLogn) + O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in \mathbb{R}^d , algorithm ClosestPair(S) computes a closest pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points in \mathbb{R}^d and a real number s > 2, computes a WSPD for S with separation ratio s, has a worst-case running time of O(nlogn).

- its possible to compute a WSPD t-spanner of O(n) edges in O(nLogn) time.(corollary 9.4.7)
- In a t-spanner where $1 \le t \le 2$ the smallest edge in the graph is always present in the t-spanner.
- By creating a t-spanner of t = 2, we know one of its edges is the smallest in the graph, and we can scan all its edges in O(n)
- find the closest pair in O(nLogn) + O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in \mathbb{R}^d ,algorithm ClosestPair(S) computes a closest pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points in R^d and a real number s > 2, computes a WSPD for S with separation ratio s, has a worst-case running time of O(nlogn).

- its possible to compute a WSPD t-spanner of O(n) edges in O(nLogn) time.(corollary 9.4.7)
- In a t-spanner where $1 \le t \le 2$ the smallest edge in the graph is always present in the t-spanner.
- By creating a t-spanner of t = 2, we know one of its edges is the smallest in the graph, and we can scan all its edges in O(n)
- find the closest pair in O(nLogn) + O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in \mathbb{R}^d ,algorithm ClosestPair(S) computes a closest pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points in \mathbb{R}^d and a real number s > 2, computes a WSPD for S with separation ratio s, has a worst-case running time of O(nlogn).

- its possible to compute a WSPD t-spanner of O(n) edges in O(nLogn) time.(corollary 9.4.7)
- In a t-spanner where $1 \le t \le 2$ the smallest edge in the graph is always present in the t-spanner.
- By creating a t-spanner of t = 2, we know one of its edges is the smallest in the graph, and we can scan all its edges in O(n)
- find the closest pair in O(nLogn) + O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in \mathbb{R}^d ,algorithm ClosestPair(S) computes a closest pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points in \mathbb{R}^d and a real number s>2, computes a WSPD for S with separation ratio s, has a worst-case running time of O(nlogn).

- its possible to compute a WSPD t-spanner of O(n) edges in O(nLogn) time.(corollary 9.4.7)
- In a t-spanner where $1 \le t \le 2$ the smallest edge in the graph is always present in the t-spanner.
- By creating a t-spanner of t = 2, we know one of its edges is the smallest in the graph, and we can scan all its edges in O(n)
- find the closest pair in O(nLogn) + O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in \mathbb{R}^d ,algorithm ClosestPair(S) computes a closest pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points in R^d and a real number s > 2, computes a WSPD for S with separation ratio s, has a worst-case running time of O(nlogn).

- Let S be a set of n points in R^d
- Let k be an integer such that $1 \le k \le$
- A sequence of $\{p_i, q_i\}, 1 \le i \le k$, where $p_i \ne q_i$ and p_i and $q_i \wr S$ is called a sequence of k closest pair if the distance of $|p_i q_i|, 1 \le i \le k$ are the smallest k edges in S.
- Reminder: in WSPD where $X \in \mathbb{R}^d$, R(X) is the smallest binding box of all the points in X.
- Let s > 0 be a real number, consider the split tree T, and the corresponding WSPD:{A₁, B₁}, {A₂, B₂},...,{A_m, B_m}
- Where $m = O(s^d n)$
- We shall mark the minimum distance between $R(A_i)$ and $R(B_i)$ as $|R(A_i)R(B_i)|$, and lets assume with out the loss of generality that: $|R(A_1)R(B_1)| \le |R(A_2)R(B_2)| \le ... \le |R(A_m)R(B_m)|$

- Let S be a set of n points in R^d
- Let k be an integer such that $1 \le k \le$
- A sequence of {p_i, q_i}, 1 ≤ i ≤ k, where p_i ≠ q_i and p_i and q_i S is called a sequence of k closest pair if the distance of |p_iq_i|, 1 ≤ i ≤ k are the smallest k edges in S.
- Reminder: in WSPD where $X \in \mathbb{R}^d$, R(X) is the smallest binding box of all the points in X.
- Let s > 0 be a real number, consider the split tree T, and the corresponding WSPD:{A₁, B₁}, {A₂, B₂},...,{A_m, B_m}
- Where $m = O(s^d n)$
- We shall mark the minimum distance between $R(A_i)$ and $R(B_i)$ as $|R(A_i)R(B_i)|$, and lets assume with out the loss of generality that: $|R(A_1)R(B_1)| \le |R(A_2)R(B_2)| \le ... \le |R(A_m)R(B_m)|$

- Let S be a set of n points in R^d
- Let k be an integer such that $1 \le k \le$
- A sequence of $\{p_i,q_i\}, 1 \le i \le k$, where $p_i \ne q_i$ and p_i and q_i 1S is called a sequence of k closest pair if the distance of $|p_iq_i|, 1 \le i \le k$ are the smallest k edges in S.
- Reminder: in WSPD where $X \in \mathbb{R}^d$, R(X) is the smallest binding box of all the points in X.
- Let s > 0 be a real number, consider the split tree T, and the corresponding WSPD:{A₁, B₁}, {A₂, B₂},...,{A_m, B_m}
- Where $m = O(s^d n)$
- We shall mark the minimum distance between $R(A_i)$ and $R(B_i)$ as $|R(A_i)R(B_i)|$, and lets assume with out the loss of generality that: $|R(A_1)R(B_1)| \le |R(A_2)R(B_2)| \le ... \le |R(A_m)R(B_m)|$

- Let S be a set of n points in R^d
- Let k be an integer such that $1 \le k \le$
- A sequence of $\{p_i,q_i\}, 1 \le i \le k$, where $p_i \ne q_i$ and p_i and q_i 1S is called a sequence of k closest pair if the distance of $|p_iq_i|, 1 \le i \le k$ are the smallest k edges in S.
- Reminder: in WSPD where $X \in \mathbb{R}^d$, R(X) is the smallest binding box of all the points in X.
- Let s > 0 be a real number, consider the split tree T, and the corresponding WSPD: $\{A_1, B_1\}, \{A_2, B_2\}, ..., \{A_m, B_m\}$
- Where $m = O(s^d n)$
- We shall mark the minimum distance between $R(A_i)$ and $R(B_i)$ as $|R(A_i)R(B_i)|$, and lets assume with out the loss of generality that: $|R(A_1)R(B_1)| \le |R(A_2)R(B_2)| \le ... \le |R(A_m)R(B_m)|$

- Let S be a set of n points in R^d
- Let k be an integer such that $1 \le k \le$
- A sequence of $\{p_i,q_i\}, 1 \le i \le k$, where $p_i \ne q_i$ and p_i and q_i 1S is called a sequence of k closest pair if the distance of $|p_iq_i|, 1 \le i \le k$ are the smallest k edges in S.
- Reminder: in WSPD where $X \in \mathbb{R}^d$, R(X) is the smallest binding box of all the points in X.
- Let s > 0 be a real number, consider the split tree T, and the corresponding WSPD:{A₁, B₁}, {A₂, B₂},...,{A_m, B_m}
- Where $m = O(s^a n)$
- We shall mark the minimum distance between $R(A_i)$ and $R(B_i)$ as $|R(A_i)R(B_i)|$, and lets assume with out the loss of generality that: $|R(A_1)R(B_1)| \le |R(A_2)R(B_2)| \le ... \le |R(A_m)R(B_m)|$

Computing K Closest Pair Problem

- Let S be a set of n points in R^d
- Let k be an integer such that $1 \le k \le$
- A sequence of $\{p_i,q_i\}, 1 \le i \le k$, where $p_i \ne q_i$ and p_i and q_i 1S is called a sequence of k closest pair if the distance of $|p_iq_i|, 1 \le i \le k$ are the smallest k edges in S.
- Reminder: in WSPD where $X \in \mathbb{R}^d$, R(X) is the smallest binding box of all the points in X.
- Let s > 0 be a real number, consider the split tree T, and the corresponding WSPD:{A₁, B₁}, {A₂, B₂},...,{A_m, B_m}
- Where $m = O(s^d n)$
- We shall mark the minimum distance between $R(A_i)$ and $R(B_i)$ as $|R(A_i)R(B_i)|$, and lets assume with out the loss of generality that: $|R(A_1)R(B_1)| \le |R(A_2)R(B_2)| \le ... \le |R(A_m)R(B_m)|$

Computing K Closest Pair Problem

- Let S be a set of n points in R^d
- Let k be an integer such that $1 \le k \le$
- A sequence of $\{p_i,q_i\}, 1 \le i \le k$, where $p_i \ne q_i$ and p_i and q_i 1S is called a sequence of k closest pair if the distance of $|p_iq_i|, 1 \le i \le k$ are the smallest k edges in S.
- Reminder: in WSPD where $X \in \mathbb{R}^d$, R(X) is the smallest binding box of all the points in X.
- Let s > 0 be a real number, consider the split tree T, and the corresponding WSPD:{A₁, B₁}, {A₂, B₂},...,{A_m, B_m}
- Where $m = O(s^d n)$
- We shall mark the minimum distance between $R(A_i)$ and $R(B_i)$ as $|R(A_i)R(B_i)|$, and lets assume with out the loss of generality that: $|R(A_1)R(B_1)| \le |R(A_2)R(B_2)| \le ... \le |R(A_m)R(B_m)|$

Algorithm

Algorithm KCLOSESTPAIRS(S, k)

Comment: This algorithm takes as input a set S of n points in \mathbb{R}^d and an integer k such that $1 \le k \le \binom{n}{2}$. It assumes that a WSPD for S has been computed already. The algorithm returns a sequence of k closest pairs in S.

Step 1: Compute the smallest integer $\ell \geq 1$, such that

$$\sum_{i=1}^{\ell} |A_i| \cdot |B_i| \ge k.$$

Step 2: Let $r:=|R(A_\ell)R(B_\ell)|$. Compute the integer ℓ' , which is defined as the number of indices i with $1\leq i\leq m$, such that

$$|R(A_i)R(B_i)| \le (1 + 4/s)r$$
.

Compute the set L consisting of all pairs $\{p,q\}$ for which there is an index i with $1 \le i \le \ell'$, such that $p \in A_i$ and $q \in B_i$, or $q \in A_i$ and $p \in B_i$.

Step 3: Compute and return the k smallest distances determined by the pairs in the set L.

K Closest Pairs Correctness

Lemma 10.3.3

Let p, q be two distinct points in S, and let j be the index such that $p \in A_j$ and $q \in B_j$ or $q \in A_j$ and $p \in B_j$ if j > l' the $\{p, q\}$ is not one of the k closest pairs of the set S.

Proof.

- For any index $i, 1 \le i \le m$ Let $x_i \in R(A_i)$ and $y_i \in R(B_i)$ such that $|x_iy_i| = |R(A_i)R(B_i)|$ (in general x_i, y_i not points of s)
- Let I be any index such that $1 \le i \le I$, let a be any point of Ai, and let I any point of B_i .

-

K Closest Pairs Correctness

Lemma 10.3.3

Let p, q be two distinct points in S, and let j be the index such that $p \in A_j$ and $q \in B_j$ or $q \in A_j$ and $p \in B_j$ if j > l' the $\{p, q\}$ is not one of the k closest pairs of the set S.

- For any index $i, 1 \le i \le m$ Let $x_i \in R(A_i)$ and $y_i \in R(B_i)$ such that $|x_iy_i| = |R(A_i)R(B_i)|$ (in general x_i, y_i not points of s)
- Let I be any index such that $1 \le i \le I$, let a be any point of Ai, and let b any point of B_i .

- $|ab| \le (1+4/s)|R(A_i)R(B_i)| \le (1+4/s)|R(A_i)R(B_i)| = (1+4/s)r$
- By step 1 of the algo. The pairs $\{A_i, B_i\}$ $1 \le i \le I$ satisfy: $(\sum |A_i||B_i|) \ge k$
- And thus determine at least k distances, all which are less than or equal to (1+4/s)r
- On the other hand, since, we have: j > l'

$$|pq| \ge |R(A_j)R(B_j)| \ge (1+4/s)r$$

- $|ab| \le (1+4/s)|R(A_i)R(B_i)| \le (1+4/s)|R(A_i)R(B_i)| = (1+4/s)r$
- By step 1 of the algo. The pairs $\{A_i, B_i\}$ $1 \le i \le l$ satisfy: $(\sum |A_i||B_i|) \ge k$
- And thus determine at least k distances, all which are less than or equal to (1+4/s)r
- On the other hand, since, we have: j > l'

$$|pq| \ge |R(A_j)R(B_j)| \ge (1+4/s)r$$

- $|ab| \le (1+4/s)|R(A_i)R(B_i)| \le (1+4/s)|R(A_i)R(B_i)| = (1+4/s)r$
- By step 1 of the algo. The pairs $\{A_i, B_i\}$ $1 \le i \le l$ satisfy: $(\sum |A_i||B_i|) \ge k$
- And thus determine at least k distances, all which are less than or equal to (1+4/s)r
- On the other hand, since, we have: j > l'

$$|pq| \ge |R(A_j)R(B_j)| \ge (1+4/s)r$$

- $|ab| \le (1+4/s)|R(A_i)R(B_i)| \le (1+4/s)|R(A_i)R(B_i)| = (1+4/s)r$
- By step 1 of the algo. The pairs $\{A_i, B_i\}$ $1 \le i \le l$ satisfy: $(\sum |A_i||B_i|) \ge k$
- And thus determine at least k distances, all which are less than or equal to (1+4/s)r
- On the other hand, since, we have: j > l'

$$|pq| \ge |R(A_j)R(B_j)| \ge (1+4/s)r$$

- Step 1: because of the usage of the split tree, by traversing it in post order, we can compute the number of leaves for each node and can compare for each $1 \le i \le m$ the value of $|A_i||B_i|$, in O(m), hence Step 1 takes O(m)
- Step 2: each node of the split tree stores the bounding box of the points in the subtree, there for l' can be computed in O(m). Given l', L can be computed in:O(∑|A_i||B_i|)
- Step 3: because k is a constant, we can find the k'th smallest distance in linear time, than we can select all the pairs, which distance is smaller then or equal to the kth
- Conclusion: $O(m) + O(\sum |A_i||B_i|) = O(m + \sum |A_i||B_i|)$

- Step 1: because of the usage of the split tree, by traversing it in post order, we can compute the number of leaves for each node and can compare for each $1 \le i \le m$ the value of $|A_i||B_i|$, in O(m), hence Step 1 takes O(m)
- Step 2: each node of the split tree stores the bounding box of the points in the subtree, there for l' can be computed in O(m). Given l', L can be computed in: $O(\sum |A_i||B_i|)$
- Step 3: because k is a constant, we can find the k'th smallest distance in linear time, than we can select all the pairs, which distance is smaller then or equal to the kth
- Conclusion: $O(m) + O(\sum |A_i||B_i|) = O(m + \sum |A_i||B_i|)$

- Step 1: because of the usage of the split tree, by traversing it in post order, we can compute the number of leaves for each node and can compare for each $1 \le i \le m$ the value of $|A_i||B_i|$, in O(m), hence Step 1 takes O(m)
- Step 2: each node of the split tree stores the bounding box of the points in the subtree, there for l' can be computed in O(m). Given l', L can be computed in: $O(\sum |A_i||B_i|)$
- Step 3: because k is a constant, we can find the k'th smallest distance in linear time, than we can select all the pairs, which distance is smaller then or equal to the kth
- Conclusion: $O(m) + O(\sum |A_i||B_i|) = O(m + \sum |A_i||B_i|)$

- Step 1: because of the usage of the split tree, by traversing it in post order, we can compute the number of leaves for each node and can compare for each $1 \le i \le m$ the value of $|A_i||B_i|$, in O(m), hence Step 1 takes O(m)
- Step 2: each node of the split tree stores the bounding box of the points in the subtree, there for l' can be computed in O(m). Given l', L can be computed in: $O(\sum |A_i||B_i|)$
- Step 3: because k is a constant, we can find the k'th smallest distance in linear time, than we can select all the pairs, which distance is smaller then or equal to the kth
- Conclusion: $O(m) + O(\sum |A_i||B_i|) = O(m + \sum |A_i||B_i|)$

Lemma 10.3.4

Let δ be the k-th smallest distance in the set S and let $r=|A_l||B_l|$ be the value computed in Step 2, then $r\leq \delta$

Proof.

• Lets assume $r > \delta$, so for any $i \ge l$

$$|pq| \ge |R(A_i)R(B_i)| \ge |R(A_l)R(B_l)| = r > \delta$$

• Contradicts the build of Step 1 (to choose the min I value).

Lemma 10.3.4

Let δ be the k-th smallest distance in the set S and let $r=|A_l||B_l|$ be the value computed in Step 2, then $r \leq \delta$

Proof.

• Lets assume $r > \delta$, so for any $i \ge l$

$$|pq| \ge |R(A_i)R(B_i)| \ge |R(A_l)R(B_l)| = r > \delta$$

• Contradicts the build of Step 1 (to choose the min I value).

Lemma 10.3.5

Let v be the kth smallest distance in S, and let $\{p,q\}$ be any pair of points that is contained in L, then: $|pq| \le (1+4/s)^2 v$

- $|pq| \le (1 + 4/s)|x_iy_i|$
- $|R(A_i)R(B_i)| \le (1+4/s)r$
- $|pq| \le (1+4/s)|x_iy_i| = (1+4/s)|R(A_i)R(B_i)| \le (1+4/s)^2 r \le (1+4/s)^2 v$

Lemma 10.3.5

Let v be the kth smallest distance in S, and let $\{p,q\}$ be any pair of points that is contained in L, then: $|pq| \le (1+4/s)^2 v$

- $|pq| \leq (1+4/s)|x_iy_i|$
- $|R(A_i)R(B_i)| \le (1+4/s)r$
- $|pq| \le (1+4/s)|x_iy_i| = (1+4/s)|R(A_i)R(B_i)| \le (1+4/s)^2 r \le (1+4/s)^2 r$

Lemma 10.3.5

Let v be the kth smallest distance in S, and let $\{p,q\}$ be any pair of points that is contained in L, then: $|pq| \le (1+4/s)^2 v$

Proof.

- $|pq| \le (1 + 4/s)|x_iy_i|$
- $|R(A_i)R(B_i)| \le (1+4/s)r$
- $|pq| \le (1+4/s)|x_iy_i| = (1+4/s)|R(A_i)R(B_i)| \le (1+4/s)^2 r \le (1+4/s)^2 v$

╝.

- Let M denote the number of distances that are less then or equal to $(1+4/s)^2v$. Then the total running time of the algorithm is O(n+M).
- Full running time:
- WSPD for S of size m = O(n) can be calculated in O(nLogn)
- The algo. Runs at O(m+M)
- O(nLogn) + O(n+n+2k) = O(nLogn+k)

- Let M denote the number of distances that are less then or equal to $(1+4/s)^2v$. Then the total running time of the algorithm is O(n+M).
- Full running time:
- WSPD for S of size m = O(n) can be calculated in O(nLogn)
- The algo. Runs at O(m+M)
- O(nLogn) + O(n+n+2k) = O(nLogn+k)

- Let M denote the number of distances that are less then or equal to $(1+4/s)^2v$. Then the total running time of the algorithm is O(n+M).
- Full running time:
- WSPD for S of size m = O(n) can be calculated in O(nLogn)
- The algo. Runs at O(m+M)
- O(nLogn) + O(n+n+2k) = O(nLogn+k)

- Let M denote the number of distances that are less then or equal to $(1+4/s)^2v$. Then the total running time of the algorithm is O(n+M).
- Full running time:
- WSPD for S of size m = O(n) can be calculated in O(nLogn)
- The algo. Runs at O(m+M)
- O(nLogn) + O(n+n+2k) = O(nLogn+k)

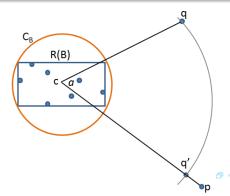
- Let M denote the number of distances that are less then or equal to $(1+4/s)^2v$. Then the total running time of the algorithm is O(n+M).
- Full running time:
- WSPD for S of size m = O(n) can be calculated in O(nLogn)
- The algo. Runs at O(m+M)
- O(nLogn) + O(n+n+2k) = O(nLogn+k)

- In this problem with are given the set S, and want to compute the nearest neighbor for each point in S.
- In this analysis we will use a generalization of the fact that any point can be the nearest neighbor of at most a constant number of other points.

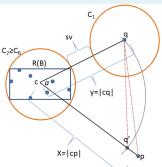
- In this problem with are given the set S, and want to compute the nearest neighbor for each point in S.
- In this analysis we will use a generalization of the fact that any point can be the nearest neighbor of at most a constant number of other points.

Lemma 10.3.7

Let B be a finite set of points.Let C_B be the smallest ball that contains the bounding box R(B) of B. Let c be the center of C_B . Let s>1 be a real number. Let p,q be 2 distinct points in R^d such that both $\{p\}$ and B, and B are well-seperated with respect to B. Assume that $|pC_B| \leq |pq|$ and $|qC_B| \leq |pq|$. Let A = angle(cp, cq). Then we have $A \geq (s-1)/s$

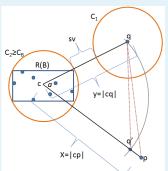


- If $\alpha \ge 1$ then obviously $(s-1)/s \le 1$
- If α < 1, Let r be the radius of C_B
- Let x = |pc| and y = |qc|, lets assumed without loss of generality that $x \ge y$.
- Let q' be point on the line |cp|, such that |q'c| = |qc|

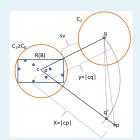


- By using Triangle inequality we recieve: $|pq'| + |q'q| \le (x y) + \alpha y = x (1 \alpha)y *$
- Since {q} and B are well separated, lets draw 2 balls, C₁(around Q), and C₂ (around R(B)) with radius v, there for |C₁C₂| ≥ sv. Since C_B is the smallest ball of B, v ≥ r, then we can conclude:

$$y = |qc| \ge |C_1C_2| \ge sv \ge sr **$$



- By using * , ** and the fact that $\alpha < 1$ we get: $|pq| \le x (1 \alpha)y \le x (1 \alpha)sr(* * *)$
- Using the same method as * we claim: $x = |pc| \ge sr$
- Since s > 1, then p is out of the ball CB , $x = |pc| = |pC_B| + r \le |pq| + r$
- Combined with * * * we receive: $|pq| \le (|pq| + r) (1 \alpha)sr$
- Which is in fact: $\alpha \ge (s-1)/s$



Lemma 10.3.8

Let A and B be to finite sets of points, let C_B be the smallest ball to contain R(B), let s>1 be a real number. $\forall p \in A$ the sets $\{p\}$ and B are well seperated with respect to s.Assume $|pC_B| \leq |pq|$ for any p,q that belong to A.Then the set A contains O((s/(s-1))d) elements.

- Using Lemma 10.3.7, we know that: $angle(cp, cq) \ge (s-1)/s$
- Using this equation and a theorem which bounds the size of any set of points for which the minimum angle is at least some given real number we prove that A contains: $O((s/(s-1))^d)$ elements

- For any node u in the split tree T, S_u denotes the set of all points of S that are stored in the subtree of u
- We define F(u) to be the set of all points $p \in S$ such that the pair $\{\{p\}, S_u\}$ is contained in some ancesstor of u.
- We define N(u) to be the set of all points $p \in F(u)$ such that, the distance from p to the smallest ball containing $R(S_u)$ is less than or equal to the smallest distance between p and any other point of F(u)
- Obeserve: $N(u) \subseteq F(u)$

- For any node u in the split tree T, S_u denotes the set of all points of S that are stored in the subtree of u
- We define F(u) to be the set of all points $p \in S$ such that the pair $\{\{p\}, S_u\}$ is contained in some ancesstor of u.
- We define N(u) to be the set of all points $p \in F(u)$ such that, the distance from p to the smallest ball containing $R(S_u)$ is less than or equa to the smallest distance between p and any other point of F(u)
- Obeserve: $N(u) \subseteq F(u)$

- For any node u in the split tree T, S_u denotes the set of all points of S that are stored in the subtree of u
- We define F(u) to be the set of all points $p \in S$ such that the pair $\{\{p\}, S_u\}$ is contained in some ancesstor of u.
- We define N(u) to be the set of all points $p \in F(u)$ such that, the distance from p to the smallest ball containing $R(S_u)$ is less than or equal to the smallest distance between p and any other point of F(u)
- Obeserve: $N(u) \subseteq F(u)$

- For any node u in the split tree T, S_u denotes the set of all points of S that are stored in the subtree of u
- We define F(u) to be the set of all points $p \in S$ such that the pair $\{\{p\}, S_u\}$ is contained in some ancesstor of u.
- We define N(u) to be the set of all points $p \in F(u)$ such that, the distance from p to the smallest ball containing $R(S_u)$ is less than or equal to the smallest distance between p and any other point of F(u)
- Obeserve: $N(u) \subseteq F(u)$

Lemma 10.3.9

For any node u of T, the size of N(u) is O((s/(s-1))d)

- Let A = N(u) and $B = S_u$
- We will show that those two sets satisfy the conditions of lemma 10.3.8.
- Let p∈ A, then p∈ F(u) hence, there is an ancestor v of u, such that {p} and S_v are well separated. Since S_u is a subset of S_v the sets {p} and S_u = B are well separated as well.
- Let p and q be two distinct points of A. Then by the definition of N(u), the distance between p and C_B is less then or equal to the smallest distance between p and any other point of F(u). In particular since $q \in F(u)$, we have $|pC_B| \le |pq|$.

Lemma 10.3.9

For any node u of T, the size of N(u) is O((s/(s-1))d)

- Let A = N(u) and $B = S_u$
- We will show that those two sets satisfy the conditions of lemma 10.3.8.
- Let p ∈ A, then p ∈ F(u) hence, there is an ancestor v of u, such that {p} and S_v are well separated. Since S_u is a subset of S_v the sets {p} and S_u = B are well separated as well.
- Let p and q be two distinct points of A. Then by the definition of N(u) the distance between p and C_B is less then or equal to the smallest distance between p and any other point of F(u). In particular since $q \in F(u)$, we have $|pC_B| \le |pq|$.

Lemma 10.3.9

For any node u of T, the size of N(u) is O((s/(s-1))d)

- Let A = N(u) and $B = S_u$
- We will show that those two sets satisfy the conditions of lemma 10.3.8.
- Let $p \in A$, then $p \in F(u)$ hence, there is an ancestor v of u, such that $\{p\}$ and S_v are well separated. Since S_u is a subset of S_v the sets $\{p\}$ and $S_u = B$ are well separated as well.
- Let p and q be two distinct points of A. Then by the definition of N(u) the distance between p and C_B is less then or equal to the smallest distance between p and any other point of F(u). In particular since $q \in F(u)$, we have $|pC_B| \le |pq|$.

Lemma 10.3.9

For any node u of T, the size of N(u) is O((s/(s-1))d)

- Let A = N(u) and $B = S_u$
- We will show that those two sets satisfy the conditions of lemma 10.3.8.
- Let $p \in A$, then $p \in F(u)$ hence, there is an ancestor v of u, such that $\{p\}$ and S_v are well separated. Since S_u is a subset of S_v the sets $\{p\}$ and $S_u = B$ are well separated as well.
- Let p and q be two distinct points of A. Then by the definition of N(u), the distance between p and C_B is less then or equal to the smallest distance between p and any other point of F(u). In particular since $q \in F(u)$, we have $|pC_B| \le |pq|$.

- Let p be the point of S, let q be the nearest neighbor of p, and let u be the leaf of T that contains q. We know that there is an index i, such that A_i = {p} and q ∈ B_i (or vise versa).
- Hence, there is an ancestor v or u, such that $B_i = S_v$
- Therefore, $p \in F(u)$, also since $S_u = q$, the distance between p and the smallest ball containing $R(S_u)$ is just |pq|, which is clearly less then or equal to the distance between p and any other point in F(u), this proves
- p ∈ N(u)

- Let p be the point of S, let q be the nearest neighbor of p, and let u be the leaf of T that contains q. We know that there is an index i, such that A_i = {p} and q ∈ B_i (or vise versa).
- Hence, there is an ancestor v or u, such that $B_i = S_v$
- Therefore, $p \in F(u)$, also since $S_u = q$, the distance between p and the smallest ball containing $R(S_u)$ is just |pq|, which is clearly less then or equal to the distance between p and any other point in F(u), this proves
- $p \in N(u)$

- Let p be the point of S, let q be the nearest neighbor of p, and let u be the leaf of T that contains q. We know that there is an index i, such that A_i = {p} and q ∈ B_i (or vise versa).
- Hence, there is an ancestor v or u, such that $B_i = S_v$
- Therefore, $p \in F(u)$, also since $S_u = q$, the distance between p and the smallest ball containing $R(S_u)$ is just |pq|, which is clearly less then or equal to the distance between p and any other point in F(u), this proves:
- $p \in N(u)$

- Let p be the point of S, let q be the nearest neighbor of p, and let u be the leaf of T that contains q. We know that there is an index i, such that $A_i = \{p\}$ and $q \in B_i$ (or vise versa).
- Hence, there is an ancestor v or u, such that $B_i = S_v$
- Therefore, $p \in F(u)$, also since $S_u = q$, the distance between p and the smallest ball containing $R(S_u)$ is just |pq|, which is clearly less then or equal to the distance between p and any other point in F(u), this proves:
- $p \in N(u)$

- Let p be the point of S, let q be the nearest neighbor of p, and let u be the leaf of T that contains q. We know that there is an index i, such that $A_i = \{p\}$ and $q \in B_i$ (or vise versa).
- Hence, there is an ancestor v or u, such that $B_i = S_v$
- Therefore, $p \in F(u)$, also since $S_u = q$, the distance between p and the smallest ball containing $R(S_u)$ is just |pq|, which is clearly less then or equal to the distance between p and any other point in F(u), this proves:
- $p \in N(u)$

Algorithm Runtime:O(nlogn)

Algorithm AllNearestNeighbors(S)

Comment: This algorithm takes as input a set S of n points in \mathbb{R}^d . It returns for each point in S its nearest neighbor.

Step 1: Choose a constant s > 2, and compute the split tree T and the corresponding WSPD for S, with respect to s, having size O(n). O(nlogn)

Step 2: Compute the sets N(u), for all nodes u of T. O(n)

Step 3: Compute a list L consisting of all pairs $\{p, q_u\}$ of points, where u ranges over all leaves of the split tree, q_u is the point of S stored at u, and p ranges over all points of N(u). O(n)

Step 4: For each $p \in S$, compute a point q_p such that $\{p, q_p\} \in L$ and $|pq_p|$ is minimum. O(n)

Step 5: Return the pairs $\{p, q_p\}$, where p ranges over all points of S.

Computing an approximate minimum spanning tree

Algorithm ApproxMST(S, t)

Comment: This algorithm takes as input a set S of n points in \mathbb{R}^d , and a real number t > 1. It returns a t-approximate minimum spanning tree of S.

Step 1: Compute the WSPD *t*-spanner *G* of Corollary 9.4.7.

Step 2: Using algorithm PRIM(G), see Section 2.6.2, compute a minimum spanning tree T of G.

Step 3: Return the tree T.