

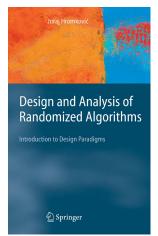
Mohammad Farshi

Department of Computer Science, Yazd University

1394-2

Randomized Algorithms

Course Outline


Textbook

Prerequisties

ntroduction

Textbook:

Juraj Hromkovic-Design and Analysis of Randomized Algorithms- Introduction to Design Paradigms-Springer (2005)

Randomized Algorithms

Teythook

What is Bandomized

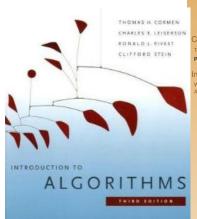
Prerequisites:

Randomized Algorithms

Course Outline

Prerequisties

-4----


What is Randomized Algorithms about?

What you need to know:

- Basic Algorithms and Algorithm Analysis: O, Θ notations, sorting, searching.
- Basic Data Structures: Priority Queue (Heap), Binary Search Tree, ... and their analysis.
- Basic Probability theory: Expected value, ...

Prerequisites:

Randomized Algorithms

Course Outline

Prerequisties

Introduction
What is Randomized

Randomized Algorithms

Course Outline

Textbook

Introduction

What is Randomized

< ∄ →

Introduction

Randomized Algorithms

Applying randomness to:

- designing algorithms that are very fast is most cases, but slow in very rare cases (in comparison to deterministic algorithms).
- designing algorithms that are very fast, but in most cases the output of the algorithm is true, but in some rare cases the output is false.
- prove deterministic results (existence of something
- get rid of the adversary, or make the algorithm independent to the shape of input.

Randomized Algorithms

Course Outline

Prerequisties

Introduction
What is Randomized
Algorithms about?

Randomized Algorithms

Applying randomness to:

- designing algorithms that are very fast is most cases, but slow in very rare cases (in comparison to deterministic algorithms).
- designing algorithms that are very fast, but in most cases the output of the algorithm is true, but in some rare cases the output is false.

Randomized Algorithms

Randomized Algorithms

Applying randomness to:

- designing algorithms that are very fast is most cases, but slow in very rare cases (in comparison to deterministic algorithms).
- designing algorithms that are very fast, but in most cases the output of the algorithm is true, but in some rare cases the output is false.
- prove deterministic results (existence of something)
- get rid of the adversary, or make the algorithm independent to the shape of input.

Randomized Algorithms

Course Outline

Prerequisties

Introduction
What is Randomized
Algorithms about?

6/14

Randomized Algorithms

Applying randomness to:

- designing algorithms that are very fast is most cases, but slow in very rare cases (in comparison to deterministic algorithms).
- designing algorithms that are very fast, but in most cases the output of the algorithm is true, but in some rare cases the output is false.
- prove deterministic results (existence of something)
- get rid of the adversary, or make the algorithm independent to the shape of input.

Randomized Algorithms

Course Outline

Textbook Prerequisties

Introduction
What is Randomized
Algorithms about?

Randomized Algorithms

Course Outline

Prerequisties

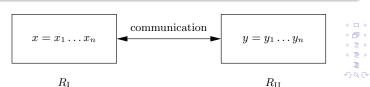
troduction

What is Randomized Algorithms about?

Applications

- designing practical algorithms (very simple to implement, very fast in practice),
- make complicated problems very easy,
- an step forward to a deterministic algorithm for a problem,
- proving the existence of something (if the probability of an event is non-zero, it can happens),
- and so on.

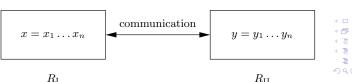
An Example:


- We have two computers R_I and R_{II} that are very far apart.
- At the beginning both have a database with the same content (say, $n=10^{16}$ bits).
- The contents of these databases dynamically developed simultaneously in both databases.
- After some time, we want to check whether R_I and R_{II} contain the same data.
- Goal: Design a communication protocol between R_I and R_{II} to check this.

Randomized Algorithms

Course Outline

Prerequisties

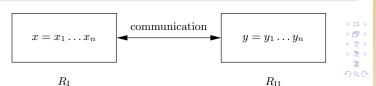


An Example:

- We have two computers R_I and R_{II} that are very far apart.
- At the beginning both have a database with the same content (say, $n = 10^{16}$ bits).

Randomized Algorithms

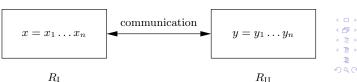
An Example:


- We have two computers R_I and R_{II} that are very far apart.
- At the beginning both have a database with the same content (say, $n=10^{16}$ bits).
- The contents of these databases dynamically developed simultaneously in both databases.
- After some time, we want to check whether R_I and R_{II} contain the same data.
- Goal: Design a communication protocol between R_I and R_{II} to check this.

Randomized Algorithms

Course Outline

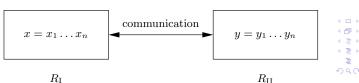
Prerequisties



An Example:

- We have two computers R_I and R_{II} that are very far apart.
- At the beginning both have a database with the same content (say, $n = 10^{16}$ bits).
- The contents of these databases dynamically developed simultaneously in both databases.
- After some time, we want to check whether R_I and R_{II} contain the same data.

Randomized Algorithms



An Example:

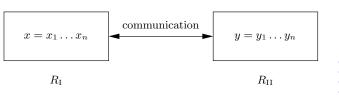
- We have two computers R_I and R_{II} that are very far apart.
- At the beginning both have a database with the same content (say, $n = 10^{16}$ bits).
- The contents of these databases dynamically developed simultaneously in both databases.
- After some time, we want to check whether R_I and R_{II} contain the same data.
- Goal: Design a communication protocol between R_I and R_{II} to check this.

Randomized Algorithms

الشكاويز

The solution:

- The complexity of the communication protocol = the number of bits exchange between computers.
- There exist no deterministic protocol that solves this task by communicating < n bits.
- Sending $n = 10^{16}$ bits safely is a practically nontrivial task, so one would probably not do it in this way.
- Randomness can help here!


Randomized Algorithms

Yazd Univ.

Course Outline

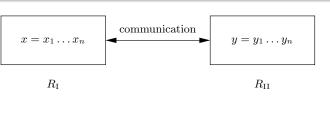
Textbook Prerequisties

ntroduction
What is Randomized

الكي الم

The solution:

- The complexity of the communication protocol = the number of bits exchange between computers.
- There exist no deterministic protocol that solves this task by communicating < n bits.
- Sending $n = 10^{16}$ bits safely is a practically nontrivial task, so one would probably not do it in this way.
- Randomness can help here!


Randomized Algorithms

Yazd Univ.

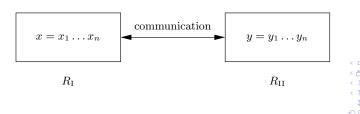
Course Outline

Prerequisties

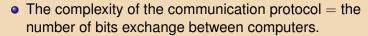
ntroduction
What is Randomized

The solution:

- The complexity of the communication protocol = the number of bits exchange between computers.
- There exist no deterministic protocol that solves this task by communicating < n bits.
- Sending $n = 10^{16}$ bits safely is a practically nontrivial task, so one would probably not do it in this way.
- Randomness can help here!



Randomized Algorithms


Course Outline

Textbook Prerequisties

Introduction
What is Randomized

The solution:

- There exist no deterministic protocol that solves this task by communicating < n bits.
- Sending $n = 10^{16}$ bits safely is a practically nontrivial task, so one would probably not do it in this way.
- Randomness can help here!

Randomized Algorithms

```
communication
x = x_1 \dots x_n
                                                              y = y_1 \dots y_n
        R_{\rm T}
                                                                     R_{\rm II}
```

Randomized Protocol for Equality

- Initial situation: R_I has a sequence x of n bits, $x=x_1\cdots x_n$, and R_{II} has a sequence y of n bits $y=y_1\cdots y_n$.
- Phase 1: R_I chooses uniformly a prime p from the interval $[2, n^2]$ at random.
- Phase 2: R_I computes the integer $s = Number(x) \mod p$ and sends the binary representations of s and p to R_{II} . Observe that $s \le p < n^2$ and so each of these integers can be represented by $\lceil \log_2 n^2 \rceil$ bits.
- Phase 3: After reading s and p, R_{II} computes the number $q = Number(y) \mod p$. If $q \neq s$, then R_{II} outputs $x \neq y$. If q = s, then R_{II} outputs x = y.

Randomized Algorithms

Course Outline

Prerequisties

Introduction
What is Randomized
Algorithms about?

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol

Randomized Algorithms

Course Outline

Prerequisties

ntroduction
What is Randomized
Algorithms about?

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol:

Randomized Algorithms

Course Outline

Prerequisties

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol: The answer of the protocol is not always correct: For instance, if x=01111 and y=10110, i.e., Number(x)=15 and Number(y)=22, then the choice of the prime 7 from the set $\{2,3,5,7,11,13,17,19,23\}$ yields the wrong answer, because $15 \mod 7 = 1 = 22 \mod 7$.

Randomized Algorithms

Course Outline

Prerequisties

ntroduction
What is Randomized
Algorithms about?

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol:

$$PRIM(n^2) = \{p \text{ is a prime}|p \leq n^2\}$$

Randomized Algorithms

Course Outline

Prerequisties

ntroduction

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol:

$$PRIM(n^2) = \{p \text{ is a prime}|p \leq n^2\}$$

Randomized Algorithms

Course Outline

Prerequisties

ntroduction
What is Randomized
Algorithms about?

 $\begin{array}{c|c} \text{bad} & \text{good primes for} \\ \text{primes} & \text{the input } (x,y) \\ \\ \text{for } (x,y) & \text{all primes} \leq n^2 \end{array}$

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol:

$$PRIM(n^2) = \{p \text{ is a prime}|p \le n^2\}$$

Error probability for $(x,y)=\frac{\# \text{ bad primes for } (x,y)}{Prim(n^2)}.$

Randomized Algorithms

Course Outline

Prerequisties

troduction

```
bad good primes for the input (x,y) all primes \leq n^2
```

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol:

$$PRIM(n^2) = \{p \text{ is a prime}|p \le n^2\}$$

Error probability for $(x,y) = \frac{\# \text{ bad primes for } (x,y)}{Prim(n^2)}$. For $m > 67, Prim(m) > \frac{m}{\log m}$.

Randomized Algorithms

Course Outline

Prerequisties

Introduction

What is Randomized Algorithms about?

Randomized Protocol for Equality

- Complexity of the protocol: Since $s \le p < n^2$, the length of the message is $\le 2\lceil \log_2 n^2 \rceil \le 4\log_2 n$. For $n=10^{16}$, it is 256.
- Reliability (error probability) of the protocol:

$$PRIM(n^2) = \{p \text{ is a prime}|p \le n^2\}$$

Error probability for $(x,y)=\frac{\# \text{ bad primes for } (x,y)}{Prim(n^2)}$. For $m>67, Prim(m)>\frac{m}{\log m}$.

If we show that # bad primes $\leq n-1$, then the error probability

$$\leq \frac{n-1}{Prim(n^2)} \leq \frac{n-1}{n^2/\log n^2} \leq \frac{\log n^2}{n}.$$

For $n = 10^{16}$, this probability is 0.36892×10^{-14}

Randomized Algorithms

Course Outline

Prerequisties

ntroduction
What is Randomized
Algorithms about?

Randomized Protocol for Equality: # bad primes

bad primes

• p is a bad prime if $x \neq y$ but

$$Number(x) \bmod p = Number(y) \bmod p.$$

i.e. p divides w = |Number(x) - Number(y)|.

- Let $w = p_1^{i_1} \times p_2^{i_2} \times \cdots \times p_k^{i_k}$ is prime factorization of w $(p_i < p_{i+1})$.
- p_is are all bad primes.
- claim: $k \le n-1$. Assume $k \ge n$.

$$w = p_1^{i_1} \times p_2^{i_2} \times \dots \times p_k^{i_k}$$

$$\geq p_1 \times p_2 \times \dots \times p_k$$

$$> 1 \times 2 \times \dots \times n = n! > 2^n(Contradiction!)$$

Randomized Algorithms

Course Outline

extbook Prerequisties

ntroduction
What is Randomized
Algorithms about?

Randomized Protocol for Equality

- Reliability (error probability) of the protocol: not satisfying?
- Run the protocol 10 times, the error probability \leq

$$\leq \left(\frac{n-1}{Prim(n^2)}\right)^{10} \leq \left(\frac{n-1}{n^2/\log n^2}\right)^{10} \leq \frac{2^{10}\log n^{10}}{n^{10}}.$$

For $n = 10^{16}$, this probability is 0.4717×10^{-141}

Randomized Algorithms

Course Outline

Textbook

ntroduction

Randomized Protocol for Equality

- Reliability (error probability) of the protocol: not satisfying?
- Run the protocol 10 times, the error probability ≤

$$\leq \left(\frac{n-1}{Prim(n^2)}\right)^{10} \leq \left(\frac{n-1}{n^2/\log n^2}\right)^{10} \leq \frac{2^{10}\log n^{10}}{n^{10}}.$$

For $n=10^{16}$, this probability is 0.4717×10^{-141}

Randomized Algorithms

Course Outline

Textbook

Prerequisties

Randomized Algorithms

Course Outline

Textbook

Prerequistie:

Introduction

What is Randomized Algorithms about?

< **□** >