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Well-Separated Pairs

Let s > 0 be a real number and A,B are two finite sets of points in Rd .

A and B are well separated with respect to s if there are 2 disjoint
d-dimensional balls Ca and Cb such that:

Ca and Cb have the same radius

Ca contains the axes parallel bounding box R(A) of A
Cb contains the axes parallel bounding box R(B) of B
The distance between Ca and Cb is greater than or equal to s times the
radius of Ca
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Well-Separated Pairs
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WSPD

Let S be a set of n points in Rd , and let s > 0 be a real number. A WSPD
for S in respect to s is a sequence {A1,B1},{A2,B2},..., {Am,Bm} of pairs
of nonempty subsets of S , for some integer m such that:

For each 1 ≤ i ≤ m, Ai and Bi are well separated with respect to s

For any two distinct points p and q, there is exactly one index 1 ≤ i ≤ m
such that p ∈ Ai and q ∈ Bi or the opposite

The integer m is called the size of the WSPD
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Split Tree

1 R(S) is the bounding box of the set S

2 The split tree for S is a binary tree containing the points of S in its leaves

3 If S = 1, the node consists of the single point

4 Else, the node consists of S , and its 2 sons consist of 2 equal halves S1
S2.

5 The split tree is used to find WSPD
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Split Tree
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Main Idea of spanner construction

1 Let S be a set of n points in Rd

2 Compute a split tree T for S

3 Construct a WSPD from T

4 Choose the pairs representatives wisely

5 Connect the representatives

6 We get a t-spanner with special properties

8 / 56
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The first construction

1 Let S be a set of n points in Rd

2 Compute a split tree T for S

3 Construct a WSPD with s = 4(
√
t + 1)

(
√
t − 1)

4 size of WSPD: m = O(sdn)
5 Time complexity O(nlogn + sdn)
6 As (section 9.2), G = (S ,E) , where E ∶= {{ai ,bi} ∶ 1 ≤ i ≤ m}, is a√

t-spanner for S
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The first construction

1 For each leaf u in T, let r(u) be the point of S stored in it.

2 For each internal node u of T , let r(u) be the point of S that is stored in
the rightmost leaf of the left sub-tree of u.

3 Since every internal node of T has 2 children, r(u) is distinct for every
internal node.

4 in O(n) total time can compute r(u) for each node of T .
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6 Ai ,Bi are the set of points stored in the sub-trees of ui and vi .

7 We take r(ui)Ai to be its representative. We do the same for r(vi)Bi .
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Applications to other proximity problems

The first construction

In O(n) total time, we can compute, for each node u of T , the point
r(u), and store t with u.

r(a) = a
r(u) = a
r(v) = d

Inorder traversal of T :aubxcwgzeydvf
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The first construction

Lemma 10.1.1

Let p be a point of S . There are at most 2 nodes u in T for which r(u) = p

Proof.

Follows from the way we selected the representatives.
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The first construction

For each i ,1 ≤ i ≤ m, we direct the pair {Ai ,Bi}
as (lemma 9.4.4). We denote the directed graph as G ′

Lemma 10.1.2

The out degree of ofeach vertex in G ′ is less than or equal to
2((2s + 4)

√
d + 4)d

Proof.

Let p be an arbitrary vertex in G ‘. We have seen that there are at most 2
nodes u in T such that r(u) = p
As shown (lemma 9.4.5 the packing lemma), for each node u in T , there
are at most ((2s + 4)

√
d + 4)d nodes v in T such that (Su,Sv) is a pair in

WSPD.
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Spanner with logarithmic spanner diameter
Applications to other proximity problems

The first construction

Lemma 9.4.5

Let a be any node of the split tree T .There are at most ((2s + 4)
√
d + 4)d

nodes b in T such that (Sa,Sb) is a directed pair in the WSPD computed by
algorithm ComputeWSPD(T , s).

Time Complexity

WSPD construction: O(nlogn + sdn) (Theorem 9.4.6)

Representative selection: O(n)
Undirected t-spanner of bounded degree transformation: O(nlogn)
All in all : O(nlogn)
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Spanner with logarithmic spanner diameter
Applications to other proximity problems

The second construction

Lemma 10.1.4

Let θ, w , and t be real numbers such that 0 < θ < π/4, 0 ≤ w < (cos θ − sin θ)/2,
and t ≥ 1/(cos θ − sin θ − 2w). Let S be a set of n points in the Rd , and let
G = (S ,E) be a directed graph, such that the following holds: For any two
distinct points p and q of S , there is an edge (r , s) ∈ E , such that

1 angle (pq, xy) ≤ θ,
2 ∣xy ∣ ≤ ∣pq∣/ cos θ, and
3 ∣px ∣ ≤ w ∣xy ∣

Then, the graph G is a t-spanner for S .
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Spanner with logarithmic spanner diameter
Applications to other proximity problems

The second construction

Let S be a set of n points in Rd , and let t > 1 be a real number

0 < θ < π/4 and cos θ − sin θ > 1/t

s ∶= max( 4 cos θ

1 − cos θ
,

4

sin(θ/2)
,

4

cos θ − sin θ − 1/t
)

w = 2/s

Lemma 10.1.5

1 1 + 4/s ≤ 1/ cos θ
2 4/s ≤ sin(θ/2)
3 t ≥ 1/(cos θ − sin θ − 2w)
4 0 < w < (cos θ − sin θ)/2
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Applications to other proximity problems

The second construction

compute the split tree T together with the corresponding WSPD

For each node u of T , let Su be the set of all points of S that are stored
in the subtree of u.

For each i with 1 ≤ i ≤ m, let ui and vi be the nodes of T such that
Su i = Ai and Sv i = Bi .

choose the representatives ai ∈ Ai , bi ∈ Bi ,1 ≤ i ≤ m by picking the
rightmost leaf of the left subtree

Let G0 = (S ,E0) be the directed graph with edge set

E0 = {(ai ,bi) ∶ 1 ≤ i ≤ m} ∪ {(bi , ai) ∶ 1 ≤ i ≤ m}
We number the edges of E0 arbitrarily, from one to ∣E0∣
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The second conestruction

Let k = kd,θ/2
Let Ck be the θ

2
-frame consisting of k = O(1/θd−1) cones.

Ck is a collection of k simplicial cones of angular diameter θ
2
, having their

apex at the origin, and that cover Rd . For each cone C ∈ Ck , let

E0(C) = {(p,q) ∈ E0 ∶ q − p ∈ C}
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The second conestruction

For a fixed cone C ∈ Ck and a fixed point p ∈ S Consider all nodes u of the split
tree T such that:

1 u is on the path from the root to the leaf storing p
2 there is a node v in T , such that

{Su ,Sv} is a pair in our WSPD, and
if xu and yv are the representatives of Su and Sv , respectively, then edge
(xu , yv ) is contained in E0(C).

3 among all edges (xu, yv) obtained in this way, we mark the shortest one.
In case of ties, we mark the shortest edge whose index is minimum.

4 Let E be the set of all marked edges. the directed graph G = (S ,E) is a
t-spanner for S
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The second construction

Lemma 10.1.6

Let A and B be two finite sets of points in Rd that are well-separated with
respect to a separation ratio S > 0. Let p and x be two points in A , and let q
and y be two points in B. Then,

sin(angle(pq, xy)) ≤ 4/s
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The second construction

Proof.

If s ≤ 4, then the claim clearly holds. assume that s > 4.
Let α = angle(pq, xy). Let l be the ray emanating from x that is parallel
to pq.

sinα = ∣yy
′∣

∣xy ∣
≤ ∣yz ∣
∣xy ∣
≤ ∣yq∣ + ∣qz ∣

∣xy ∣
= ∣yq∣ + ∣px ∣

∣xy ∣
Since A and B are well-separated, Lemma 9.1.2:

∣yq∣ ≤ (2/s)∣xy ∣ and ∣pq∣ ≤ (2/s)∣xy ∣
This implies that sinα ≤ 4/s
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The second construction

Lemma 10.1.7

The graph G = (S ,E) is a t-spanner for S.

Proof.

We will show that the edges of E satisfy the condition of Lemma 10.1.4.
First observe that, by Lemma 10.1.5:

0 < w < (cos θ − sin θ)/2 and

t ≥ 1/(cos θ − sin θ − 2w)
Let p and q be any two distinct points of S, and let i be the integer such
that (i)p ∈ Ai and q ∈ Bi or (ii) p ∈ Bi and q ∈ Ai .

Assume (i) holds.

Consider the representatives ai and bi of Ai and Bi ,respectively.

Then sin(angle(pq, aibi)) ≤ 4/s ≤ sin θ/2 hence,

angle(pq, aibi) ≤ θ/2

22 / 56
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The second construction

Proof.

Let C be the cone of Ck such that (ai ,bi) ∈ E0(C)
Recall that ui is the node of the split tree T for which su = Ai . It is clear
that ui is on the path from the root to the leaf storing p.

Therefore, when we considered the cone C and the point p, (ai ,bi) was
one of the edges that satisfied conditions 1. and 2. above.

Let (x , y) be the edges of E0(C) that was marked when we considered C
and p.

Then (x , y) is an edges of E, and ∣xy ∣ ≤ ∣aibi ∣
angle(pq, xy) ≤ angle(pq, aibi) + angle(aibi , xy) ≤ θ/2 + θ/2 = θ
Since Ai and Bi are well-separated , ∣aibi ∣ ≤ (1 + 4/s)∣pq∣
∣aibi ∣ ≤ ∣pq∣/ cos θ
in particular ∣xy ∣ ≤ ∣pq∣/ cos θ
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The second construction

Proof.

Finally, let j be the integer such that (i) x ∈ Ai and y ∈ Bi ,or (ii) y ∈ Ai

and x ∈ Bi

Assume (i) holds.

When we considered the cone C and the point p, we marked (x , y)
Therefore, uj is on the path in T from the root to the leaf storing p and,
hence, p ∈ Ai .

Since Aj and Bj are well-separated ∣pq∣ ≤ (2/S)∣xy ∣ = w ∣xy ∣
Since all the premises of Lemma 10.1.4 are satisfied, we have proved that
G is a t-spanner.
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The second construction

Lemma 10.1.8

The out degree of each vertex of the graph G = (S ,E) is less than or equal to
2∣Ck ∣ = O(1/θd−1)

Proof.

Let x be a point of S , and let C be a cone of Ck . Clearly, it is sufficient
to show that, in G , x is the source of at most two edges in cone C .

Assume that the edge set E contains three pairwise distinct edges
(x , y),(x , y ′) and (x , y”) that are all contained in E0(C) We may assume
without loss of generality that ∣xy ∣ ≤ ∣xy ′∣ ≤ ∣xy”∣
Moreover, in case ∣xy ∣ = ∣xy ′∣ , we may assume without loss of generality
that (x , y) has a lower index than (x , y ′). similarly in case ∣xy ′∣ = ∣xy”∣ we
may assume without loss of generality that (x , y ′) has a lower index than
(x , y”)
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The second construction

Proof.

Let p be ∈ S , such that marked edge (x , y) when considered the cone C
and the point p. Consider nodes u and v of T such that (xu, yv) = (x , y)
u is on the path from the root to the leaf storing p. Define the point p of
S, and the nodes u and v of T similarly with respect to the edge
(x,y).Assume that u = u′. Then u is on the path from the root to the leaf
storing p . Since ∣xy ∣ ≤ ∣xy ∣, could not have marked edge (x, y) when
considered C and p,which is a contradiction. Therefore, u′ ≠ u. By
symmetric arguments, it follows that u′ ≠ u” and u” ≠ u. Hence the set

{ui ∈ T ∶ 1 ≤ i ≤ m, ai = x} ∪ {vi ∈ T ∶ 1 ≤ i ≤ m,bi = x}
contains at least three nodes. This contradicts Lemma 10.1.1
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The second construction

assume that each edge (x , y) ∈ E0(C) has a pointer to the node ui (or vi )
of the split tree T such that x is the representative of Ai (or Bi )

computing the edges of E

compute the subsets E0(C), C ∈ C
for each cone C of C separately do:

Following these pointers, and store with each node eu of T , a list Lu

containing all edges (x , y) ∈ E0(C) such that x is the representative of Su,
for some pair {Su,Sv} in our WSPD.

By considering all nodes u of T , compute the shortest edge, which denote
by eu,in the list Lu

compute for each node u the shortest edge among all edges ev ,where v
ranges over the ancestors of u. Denote this shortest edge by eu

′

27 / 56
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The second construction

Running Time

1 O(nlogn +m), where m = O(sdn). the time for computing the split tree
and the WSPD

2 O(n +m) = O(m). the time for computing the graph G0 = (S ,E0)
3 O(1/θd−1 +mlog(1/θ)). the time for computing the subsets E0(C),C ∈ C .

4 O(n/θd−1 +m). the time for computing the set E of marked edges

28 / 56
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Construction of Spanner with logarithmic diameter

Let S be a set of n points in Rd

Compute a split tree T for S

Construct a WSPD with s = 4(t + 1)/(t − 1)
G = (S ,E) where E = {{ai ,bi}} ∶ 1 ≤ i ≤ m}, is a t-spanner for S (section
9.2)

We will choose ai , bi from Ai , Bi wisely, using the split tree T .

Let u be any internal node of T

Let ul and ur be u left and right sons

Let el and er be the edges that connect u to ul and ur respectively

29 / 56
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G = (S ,E) where E = {{ai ,bi}} ∶ 1 ≤ i ≤ m}, is a t-spanner for S (section
9.2)

We will choose ai , bi from Ai , Bi wisely, using the split tree T .

Let u be any internal node of T

Let ul and ur be u left and right sons

Let el and er be the edges that connect u to ul and ur respectively
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Construction of Spanner with logarithmic diameter

Let nl and nr be number of leaves in the sub-trees rooted by nl and nr
respectively.

If nl ≥ nr , we label el as heavy, and er as light.

If nl < nr , we label er as heavy, and el as light.

Each internal node is connected by exactly one heavy edge to one of its
children.

Each internal node has a unique chain of heavy edges down to the bottom
of T .

Let l(u) be the leaf whose chain contains u.

Let r(u) be the point of S stored in l(u).
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Applications to other proximity problems

Construction of Spanner with logarithmic diameter

Let i be 1 ≤ i ≤ m, the pair Ai , Bi is represented implicitly by 2 nodes of
T , ui and vi , respectively.

Ai ,Bi are the set of points stored in the sub-trees of ui and vi

We take r(ui) ∈ Ai to be its representative. We do the same for r(vi) ∈ Bi .

Now G = (S ,E) is a t-spanner. We need to prove its diameter is
logarithmic.

Lemma 10.2.1

For each i ,1 ≤ i ≤ m, and for each point p ∈ Ai there is a t-spanner path in G
between p and the representative ai of Ai , that contains at most log ∣Ai ∣ edges.
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Applications to other proximity problems

Construction of Spanner with logarithmic diameter

Proof.

From construction, there is a t-spanner path between p and ai (Section
9.2).

If p = ai , we are done. Assume otherwise.Let j be the index such that

(i) p ∈ Aj and ai ∈ Bj Or (ii) ai ∈ Aj and p ∈ Bj .

Recursively construct a path Q1 between p and its representative aj

Recursively construct a path Q2 between ai and its representative bj

Return Q = Q1,{aj ,bj},Q2.

We will show that ∣Q ∣ ≤ log ∣Ai ∣ , (p ∈ Ai). Induction on the size of set Ai .

Base: Ai = {ai}Ð→ p = ai Ð→ we are done.

Let i be an index such that ∣Ai ∣ > 1,p ≠ ai
Assume, for all k such that ∣Ak ∣ < ∣Ai ∣ , and for all x ∈ Ak , the algorithm
constructs a t-spanner path between x and ak with at most log ∣Ak ∣ edges.
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Spanner with logarithmic spanner diameter
Applications to other proximity problems
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Spanner with logarithmic spanner diameter
Applications to other proximity problems

Construction of Spanner with logarithmic diameter

Proof.

Let ui , uj , vj be the nodes of T whose sub-trees store the sets Ai , Aj , Bj

respectively.

ui is a common ancestor of the leaves storing p and ai .

uj lies on the path from root to the leaf of p.

Vj lies on the path from root to the leaf of ai

Aj ,Bj are disjoint Ð→ uj , vj are both in the sub-tree of ui , and neither is
an ancestor of the other
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Construction of Spanner with logarithmic diameter

Proof.

∣Aj ∣ ≤ ∣Ai ∣/2. Otherwise all the edges between ui and uj would be heavy.

But then, the representative of Ai would be an element of Aj , but its not
(ai ∈ Bj represents Ai ).

By induction hypothesis, the path Q1 between p and aj contains at most
log ∣Aj ∣ edge, which is

≤ log ∣Ai ∣ − 1 We add {aj ,bj} and get that ∣Q ∣ ≤ log ∣Ai ∣
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Construction of Spanner with logarithmic diameter

Lemma 10.2.2

G is a t-spanner for S , whose diameter is less than equal to 2logn − 1

Proof.

Let p and q be 2 distinct points in G . We will show that there is a
t-spanner path between them with at most 2logn1 edges

Let j be the index such that:
(i) p ∈ Aj and q ∈ Bj . Or (ii) q ∈ Aj and p ∈ Bj .

Recursively construct a path Q1 between p and its representative aj .

Recursively construct a path Q2 between ai and its representative bj .

Return Q = Q1 , {aj ,bj} , Q2.

We proved that ∣Q1∣ ≤ log ∣Aj ∣.
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Spanner with logarithmic spanner diameter
Applications to other proximity problems

Construction of Spanner with logarithmic diameter

Proof.

Similarly, ∣Q2∣ ≤ log ∣Bj ∣
Hence, ∣Q ∣ ≤ log ∣Aj ∣ + log ∣Bj ∣ + 1.
Aj ,Bj are disjoint Ð→ ∣Aj ∣ + ∣Bj ∣ ≤ n
log ∣Aj ∣ + log ∣Bj ∣ ≤ log ∣Aj ∣ + log ∣n −Aj ∣ ≤ 2log(n/2) = 2logn − 2
Hence, Q contains at most 2logn − 1 edges

Time complexity

1 WSPD construction: O(nlogn + sdn) (Theorem 9.4.6).

2 Representative selection: O(m) .
3 All in all : O(nlogn).
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Spanner with logarithmic spanner diameter
Applications to other proximity problems

The Closest Pair Problem

its possible to compute a WSPD t-spanner of O(n) edges in O(nLogn)
time.(corollary 9.4.7)

In a t-spanner where 1 ≤ t ≤ 2 the smallest edge in the graph is always
present in the t-spanner.

By creating a t-spanner of t = 2, we know one of its edges is the smallest
in the graph, and we can scan all its edges in O(n)
find the closest pair in O(nLogn) +O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in Rd ,algorithm ClosestPair(S) computes a closest
pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points
in Rd and a real number s > 2, computes a WSPD for S with separation ratio
s, has a worst-case running time of O(nlogn).
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In a t-spanner where 1 ≤ t ≤ 2 the smallest edge in the graph is always
present in the t-spanner.

By creating a t-spanner of t = 2, we know one of its edges is the smallest
in the graph, and we can scan all its edges in O(n)
find the closest pair in O(nLogn) +O(n) = O(nLogn)

Theorem 10.3.1

Given a set S of n points in Rd ,algorithm ClosestPair(S) computes a closest
pair in S in O(nlogn) time.

Theorem 10.3.2

Any algebraic computation-tree algorithm that, when given a set S of n points
in Rd and a real number s > 2, computes a WSPD for S with separation ratio
s, has a worst-case running time of O(nlogn).
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Spanner with logarithmic spanner diameter
Applications to other proximity problems

Computing K Closest Pair Problem

Let S be a set of n points in Rd

Let k be an integer such that 1 ≤ k ≤
A sequence of {pi ,qi},1 ≤ i ≤ k, where pi ≠ qi and pi and qi ıS is called a
sequence of k closest pair if the distance of ∣piqi ∣, 1 ≤ i ≤ k are the
smallest k edges in S .

Reminder: in WSPD where X ∈ Rd , R(X) is the smallest binding box of
all the points in X .

Let s > 0 be a real number, consider the split tree T , and the
corresponding WSPD:{A1,B1},{A2,B2},...,{Am,Bm}
Where m = O(sdn)
We shall mark the minimum distance between R(Ai) and R(Bi) as
∣R(Ai)R(Bi)∣, and lets assume with out the loss of generality
that:∣R(A1)R(B1)∣ ≤ ∣R(A2)R(B2)∣ ≤ ... ≤ ∣R(Am)R(Bm)∣
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Algorithm
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K Closest Pairs Correctness

Lemma 10.3.3

Let p, q be two distinct points in S , and let j be the index such that p ∈ Aj and
q ∈ Bj or q ∈ Aj and p ∈ Bj if j > l ′ the {p,q} is not one of the k closest pairs of
the set S .

Proof.

For any index i ,1 ≤ i ≤ m Let xi ∈ R(Ai) and yi ∈ R(Bi) such that
∣xiyi ∣ = ∣R(Ai)R(Bi)∣ (in general xi ,yi not points of s)

Let l be any index such that 1 ≤ i ≤ l , let a be any point of Ai , and let b
any point of Bi .

40 / 56
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Proof.

∣ab∣ ≤ (1 + 4/s)∣R(Ai)R(Bi)∣ ≤ (1 + 4/s)∣R(Al)R(Bl)∣ = (1 + 4/s)r
By step 1 of the algo.The pairs {Ai ,Bi} 1 ≤ i ≤ l satisfy: (∑ ∣Ai ∣∣Bi ∣) ≥ k
And thus determine at least k distances, all which are less than or equal to
(1 + 4/s)r
On the other hand, since, we have:j > l ′

∣pq∣ ≥ ∣R(Aj)R(Bj)∣ ≥ (1 + 4/s)r
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K Closest Pairs - runtime

Step 1: because of the usage of the split tree, by traversing it in post order,
we can compute the number of leaves for each node and can compare for
each 1 ≤ i ≤ m the value of ∣Ai ∣∣Bi ∣, in O(m), hence Step 1 takes O(m)
Step 2: each node of the split tree stores the bounding box of the points
in the subtree, there for l ′ can be computed in O(m). Given l ′, L can be
computed in:O(∑ ∣Ai ∣∣Bi ∣)
Step 3: because k is a constant, we can find the k‘th smallest distance in
linear time, than we can select all the pairs, which distance is smaller then
or equal to the kth

Conclusion:
O(m) +O(∑ ∣Ai ∣∣Bi ∣) = O(m +∑ ∣Ai ∣∣Bi ∣)
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Step 2: each node of the split tree stores the bounding box of the points
in the subtree, there for l ′ can be computed in O(m). Given l ′, L can be
computed in:O(∑ ∣Ai ∣∣Bi ∣)
Step 3: because k is a constant, we can find the k‘th smallest distance in
linear time, than we can select all the pairs, which distance is smaller then
or equal to the kth

Conclusion:
O(m) +O(∑ ∣Ai ∣∣Bi ∣) = O(m +∑ ∣Ai ∣∣Bi ∣)
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K Closest Pairs - runtime

Lemma 10.3.4

Let δ be the k-th smallest distance in the set S and let r = ∣Al ∣∣Bl ∣ be the value
computed in Step 2, then r ≤ δ

Proof.

Lets assume r > δ , so for any i ≥ l

∣pq∣ ≥ ∣R(Ai)R(Bi)∣ ≥ ∣R(Al)R(Bl)∣ = r > δ

Contradicts the build of Step 1 (to choose the min l value).
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K Closest Pairs - runtime

Lemma 10.3.5

Let v be the kth smallest distance in S , and let {p,q} be any pair of points
that is contained in L, then:∣pq∣ ≤ (1 + 4/s)2v

Proof.

∣pq∣ ≤ (1 + 4/s)∣xiyi ∣
∣R(Ai)R(Bi)∣ ≤ (1 + 4/s)r
∣pq∣ ≤ (1 + 4/s)∣xiyi ∣ = (1 + 4/s)∣R(Ai)R(Bi)∣ ≤ (1 + 4/s)2r ≤ (1 + 4/s)2v
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K Closest Pairs - runtime

Let M denote the number of distances that are less then or equal to
(1 + 4/s)2v . Then the total running time of the algorithm is O(n +M).
Full running time:

WSPD for S of size m = O(n) can be calculated in O(nLogn)
The algo. Runs at O(m +M)
O(nLogn) +O(n + n + 2k) = O(nLogn + k)
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All-nearest neighbors

In this problem with are given the set S , and want to compute the nearest
neighbor for each point in S .

In this analysis we will use a generalization of the fact that any point can
be the nearest neighbor of at most a constant number of other points.
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All-nearest neighbors

Lemma 10.3.7

Let B be a finite set of points.Let CB be the smallest ball that contains the
bounding box R(B) of B. Let c be the center of CB .Let s > 1 be a real
number. Let p,q be 2 distinct points in Rd such that both {p} and B, and {q}
and B are well-seperated with respect to s. Assume that ∣pCB ∣ ≤ ∣pq∣ and
∣qCB ∣ ≤ ∣pq∣. Let α = angle(cp, cq). Then we have α ≥ (s − 1)/s
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All-nearest neighbors

Proof.

If α ≥ 1 then obviously (s − 1)/s ≤ 1
If α < 1, Let r be the radius of CB

Let x = ∣pc ∣ and y = ∣qc ∣, lets assumed without loss of generality that x ≥ y .
Let q′ be point on the line ∣cp∣, such that ∣q′c ∣ = ∣qc ∣
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All-nearest neighbors

Proof.

By using Triangle inequality we
recieve:∣pq∣ ≤ ∣pq′∣ + ∣q′q∣ ≤ (x − y) + αy = x − (1 − α)y ∗
Since {q} and B are well separated, lets draw 2 balls, C1(around Q), and
C2 (around R(B)) with radius v , there for ∣C1C2∣ ≥ sv . Since CB is the
smallest ball of B, v ≥ r , then we can conclude:

y = ∣qc ∣ ≥ ∣C1C2∣ ≥ sv ≥ sr ∗∗

49 / 56



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reminders
Spanners of bounded degree

Spanner with logarithmic spanner diameter
Applications to other proximity problems

All-nearest neighbors

Proof.

By using ∗ , ∗∗ and the fact that α < 1 we get:
∣pq∣ ≤ x − (1 − α)y ≤ x − (1 − α)sr(∗ ∗ ∗)
Using the same method as ∗ we claim: x = ∣pc ∣ ≥ sr
Since s > 1, then p is out of the ball CB , x = ∣pc ∣ = ∣pCB ∣ + r ≤ ∣pq∣ + r
Combined with ∗ ∗ ∗ we receive: ∣pq∣ ≤ (∣pq∣ + r) − (1 − α)sr
Which is in fact: α ≥ (s − 1)/s
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All-nearest neighbors

Lemma 10.3.8

Let A and B be to finite sets of points, let CB be the smallest ball to contain
R(B), let s > 1 be a real number. ∀p ∈ A the sets {p} and B are well
seperated with respect to s.Assume ∣pCB ∣ ≤ ∣pq∣ for any p,q that belong to
A.Then the set A contains O((s/(s − 1))d) elements.

Proof.

Using Lemma 10.3.7, we know that: angle(cp, cq) ≥ (s − 1)/s
Using this equation and a theorem which bounds the size of any set of
points for which the minimum angle is at least some given real number we
prove that A contains: O((s/(s − 1))d) elements
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All-nearest neighbors

For any node u in the split tree T , Su denotes the set of all points of S
that are stored in the subtree of u

We define F(u) to be the set of all points p ∈ S such that the pair
{{p},Su} is contained in some ancesstor of u.

We define N(u) to be the set of all points p ∈ F(u) such that, the
distance from p to the smallest ball containing R(Su) is less than or equal
to the smallest distance between p and any other point of F(u)
Obeserve:N(u) ⊆ F(u)
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All-nearest neighbors

Lemma 10.3.9

For any node u of T , the size of N(u) is O((s/(s − 1))d)

Proof.

Let A = N(u) and B = Su

We will show that those two sets satisfy the conditions of lemma 10.3.8.

Let p ∈ A, then p ∈ F(u) hence, there is an ancestor v of u, such that {p}
and Sv are well separated. Since Su is a subset of Sv the sets {p} and
Su = B are well separated as well.

Let p and q be two distinct points of A. Then by the definition of N(u),
the distance between p and CB is less then or equal to the smallest
distance between p and any other point of F(u). In particular since
q ∈ F(u), we have ∣pCB ∣ ≤ ∣pq∣.
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All-nearest neighbors
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All-nearest neighbors

Let p be the point of S , let q be the nearest neighbor of p, and let u be
the leaf of T that contains q. We know that there is an index i , such that
Ai = {p} and q ∈ Bi (or vise versa).

Hence, there is an ancestor v or u, such that Bi = Sv

Therefore,p ∈ F(u), also since Su = q, the distance between p and the
smallest ball containing R(Su) is just ∣pq∣, which is clearly less then or
equal to the distance between p and any other point in F(u), this proves:
p ∈ N(u)
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Algorithm Runtime:O(nlogn)
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Computing an approximate minimum spanning tree
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