

M. Farshi

Lab. of Combinatorial and Geometric Algorithms,
Department of Computer Science,
Yazd University

February 2015

7th Winter School on Computational Geometry

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Extension to Other Metrics

< A →

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

The Split Tree Computing WSPD

SSPD

- Introduction
- Definition of the Well-Separated Pair Decomposition
- Omputing the Well-Separated Pair Decomposition
- The split tree
- Extension to Other Metrics

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

- Introduction
- Definition of the Well-Separated Pair Decomposition
- Computing the Well-Separated Pair Decomposition
- The split tree
- Extension to Other Metrics

- المنابع المناب
- The Well-Separated Pair Decomposition
 - M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

The Split Tree Computing WSPD

SSPD

- Introduction
- Definition of the Well-Separated Pair Decomposition
- Omputing the Well-Separated Pair Decomposition
- The split tree
- Extension to Other Metrics

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SPD

- Introduction
- Definition of the Well-Separated Pair Decomposition
- Omputing the Well-Separated Pair Decomposition
- The split tree
- Extension to Other Metrics

- The Well-Separated Pair Decomposition
 - M. Farshi
- Definition of WSPD
- Compute WSPD
- The Split Tree
 Computing WSPD
 - SSPD

- Introduction
- Definition of the Well-Separated Pair Decomposition
- Omputing the Well-Separated Pair Decomposition
- The split tree
- Extension to Other Metrics

Motivation

- $P = \mathsf{set} \ \mathsf{of} \ n \ \mathsf{points} \ \mathsf{in} \ \mathbb{R}^d.$
- $D = \{ |pq| | |p, q \in P \}.$
- |D| = ?
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $\bullet |\{A_i\}_i| = |D| \in \Theta(n^2)$
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer:

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Motivation

- $P = \text{set of } n \text{ points in } \mathbb{R}^d$.
- $D = \{|pq| | |p, q \in P\}.$
- |D| = ?
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer:

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Motivation

- $P = \text{set of } n \text{ points in } \mathbb{R}^d$.
- $D = \{|pq| | |p, q \in P\}.$
- |D| = ?
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$
- What if A_i = pairs with almost same distance' Is there a decomposition with size $o(n^2)$?
- Answer:

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Motivation

- $P = \mathsf{set} \ \mathsf{of} \ n \ \mathsf{points} \ \mathsf{in} \ \mathbb{R}^d.$
- $D = \{|pq| | |p, q \in P\}.$
- \bullet |D| = ? $\Theta(n^2)$
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \bigcup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$.
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer:

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Motivation

- $P = \mathsf{set} \mathsf{ of } n \mathsf{ points in } \mathbb{R}^d.$
- $D = \{|pq| | |p, q \in P\}.$
- |D| = ? $\Theta(n^2)$
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$.
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer:

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

```
□ □ □ □ □ □□ □ □ □ □ □□ □ □ □ □
```

Motivation

- $P = \mathsf{set} \mathsf{ of } n \mathsf{ points in } \mathbb{R}^d.$
- $D = \{|pq| | |p, q \in P\}.$
- \bullet |D| = ? $\Theta(n^2)$
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$.
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer:

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Extension to Other

Motivation

- $P = \mathsf{set} \ \mathsf{of} \ n \ \mathsf{points} \ \mathsf{in} \ \mathbb{R}^d$.
- $D = \{|pq| | |p, q \in P\}.$
- \bullet |D| = ? $\Theta(n^2)$
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$.
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer:

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

Motivation

- $P = \mathsf{set} \mathsf{ of } n \mathsf{ points in } \mathbb{R}^d.$
- $D = \{|pq| | |p, q \in P\}.$
- \bullet |D| = ? $\Theta(n^2)$
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$.
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer:

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree Computing WSPD

SSPD

Motivation

- $P = \mathsf{set} \mathsf{ of } n \mathsf{ points in } \mathbb{R}^d.$
- $D = \{|pq| | |p, q \in P\}.$
- |D| = ? $\Theta(n^2)$
- Decomposition of $P \times P = \{A_i\}_i$ s.t. $P \times P = \cup_i A_i$, $A_i = \text{pairs with same distance}.$
- $|\{A_i\}_i| = |D| \in \Theta(n^2)$.
- What if A_i = pairs with almost same distance? Is there a decomposition with size $o(n^2)$?
- Answer: YES! Size $\mathcal{O}(n)$ exists! Use Well-Separated Pair Decomposition.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

بني الشاري

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

cepn

Extension to Other Metrics

Well-Separated Pair Decomposition:

- WSPD: introduced by Callahan and Kosaraju in 1995.
- It applications: To solve a large variety of proximity problems

Paul B. Callahan

S.Rao Kosaraju

Well-Separated Pair

Well-Separated Pair

 $A, B \subset \mathbb{R}^d$ are s-well-separated pair (s > 0 constant), if \exists disjoint balls, D_A and D_B such that

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Well-Separated Pair

Well-Separated Pair:

 $A,B\subset\mathbb{R}^d$ are s-well-separated pair (s>0 constant), if \exists disjoint balls, D_A and D_B such that

- •
- •

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

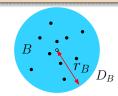
Well-Separated Pair

Well-Separated Pair:

 $A,B\subset\mathbb{R}^d$ are s-well-separated pair (s>0 constant), if \exists disjoint balls, D_A and D_B such that

• $A \subseteq D_A$ and $B \subseteq D_B$.

0



The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Well-Separated Pair

Well-Separated Pair:

 $A, B \subset \mathbb{R}^d$ are s-well-separated pair (s > 0 constant), if \exists disjoint balls, D_A and D_B such that

- $A \subseteq D_A$ and $B \subseteq D_B$.
- $\mathbf{d}(D_A, D_B) \ge s \times \max(\mathrm{radius}(D_A), \mathrm{radius}(D_B)).$

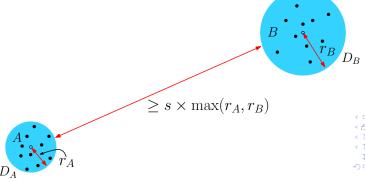
The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

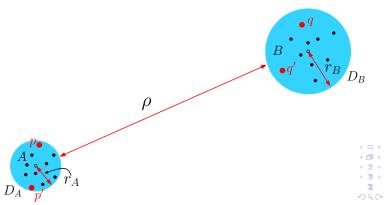
Extension to Other



Property of Well-Separated Pairs

If (A, B) is a s-well-separated, $p, p' \in A$, $q, q' \in B$, then

- $|pp'| \le (2/s)|pq|$
- $|p'q'| \le (1 + 4/s)|pq|$



The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

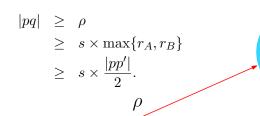
Compute WSPD
The Split Tree
Computing WSPD

SSPD

Property of Well-Separated Pairs

If (A, B) is a s-well-separated, $p, p' \in A$, $q, q' \in B$, then

- $|pp'| \le (2/s)|pq|$
- $|p'q'| \le (1+4/s)|pq|$



The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Property of Well-Separated Pairs

If (A, B) is a s-well-separated, $p, p' \in A$, $q, q' \in B$, then

- $|pp'| \le (2/s)|pq|$
- $|p'q'| \le (1 + 4/s)|pq|$

$$|p'q'| \leq |p'p| + |pq| + |qq'|$$

$$\leq \frac{2}{s}|pq| + |pq| + \frac{2}{s}|pq|$$

$$\leq (1 + \frac{4}{s})|pq|.$$

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

Property of Well-Separated Pairs

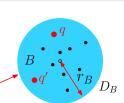
If (A, B) is a s-well-separated, $p, p' \in A$, $q, q' \in B$, then

- $|pp'| \le (2/s)|pq|$
- $|p'q'| \le (1 + 4/s)|pq|$

$$|p'q'| \leq |p'p| + |pq| + |qq'|$$

$$\leq \frac{2}{s}|pq| + |pq| + \frac{2}{s}|pq|$$

$$\leq (1 + \frac{4}{s})|pq|.$$



The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree Computing WSPD

SSPD

$$s = 4/\varepsilon \Rightarrow |p'q'| \le (1+\varepsilon)|pq|.$$

Well-Separated Pair Decomposition

Well-Separated Pair Decomposition:

Let $P \subset \mathbb{R}^d$ and s>0. A WSPD for P w.r.t. s is a set $\{(A_i,B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V s. t.

- $\forall i, A_i$ and B_i are s-well-separated pair,
- $\forall p, q \in V$, there is exactly one index i s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$

More precisely:
$$P \times P = \bigcup_{i=1}^{m} (A_i \times B_i)$$

m: Size of WSPD.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Well-Separated Pair Decomposition

Well-Separated Pair Decomposition:

Let $P \subset \mathbb{R}^d$ and s > 0. A WSPD for P w.r.t. s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V s. t.

- $\forall i, A_i$ and B_i are s-well-separated pair,
- $\forall p, q \in V$, there is exactly one index i s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.

More precisely:
$$P \times P = \bigcup_{i=1}^{m} (A_i \times B_i)$$

m: Size of WSPD.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Well-Separated Pair Decomposition

Well-Separated Pair Decomposition:

Let $P \subset \mathbb{R}^d$ and s > 0. A WSPD for P w.r.t. s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V s. t.

- $\forall i, A_i$ and B_i are s-well-separated pair,
- $\forall p, q \in V$, there is exactly one index i s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.

More precisely:
$$P \times P = \bigcup_{i=1}^{m} (A_i \times B_i)$$

m: Size of WSPD.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SPD

Well-Separated Pair Decomposition

Well-Separated Pair Decomposition:

Let $P \subset \mathbb{R}^d$ and s > 0. A WSPD for P w.r.t. s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of V s. t.

- $\forall i, A_i$ and B_i are s-well-separated pair,
- $\forall p, q \in V$, there is exactly one index i s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.

More precisely:
$$P \times P = \bigcup_{i=1}^{m} (A_i \times B_i)$$

 $m: \mathsf{Size} \ \mathsf{of} \ \mathsf{WSPD}.$

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

WSPD exists?

Does a WSPD exist for any set *P*?

Answer

Yes. We can consider WSPD for P as follows

 $\{\{p_i\},\{q_i\}\}$ \forall distinct points p_i and q_i of P

Size: $\mathcal{O}(n^2)$.

WSPD of size $\mathcal{O}(n)$?

(Callahan & Kosaraju (1995))

For any set of n points, we can construct a WSPD of size $\mathcal{O}(s^d \cdot n)$ in $\mathcal{O}(n \log n)$ time using $\mathcal{O}(s^d \cdot n)$ space.

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

WSPD exists?

Does a WSPD exist for any set P?

Answer

Yes. We can consider WSPD for P as follows

 $\{\{p_i\},\{q_i\}\}$ \forall distinct points p_i and q_i of P

Size: $\mathcal{O}(n^2)$.

WSPD of size $\mathcal{O}(n)$?

(Callahan & Kosaraju (1995))

For any set of n points, we can construct a WSPD of size $\mathcal{O}(s^d \cdot n)$ in $\mathcal{O}(n \log n)$ time using $\mathcal{O}(s^d \cdot n)$ space.

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

Computing wa

SSPD

WSPD exists?

Does a WSPD exist for any set P?

Answer

Yes. We can consider WSPD for P as follows

 $\{\{p_i\},\{q_i\}\}$ \forall distinct points p_i and q_i of P

Size: $\mathcal{O}(n^2)$.

WSPD of size $\mathcal{O}(n)$?

(Callahan & Kosaraju (1995))

For any set of n points, we can construct a WSPD of size $\mathcal{O}(s^d \cdot n)$ in $\mathcal{O}(n \log n)$ time using $\mathcal{O}(s^d \cdot n)$ space.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

How to compute WSPD?

Question

How can we find a WSPD of size $\mathcal{O}(n)$ for a set of n points with respect to s > 0?

The stages of the algorithms

- Construct a tree (split tree or compressed quad tree).
- 2 Construct the WSPD using the tree.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree Computing WSPD

SSPD

How to compute WSPD?

Question

How can we find a WSPD of size $\mathcal{O}(n)$ for a set of n points with respect to s>0?

The stages of the algorithms

- Construct a tree (split tree or compressed quad tree).
- Construct the WSPD using the tree.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree Computing WSPD

SSPD

Extension to Other

The Split Tree

The Well-Separated Pair Decomposition

M. Farshi

Compute WSPD The Split Tree

Extension to Other Metrics

Main idea:

- Compute bounding box of the points.
- Split the longest edge of the bounding box.
- Recurse on each part (left and right child) if it contains more than 1 point.

The Split Tree

An Example of the Split Tree

The Well-Separated Pair Decomposition

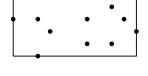
M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree

Extension to Other



Metrics

4 🗇 → < ≣ → < ≣ → ŧ

u

The Split Tree

An Example of the Split Tree

The Well-Separated Pair Decomposition

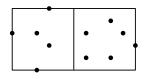
M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD



An Example of the Split Tree

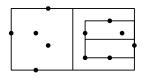
The Well-Separated Pair Decomposition

M. Farshi

Compute WSPD

The Split Tree
Computing WSPD

SSPD



An Example of the Split Tree

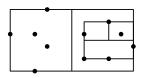
The Well-Separated Pair Decomposition

M. Farshi

Compute WSPD

The Split Tree
Computing WSPD

SSPD



An Example of the Split Tree

The Well-Separated Pair Decomposition

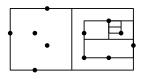
M. Farshi

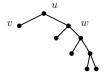
Compute WSPD

The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics





An Example of the Split Tree

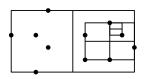
The Well-Separated Pair Decomposition

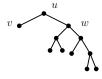
M. Farshi

Compute WSPD

The Split Tree Computing WSPD

SSPD





An Example of the Split Tree

The Well-Separated Pair Decomposition

M. Farshi

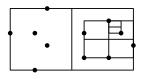
Definition of WSPD

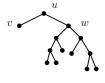
Compute WSPD

The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics





An Example of the Split Tree

The Well-Separated Pair Decomposition

M. Farshi

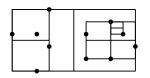
Definition of WSPD

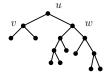
Compute WSPD

The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics





An Example of the Split Tree

The Well-Separated Pair Decomposition

M. Farshi

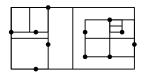
Definition of WSPD

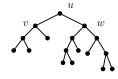
Compute WSPD
The Split Tree

The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics





An Example of the Split Tree

The Well-Separated Pair Decomposition

M. Farshi

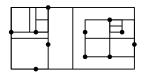
Definition of WSPD

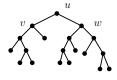
Compute WSPD
The Split Tree

Computing WSPD

SSPD

Extension to Other Metrics





An Example of the Split Tree

The Well-Separated Pair Decomposition

M. Farshi

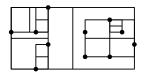
Definition of WSPD

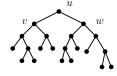
Compute WSPD
The Split Tree

The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics





Algorithm

```
Algorithm SPLITTREE(P, R)
    if |P| = 1
2.
      then create a new node u:
3.
            R(u) := R(P);
4.
            R_0(u) := R;
5.
            store R(u) and R_0(u) with u;
6.
            return node u:
7.
      else compute the bounding box R(P) of P;
8.
            split R into two hyperrectangles R_1 and R_2;
9.
            P_1 := P \cap R_1:
10.
            P_2 := P \setminus P_1;
11.
            v := \mathsf{SPLITTREE}(P_1, R_1);
12.
            w := \mathsf{SPLITTREE}(P_2, R_2);
13.
            create a new node u:
14.
            R(u) := R(P);
15.
            R_0(u) := R;
16.
            store R(u) and R_0(u) with u, with children v and w;
17.
            return node u;
```


The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of VSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics

< A →

Algorithm

```
Algorithm SPLITTREE(P, R)
    if |P| = 1
2.
      then create a new node u:
3.
            R(u) := R(P);
4.
            R_0(u) := R;
5.
            store R(u) and R_0(u) with u;
6.
            return node u:
7.
      else compute the bounding box R(P) of P;
8.
            split R into two hyperrectangles R_1 and R_2;
9.
            P_1 := P \cap R_1:
10.
            P_2 := P \setminus P_1;
11.
            v := \mathsf{SPLITTREE}(P_1, R_1);
12.
            w := \mathsf{SPLITTREE}(P_2, R_2);
13.
            create a new node u:
14.
            R(u) := R(P);
15.
            R_0(u) := R;
16.
            store R(u) and R_0(u) with u, with children v and w;
17.
            return node u;
Time Complexity: \Theta(n^2) Since the height of tree can be \Theta(n).
```


The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree Computing WSPD

SSPD

Algorithm

```
Algorithm SPLITTREE(P, R)
    if |P| = 1
2.
      then create a new node u:
3.
            R(u) := R(P);
4.
            R_0(u) := R;
5.
            store R(u) and R_0(u) with u;
6.
            return node u:
7.
      else compute the bounding box R(P) of P;
8.
            split R into two hyperrectangles R_1 and R_2;
9.
            P_1 := P \cap R_1:
10.
            P_2 := P \setminus P_1;
11.
            v := \mathsf{SPLITTREE}(P_1, R_1);
12.
            w := \mathsf{SPLITTREE}(P_2, R_2);
13.
            create a new node u:
14.
            R(u) := R(P);
15.
            R_0(u) := R;
16.
            store R(u) and R_0(u) with u, with children v and w;
17.
            return node u:
Time Complexity: \Theta(n^2) Since the height of tree can be \Theta(n).
```

المناع ال

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

CDD

< A →

< ≣ → < ≣ →

1

 $\mathcal{O}(n \log n)$ Algorithm

Main Idea:

- Compute Partial Split Tree in $\mathcal{O}(n)$ time.
- Change the Partial Split Tree to Split Tree.

Partial Split Tree

- Same as Split Tree; but leaves can have size between 1 and n/2.
- Time needed in each node is proportional to the size of smaller child.
- In computation: recurse on bigger child if its size is > n/2.

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

 $\mathcal{O}(n \log n)$ Algorithm

Main Idea:

- Compute Partial Split Tree in $\mathcal{O}(n)$ time.
- Change the Partial Split Tree to Split Tree.

Partial Split Tree

- Same as Split Tree; but leaves can have size between 1 and n/2.
- Time needed in each node is proportional to the size of smaller child.
- In computation: recurse on bigger child if its size is > n/2.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

Computing WSPD

SSPD

Computing WSPD

 $\textbf{Algorithm} \ \mathsf{COMPUTEWSPD}(T,s)$

Input: T: Split Tree, s > 0.

Output: WSPD for S.

1. **for each** internal node u of T

2. v :=left child of u;

3. w :=right child of u;

4. FINDPAIRS(v,w);

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

Algorithm FINDPAIRS(v, w)

- 1. **if** P_v and P_w are s-well-separated pair
- 2. **then** return the node pair $\{v, w\}$
- 3. else if $L_{max}(R(v)) \leq L_{max}(R(w))$
- 4. then
- 5. $w_l := \text{left child of } w$;
- 6. $w_r := \text{right child of } w$;
- 7. FINDPAIRS (v, w_l) ;
- 8. FINDPAIRS (v, w_r) ;
- 9. else
- 10. $v_l := \text{left child of } v;$
- 11. $v_r := \text{right child of } v;$
- 12. FINDPAIRS (v_l, w) ;
- 13. FINDPAIRS (v_r, w) ;

Bounding boxes is used to decide about the well-separatedness in $\mathcal{O}(1)$ time.

The
Well-Separated
Pair
Decomposition

M. Farshi

WSPD

Compute WSPD
The Split Tree
Computing WSPD

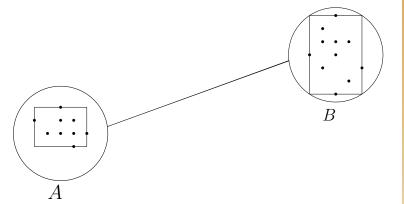
SPD

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD



Questions

- FINDPAIRS(v, w) terminates? Yes! Singletons are well-separated.
- Is COMPUTEWSPD(T,s) correct? Yes!
 Almost obvious!
- Time complexity of ComputeWSPD(T, s)? $\mathcal{O}(m), m = \#$ WSPs.

The Well-Separated Pair Decomposition

M. Farshi

Definition o

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other

- FINDPAIRS(v,w) terminates? Yes! Singletons are well-separated.
- Is ComputeWSPD(T, s) correct? Yes!
 Almost obvious!
- Time complexity of COMPUTEWSPD(T, s)? $\mathcal{O}(m), m = \#$ WSPs.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other

- FINDPAIRS(v,w) terminates? Yes! Singletons are well-separated.
- Is ComputeWSPD(T,s) correct? Yes
- Time complexity of ComputeWSPD(T, s)? $\mathcal{O}(m), m = \#$ WSPs.

The Well-Separated Pair Decomposition

M. Farshi

Compute WSPD

Computing WSPD

Extension to Other

- FINDPAIRS(v, w) terminates? Yes! Singletons are well-separated.
- Is COMPUTEWSPD(T, s) correct? Yes! Almost obvious!

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other

Questions

- FINDPAIRS(v, w) terminates? Yes! Singletons are well-separated.
- Is ComputeWSPD(T, s) correct? Yes!
 Almost obvious!
- Time complexity of COMPUTEWSPD(T,s)?

 $\mathcal{O}(m), m = \# \mathsf{WSPs}$

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other

- FINDPAIRS(v, w) terminates? Yes! Singletons are well-separated.
- Is ComputeWSPD(T, s) correct? Yes!
 Almost obvious!
- Time complexity of COMPUTEWSPD(T, s)? $\mathcal{O}(m)$, m = # WSPs.

Is COMPUTEWSPD(T, s) correct?

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics

Properties of WSPD

A WSPD for P w.r.t. s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of P s. t.

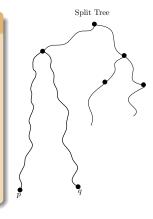
- $\forall i, A_i$ and B_i are s-well-separated pair,
- $\forall p, q \in P$, there is exactly one index i s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.

Is COMPUTEWSPD(T, s) correct?

Properties of WSPD

A WSPD for P w.r.t. s is a set $\{(A_i, B_i)\}_{i=1}^m$ of pairs of non-empty subsets of P s. t.

- $\forall i$, A_i and B_i are s-well-separated pair,
- $\forall p, q \in P$, there is exactly one index i s. t.
 - $p \in A_i$ and $q \in B_i$ or
 - $q \in A_i$ and $p \in B_i$.



The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Size of WSPD

Main Idea:

- Make pairs directed.
 - (P_u, P_v) if $(P_{par(u)}, P_v)$ is not WSP.
 - (P_v, P_u) if $(P_u, P_{par(v)})$ is not WSP.
- Each node appears in constant directed pairs as first item (Using Packing Lemma).

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other Metrics

Lemma

Let u be any node of the split tree T. There are at most $((2s+4)\sqrt{d}+4)^d$ nodes v in T such that (P_u,P_v) is a directed pair in the WSPD computed by algorithm COMPUTEWSPD(T,s).

The Well-Separated Pair Decomposition

M. Farshi

WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

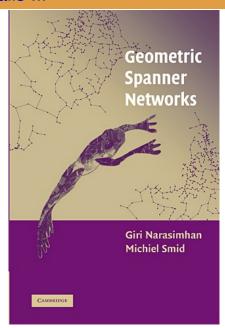
Extension to Other

WSPD Theorem

Let $P \subset \mathbb{R}^d$ be a set of n points and s > 0.

- The split tree for P can be computed in $\mathcal{O}(n \log n)$ time.
- ② Given the split tree, we can compute in $\mathcal{O}(s^d n)$ time, a WSPD for P with respect to s of size $\mathcal{O}(s^d n)$.

More details ...



The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

WSPD: Applications

- Approximation of the complete graph(Spanners).
- Closest pair, All Nearest Neighbour, k-closest pairs.
- Approximate Euclidean Minimum Spanning Tree.

...

The Well-Separated Pair Decomposition

M. Farshi

Definition of VSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Total size of WSPD

There are point sets such that for any WSPD $\{(A_i, B_i)\}_i$ of them,

$$\sum_{i} (|A_i| + |B_i|) = \Omega(n^2).$$

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

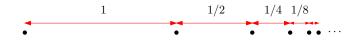
Compute WSPD
The Split Tree
Computing WSPD

SSPD

Total size of WSPD

There are point sets such that for any WSPD $\{(A_i, B_i)\}_i$ of them,

$$\sum_{i} (|A_i| + |B_i|) = \Omega(n^2).$$



The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Total size of WSPD

There are point sets such that for any WSPD $\{(A_i, B_i)\}_i$ of them,

$$\sum_{i} (|A_i| + |B_i|) = \Omega(n^2).$$

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

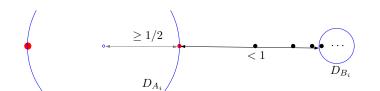
SSPD

Extension to Other Metrics

Total size of WSPD

There are point sets such that for any WSPD $\{(A_i, B_i)\}_i$ of them,

$$\sum_{i} (|A_i| + |B_i|) = \Omega(n^2).$$



 A_i and B_i are not s-well-separated (s > 2) because

$$\mathbf{d}(D_{A_i}, D_{B_i}) \not\geq s \times 1/2.$$

So A_i is singleton.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Semi-Separated Pair Decomposition

Semi-Separated Pair:

 $A, B \subset \mathbb{R}^d$ are s-semi-separated (s > 0), if \exists disjoint balls, D_A and D_B such that

- •
- _

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

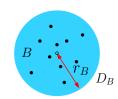
SSPD

Semi-Separated Pair Decomposition

Semi-Separated Pair:

 $A, B \subset \mathbb{R}^d$ are *s*-semi-separated (s > 0), if \exists disjoint balls, D_A and D_B such that

- $A \subseteq D_A$ and $B \subseteq D_B$.
- •



The Well-Separated Pair Decomposition

M. Farshi

Definition of NSPD

Compute WSPD
The Split Tree

SSPD

Semi-Separated Pair Decomposition

Semi-Separated Pair:

 $A, B \subset \mathbb{R}^d$ are *s*-semi-separated (s > 0), if \exists disjoint balls, D_A and D_B such that

- $A \subseteq D_A$ and $B \subseteq D_B$.
- $\mathbf{d}(D_A, D_B) \ge s \times \min(\operatorname{radius}(D_A), \operatorname{radius}(D_B)).$

The
Well-Separated
Pair
Decomposition

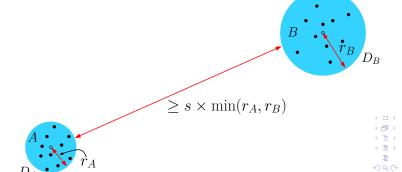
M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Extension to Other



Semi-Separated Pair Decomposition:

Just replace WS by SS in WSPD definition.



For any set P an SSPD $\{(A_i, B_i)\}_{i=1}^m$ such that

$$m = \mathcal{O}(s^d \cdot n),$$

can be constructed in near linear time and space.

Note:
$$\sum_i (|A_i| + |B_i|) = \Omega(n \log n)$$
.

- Proposed by Varadarajan (1998).
- Improved and applied to some problems by Abam et al.(2005&2008).

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

Semi-Separated Pair Decomposition:

Just replace WS by SS in WSPD definition.

The Well-Separated Pair Decomposition

M. Farshi

....

WSPD

Compute WSPD The Split Tree

SSPD

Extension to Other Metrics

SSPD Construcion:

For any set P an SSPD $\{(A_i,B_i)\}_{i=1}^m$ such that

•
$$m = \mathcal{O}(s^d \cdot n)$$
,

•
$$\sum_{i}(|A_i| + |B_i|) = \mathcal{O}(s^d \cdot n \log n).$$

can be constructed in near linear time and space.

Note:
$$\sum_{i}(|A_i| + |B_i|) = \Omega(n \log n)$$
.

- Proposed by Varadarajan (1998).
- Improved and applied to some problems by Abam et al.(2005&2008).

Semi-Separated Pair Decomposition:

Just replace WS by SS in WSPD definition.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree

SSPD

Extension to Other Metrics

SSPD Construcion:

For any set P an SSPD $\{(A_i, B_i)\}_{i=1}^m$ such that

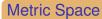
•
$$m = \mathcal{O}(s^d \cdot n)$$
,

•
$$\sum_{i}(|A_i| + |B_i|) = \mathcal{O}(s^d \cdot n \log n).$$

can be constructed in near linear time and space.

Note:
$$\sum_{i}(|A_i| + |B_i|) = \Omega(n \log n)$$
.

- Proposed by Varadarajan (1998).
- Improved and applied to some problems by Abam et al.(2005&2008).



Metric space: $(P, d), d: P \times P \longrightarrow \mathbb{R}$

- d(p,q) = 0 if and only if p = q.

Diameter and Distance

- Diameter
- Distance

 $d(A,B) := \min\{d(a,b) : a \in A, b \in B\}$

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree Computing WSPD

SSPD

Metric Space

Metric space: $(P, d), d: P \times P \longrightarrow \mathbb{R}$

- 2 d(p,q) = 0 if and only if p = q.
- $d(p,q) \ge d(p,r) + d(r,q), \ \forall p,q,r \in P.$

Diameter and Distance

Diameter

Distance

 $D(A):=\max\{d(a,b):a,b\in A\}.$

 $d(A,B):=\min\{d(a,b):a\in A,b\in B\}$

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

SSPD

Metric Space

Metric space: $(P, d), d: P \times P \longrightarrow \mathbb{R}$

- 2 d(p,q) = 0 if and only if p = q.
- **3** d(p,q) = d(q,p).
- $d(p,q) \ge d(p,r) + d(r,q), \ \forall p,q,r \in P.$

Diameter and Distance

- Diameter
- Distance

 $D(A) := \max\{d(a, b) : a, b \in A\}.$

 $d(A,B) := \min\{d(a,b) : a \in A, b \in B\}$

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

eepn

Metric Space

Metric space: $(P, d), d: P \times P \longrightarrow \mathbb{R}$

- ② d(p,q) = 0 if and only if p = q.
- **3** d(p,q) = d(q,p).
- $d(p,q) \ge d(p,r) + d(r,q), \ \forall p,q,r \in P.$

Diameter and Distance

Diameter

$$D(A) := \max\{d(a,b) : a,b \in A\}.$$

Distance

 $d(A,B) := \min\{d(a,b) : a \in A, b \in B\}$

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree
Computing WSPD

SSPD

Metric space: $(P, d), d: P \times P \longrightarrow \mathbb{R}$

- d(p,q)=0 if and only if p=q.
- **3** d(p,q) = d(q,p).
- $d(p,q) \ge d(p,r) + d(r,q), \ \forall p,q,r \in P.$

Diameter and Distance

- Diameter
- Distance

 $D(A) := \max\{d(a,b) : a, b \in A\}.$

 $d(A, B) := \min\{d(a, b) : a \in A, b \in B\}.$

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

WSPD in a metric space

(A, B): s-well-separated if

 $d(A, B) \ge s \times \max\{D(A), D(B)\}.$

Open Problem

Which metric spaces (P, d) admit a WSPD of subquadratic size? Design efficient algorithms that compute such a WSPD.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD
The Split Tree

SSPD

WSPD in a metric space

(A, B): s-well-separated if

$$d(A, B) \ge s \times \max\{D(A), D(B)\}.$$

Open Problem

Which metric spaces (P,d) admit a WSPD of subquadratic size? Design efficient algorithms that compute such a WSPD.

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree Computing WSPD

SSPD

WSPD in a metric space

(A, B): s-well-separated if

$$d(A, B) \ge s \times \max\{D(A), D(B)\}.$$

Open Problem

Which metric spaces (P,d) admit a WSPD of subquadratic size? Design efficient algorithms that compute such a WSPD.

The
Well-Separated
Pair
Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

The Split Tree
Computing WSPD

SSPD

Thank You.

m.farshi@gmail.com http://cs.yazd.ac.ir/farshi/

The Well-Separated Pair Decomposition

M. Farshi

Definition of WSPD

Compute WSPD

CCDD

