## Randomized Algorithms

(PhD Course)

# **Fundamentals**

#### Mohammad Farshi

Department of Computer Science, Yazd University

1394-2



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

Unbounded-Error Monte Carlo Algorithms



1 = 1

=

### **Elementary Probability Theory**

- S: sample space
- Probability distribution:  $Prob : P(S) \rightarrow [0,1]$ , s.t.
  - $Prob(\{x\}) \ge 0, \forall x \in S$ ,
  - Prob(S) = 1,
  - $Prob(A \cup B) = Prob(A) + Prob(B), \forall A, B \subset S \text{ with } A \cap B = \emptyset.$
- $A \subset S$ : event
- Prob(A): probability of event A.
- Uniform probability distribution on *S*:

$$Prob(\{x\}) = \frac{1}{|S|}, \forall x \in S.$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

## **Elementary Probability Theory**

- $Prob(\emptyset) = 0$ ..
- $Prob(S-A) = 1 Prob(A), \forall A \subset S.$
- $Prob(A) \leq Prob(B), \forall A \subset B$
- $Prob(A \cup B) = Prob(A) + Prob(B) Prob(A \cap B)$
- $Prob(A) = \sum_{x \in A} Prob(\{x\}), \forall A \subset S.$
- Probability of A given B:

$$Prob(A|B) = \frac{Prob(A \cap B)}{Prob(B)}.$$

• Two events  $A,B\subset S$  are independent, if .

$$Prob(A \cap B) = Prob(A) \times Prob(B).$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

Carlo Algorithms

## **Elementary Probability Theory**

- Probabilistic Experiment: like, Flipping a coin.
- A (discrete) random variable on a sample space S: a function X from S to  $\mathbb R$
- Example:  $S = \{head, tail\}$ , X(head) = 1, X(tail) = 0.
- Example: Consider a ramdomized algorithm.
   S: different reuns of the algorithm on a same input.
   X: running time of each run.
- $Event(X = z) = \{s \in S | X(s) = z\}.$
- The probability density function of the random variable  $X: f_X : \mathbb{R} \to [0,1],$   $f_X(z) = Prob(Event(X=z)).$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

### **Elementary Probability Theory**

• The distribution function of X is a function  $Dis_X : \mathbb{R} \to [0,1]$ , defined by

$$Dis_X(z) = Prob(X \le z)$$

• The expectation of *X* (or the expected value of *X*) is

$$E[X] = \sum_{x} x \times Prob(X = x).$$

• (*S*, *Prob*): a finite probability space. *X*: a random variable on *S*.

$$E[X] = \sum_{s \in S} X(s) \times Prob(\{s\}).$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

Carlo Algorithms Bounded-Error Monte Carl Algorithms



#### **Elementary Probability Theory**

The expectation of X (or the expected value of X) is

$$E[X] = \sum_{x} x \times Prob(X = x).$$

• (*S*, *Prob*): a finite probability space. *X*: a random variable on *S*.

$$E[X] = \sum_{s \in S} X(s) \times Prob(\{s\}).$$

- $E[a \times X + b] = a \times E[X] + b$  (weak linearity of expectation).
- E[X + Y] = E[X] + E[Y] (linearity of expectation).



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

#### stochastic algorithms vs. randomized algorithms

- stochastic algorithm: use random choices in algorithm.
- stichastic algorithm can behaves "poorl" on some input instances when the algorithm is "good" for most inputs.
- The randomized algorithms: an stochastic algorithms that are not allowed to behave poorly on any input instance.
- one has to investigate the behavior of a randomized algorithm on any feasible input.
- Therefore, it does not make any sense to consider here probability distributions on input sets.
- The only source of randomness under consideration is the randomized control of the algorithm itself.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Monte Carlo

Algorithms

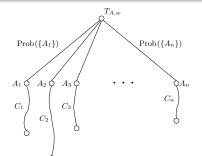
Las Vegas

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

7/5

#### 1st Model

- $\{A_1, A_2, \dots, A_n\}$ : deterministic algorithms
- for any input w, A chooses an  $A_i$  at random and lets  $A_i$  work on w.
- $C_i$ : the computation of  $A_i$  on w.
- A chooses  $A_i$  with probability  $Prob(\{A_i\})$ .
- $Z(C_i) = Time(C_i)$





Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of

Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Monte Carlo Algorithms

Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

#### 1st Model

- $\{A_1, A_2, \dots, A_n\}$ : deterministic algorithms
- for any input w, A chooses an  $A_i$  at random and lets  $A_i$  work on w.
- $C_i$ : the computation of  $A_i$  on w.
- A chooses  $A_i$  with probability  $Prob(\{A_i\})$ .
- $Z(C_i) = Time(C_i)$

the expected time complexity of A on w:

$$Exp - Time_A(w) = E[Z] = \sum_{i=1}^n Prob(\{C_i\}) \times Z(C_i)$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Bandomized

Algorithms

Las Vegas

Algorithms

Monte Carlo

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Car

$$= \sum_{i=1} Prob(\{C_i\}) \times Time(C_i).$$

#### 1st Model

- $\{A_1, A_2, \dots, A_n\}$ : deterministic algorithms
- for any input w, A chooses an  $A_i$  at random and lets  $A_i$  work on w.
- $C_i$ : the computation of  $A_i$  on w.
- A chooses  $A_i$  with probability  $Prob(\{A_i\})$ .
- $Z(C_i) = Time(C_i)$

### expected time complexity

The expected time complexity of A

$$Exp - Time_A(n) = \max\{Exp - Time_A(w) | \text{ the length of } w \text{ is } n\}$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

> One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

Carlo Algorithms

#### 1st Model- "reliability" of a randomized algorithm

• "reliability" of a randomized algorithm A on input w:

$$X(C_i) = \begin{cases} 1 & \text{if } C_i \text{ is correct on } w \\ 0 & \text{if } C_i \text{ is wrong on } w \end{cases}$$

$$E[X] = \sum_{i=1}^{n} X(C_i) \times Prob(\{C_i\})$$
 Models of Randomiz Algorithm 
$$= \sum_{X(C_i)=1} 1 \times Prob(\{C_i\}) + \sum_{X(C_i)=0} 0 \times Prob(\{C_i\})$$
 Monte Ca Algorithm 
$$= Prob(Event(X=1))$$

Yazd Univ.

Randomized Algorithms-**Fundamentals** 

Models of Randomized Algorithms

Monte Carlo

Algorithms One-Sided-Error Monte

the probability that A computes the right result.

Carlo Algorithms

#### 1st Model- "reliability" of a randomized algorithm

ullet "reliability" of a randomized algorithm A on input w:

$$X(C_i) = \left\{ \begin{array}{ll} 1 & \text{if } C_i \text{ is correct on } w \\ 0 & \text{if } C_i \text{ is wrong on } w \end{array} \right.$$

### Error probability of *A*:

 $Error_A(n) = \max \{Error_A(w) | \text{ the length of } w \text{ is } n\}$ 



Randomized Algorithms-Fundamentals

Elementary Probability Theory

#### Models of Randomized Algorithms

Algorithms
Las Vegas

Algorithms

Monte Carlo

## Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms



### Example: Randomized protocol

- No analysis on protocol complexity.
- For input (x, y), when x = y, the error prob. = 0.
- If  $x \neq y$ ,  $X(C_p) = \begin{cases} 1 & \text{if } p \text{ is good.} \\ 0 & \text{if } p \text{ is bad.} \end{cases}$
- $Prob(C_p) = \frac{1}{PRIM(n^2)}$ .

Error probability of protocol:

$$Error_R(x,y) = 1 - E[X] \le \frac{n-1}{Prim(n^2)} \le \frac{2\log n}{n}$$

Error probability of modofied protocol (two primes):

$$Error_{R_2}(x,y) \le \left(\frac{2\log n}{n}\right)^2$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

#### Models of Randomized Algorithms

Las Vegas Algorithms

#### Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

Unbounded-Error Monte Carlo Algorithms

10/59

#### Example: Randomized protocol

- No analysis on protocol complexity.
- For input (x, y), when x = y, the error prob. = 0.
- If  $x \neq y$ ,  $X(C_p) = \begin{cases} 1 & \text{if } p \text{ is good.} \\ 0 & \text{if } p \text{ is bad.} \end{cases}$

• 
$$Prob(C_p) = \frac{1}{PRIM(n^2)}$$
.

$$\begin{split} E[X] &= \sum_{p \in PRIM(n^2)} X(C_p) \times Prob(\{C_p\}) \\ &= \sum_{p \in PRIM(n^2)} X(C_p) \times \frac{1}{Prim(n^2)} \\ &= \frac{1}{Prim(n^2)} \times \sum_{p \text{ is good}} X(C_p) \\ &\geq \frac{1}{Prim(n^2)} \times \left(Prim(n^2) - (n-1)\right) \\ &= 1 - \frac{n-1}{Prim(n^2)}. \end{split}$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized

Algorithms
Las Vegas
Algorithms

Monte Carlo
Algorithms
One-Sided-Error Monte

Carlo Algorithms Bounded-Error Monte Ca Algorithms

## Example: Randomized protocol

- No analysis on protocol complexity.
- For input (x, y), when x = y, the error prob. = 0.
- If  $x \neq y$ ,  $X(C_p) = \begin{cases} 1 & \text{if } p \text{ is good.} \\ 0 & \text{if } p \text{ is bad.} \end{cases}$
- $Prob(C_p) = \frac{1}{PRIM(n^2)}$ .  $E[X] = 1 - \frac{n-1}{Prim(n^2)}$ .

## Error probability of protocol:

$$Error_R(x,y) = 1 - E[X] \le \frac{n-1}{Prim(n^2)} \le \frac{2\log n}{n}$$

Error probability of modofied protocol (two primes)

$$Error_{R_2}(x,y) \le \left(\frac{2\log n}{n}\right)^2$$



Randomized Algorithms-Fundamentals

Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carl Algorithms

## Example: Randomized protocol

- No analysis on protocol complexity.
- For input (x, y), when x = y, the error prob. = 0.
- If  $x \neq y$ ,  $X(C_p) = \begin{cases} 1 & \text{if } p \text{ is good.} \\ 0 & \text{if } p \text{ is bad.} \end{cases}$
- $Prob(C_p) = \frac{1}{PRIM(n^2)}$ .  $E[X] = 1 - \frac{n-1}{Prim(n^2)}$ .

## Error probability of protocol:

$$Error_R(x,y) = 1 - E[X] \le \frac{n-1}{Prim(n^2)} \le \frac{2\log n}{n}$$

## Error probability of modofied protocol (two primes):

$$Error_{R_2}(x,y) \le \left(\frac{2\log n}{n}\right)^2$$



Randomized Algorithms-Fundamentals

Probability Theory

#### Models of Randomized Algorithms

Las Vegas Algorithms

# Monte Carlo Algorithms One-Sided-Error Monte

One-Sided-Error Monte
Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Unbounded-Error Monte

#### Example: MAX-SAT

- Given a formula  $\phi = F_1 \wedge F_2 \wedge \cdots \wedge F_m$ , in CNF over  $\{x_1, \ldots, x_n\}$ , find an assignment that maximized the satisfied clauses.
- RSAM Algorithm (Random Sampling): assign 0 and 1 with same probability to each variable.
- No error probability here.
- How good is the answer?



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo



### **Example: MAX-SAT**

- Given a formula  $\phi = F_1 \wedge F_2 \wedge \cdots \wedge F_m$ , in CNF over  $\{x_1, \ldots, x_n\}$ , find an assignment that maximized the satisfied clauses.
- RSAM Algorithm (Random Sampling): assign 0 and 1 with same probability to each variable.
- No error probability here.
- How good is the answer?

$$\begin{split} Z_i(\alpha) &= \left\{ \begin{array}{ll} 1 & F_i \text{ is satisfied by } \alpha \\ 0 & F_i \text{ is not satisfied by } \alpha \end{array} \right. \\ Z &= \sum_{i=1}^m Z_i. \\ E[Z] &= E\left[\sum_{i=1}^m Z_i\right] = \sum_{i=1}^m E[Z_i]. \\ F_i &= \ell_{i1} \vee \ell_{i2} \vee \ldots \vee \ell_{ik}. \\ E[Z_i] &= 1 - \frac{1}{2^k} \geq \frac{1}{2}. \\ E[Z] &\geq \frac{m}{2}. \end{split}$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

#### Models of Randomized Algorithms

Las Vegas Algorithms

#### Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

Carlo Algorithms

The Second Model

#### The Second model

- Nondeterministic algorithm with probability distribution for any nondeterministic choice.
- Computation tree



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

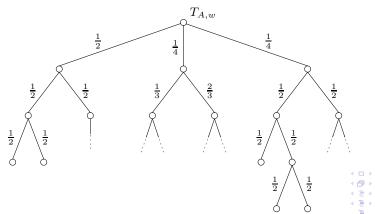
One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Ca



The Second Model

#### The Second model

- Nondeterministic algorithm with probability distribution for any nondeterministic choice.
- Computation tree





Randomized Algorithms-Fundamentals

Elementary Probability Theory

#### Models of Randomized Algorithms

Las Vegas Algorithms

#### Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

The Second Model

#### The Second model

- Nondeterministic algorithm with probability distribution for any nondeterministic choice.
- Computation tree
- $S_{A,w} = \text{all runs of } A \text{ on } w$ .
- If  $C \in S_{A,w}$  then Prob(C) = product of label of all edges on the path.
- The second model is a generalization of the first model.
- The second model is used for algorithms that repeatedly makes a random choice.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

<sup>151</sup> 

The Second Model

#### The Second model

- Nondeterministic algorithm with probability distribution for any nondeterministic choice.
- Computation tree
- $S_{A,w} = \text{all runs of } A \text{ on } w$ .
- If  $C \in S_{A,w}$  then Prob(C) = product of label of all edges on the path.
- The second model is a generalization of the first model.
- The second model is used for algorithms that repeatedly makes a random choice.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized

Algorithms

Las Vegas

Algorithms

Monte Carlo

Monte Carlo
Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Unbounded-Error Monte Carlo Algorithms

1

<sup>1=1</sup> 

The Second Model

#### The Second model

- Nondeterministic algorithm with probability distribution for any nondeterministic choice.
- Computation tree
- $S_{A,w} = \text{all runs of } A \text{ on } w$ .
- If  $C \in S_{A,w}$  then Prob(C) = product of label of all edges on the path.
- The second model is a generalization of the first model.
- The second model is used for algorithms that repeatedly makes a random choice.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Ca Algorithms

The Second Model

#### The Second model

- Nondeterministic algorithm with probability distribution for any nondeterministic choice.
- Computation tree
- $S_{A,w} = \text{all runs of } A \text{ on } w$ .
- If  $C \in S_{A,w}$  then Prob(C) = product of label of all edges on the path.
- The second model is a generalization of the first model.
- The second model is used for algorithms that repeatedly makes a random choice.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Ca Algorithms

The Second Model

#### The Second model

- Nondeterministic algorithm with probability distribution for any nondeterministic choice.
- Computation tree
- $S_{A,w} = \text{all runs of } A \text{ on } w$ .
- If  $C \in S_{A,w}$  then Prob(C) = product of label of all edges on the path.
- The second model is a generalization of the first model.
- The second model is used for algorithms that repeatedly makes a random choice.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

The Second Model

### **Example: Randomized Quick Sort**

- Input: A set A of elements.
- Step 1: If A contains one elements return it.
- Step 2: If  $|A| \ge 2$ , choose a random elements  $a \in A$
- Split A to two sets, elements bigger than a and elemets less than a.
- Recursively sort each subset and the result is the first subset, a, the second subset.

#### **Analysis**

- The error probability is 0.
- Step 2: |A| 1 comparisons
- If the algorithm chooses first or last element, there is n-1 recursive calls,  $O(n^2)$  comparisons.
- If the algorithm chooses median at each step, the time complexity is  $O(n \log n)$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

Carlo Algorithms

The Second Model

#### **Example: Randomized Quick Sort**

- Input: A set A of elements.
- Step 1: If A contains one elements return it.
- Step 2: If  $|A| \ge 2$ , choose a random elements  $a \in A$
- Split A to two sets, elements bigger than a and elemets less than a.
- Recursively sort each subset and the result is the first subset, a, the second subset.

### **Analysis**

• Except median, there are several other good choices: if algorithm chooses  $\alpha n$ th element, for some constant  $\alpha < 1$ , the recursion changes to  $T(n) \leq T(\alpha n) + T((1-\alpha)n) + n - 1$  which solves to  $T(n) \in O(n \log n)$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

#### Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

Algorithms
One-Sided-Error Monte

Bounded-Error Monte Ca Algorithms

The Second Model

## Example: Randomized Quick Sort-Analysis

- The computation tree of RQS is large and irregular.
- C: a run of RQS on A, X(C) = # comparisons in C.
- Let  $s_1, \ldots, s_n$  is output of RQS.
- $X_{ij}(C) = \left\{ egin{array}{ll} 1 & s_i, s_j \ {\rm compared \ in} \ C \ 0 & {\rm otherwise}. \end{array} \right.$
- $T(C) = \sum_{i=1}^{n} \sum_{j>i} X_{ij}(C) = \#$  comparisons in C.
- $E[T] = Exp Time_{RQS}(A)$ .
- $E[T] = \sum_{i=1}^{n} \sum_{j>i} E[X_{ij}].$
- $p_{ij} =$  probability that  $s_i$  and  $s_j$  are compared.
- $\bullet E[X_{ij}] = p_{ij}.$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

The Second Model

## Example: Randomized Quick Sort-Analysis

- $p_{ij} =$  probability that  $s_i$  and  $s_j$  are compared.
- $E[X_{ij}] = p_{ij}$ .
- $p_{ij}$  = probability that  $s_i$  of  $s_j$  is choosen as pivot before any of Middle points.
- If an element from Left or right is choosen, it does not influence the comparison of  $s_i$  and  $s_j$ .

$$p_{ij} = \frac{|\{s_i, s_j\}|}{|Middle \cup \{s_i, s_j\}|} = \frac{2}{j - i + 1}.$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

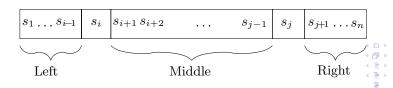
One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

The Second Model

### Example: Randomized Quick Sort-Analysis

- $p_{ij} = \text{probability that } s_i \text{ and } s_j \text{ are compared.}$
- $\bullet \ E[X_{ij}] = p_{ij}.$
- $p_{ij} =$  probability that  $s_i$  of  $s_j$  is choosen as pivot before any of Middle points.
- If an element from Left or right is choosen, it does not influence the comparison of  $s_i$  and  $s_j$ .

$$p_{ij} = \frac{|\{s_i, s_j\}|}{|Middle \cup \{s_i, s_j\}|} = \frac{2}{j - i + 1}.$$





Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Monte Carlo Algorithms

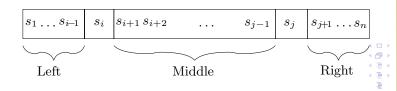
One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

The Second Model

### Example: Randomized Quick Sort-Analysis

- $p_{ij} =$  probability that  $s_i$  and  $s_j$  are compared.
- $\bullet \ E[X_{ij}] = p_{ij}.$
- $p_{ij}$  = probability that  $s_i$  of  $s_j$  is choosen as pivot before any of Middle points.
- If an element from Left or right is choosen, it does not influence the comparison of  $s_i$  and  $s_j$ .

$$p_{ij} = \frac{|\{s_i, s_j\}|}{|Middle \cup \{s_i, s_j\}|} = \frac{2}{j - i + 1}.$$





Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Monte Carlo

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

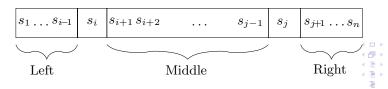
The Second Model

#### Example: Randomized Quick Sort-Analysis

- $p_{ij}$  = probability that  $s_i$  and  $s_j$  are compared.
- $\bullet E[X_{ij}] = p_{ij}.$
- $p_{ij} =$  probability that  $s_i$  of  $s_j$  is choosen as pivot before any of Middle points.
- If an element from Left or right is choosen, it does not influence the comparison of  $s_i$  and  $s_j$ .

•

$$p_{ij} = \frac{|\{s_i, s_j\}|}{|Middle \cup \{s_i, s_j\}|} = \frac{2}{j-i+1}.$$





Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Linbounded-Error Monte

Carlo Algorithms

The Second Model

### Example: Randomized Quick Sort-Analysis

- $E[T] = \sum_{i=1}^{n} \sum_{j>i} E[X_{ij}].$
- ullet  $p_{ij} = \text{probability that } s_i \text{ and } s_j \text{ are compared.}$
- $E[X_{ij}] = p_{ij} = \frac{2}{j-i+1}$ .

$$E[T] = \sum_{i=1}^{n} \sum_{j>i} p_{ij}$$

$$= \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$\leq \sum_{i=1}^{n} \sum_{k=1}^{n-i+1} \frac{2}{k}$$

$$= 2nHar(n) = 2n \log n + \Theta(n).$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

Unbounded-Error Monte Carlo Algorithms

1

18/59

## Classification of Randomized Algorithms

## LAS VEGAS Algorithms

- Guarantee that output is correct (always).
- Prob(A(x) = F(x)) = 1
- We investigate expected time complexity of the algorithms.
- Different run lengths on different inputs (otherwise we can construct a deterministic algorithm).
- Examples: Randomized Quick sort, Randomized RSEL.
- There a variation that can output "I do not know".

#### LAS VEGAS Algorithms (2nd def.)

#### For some $0 < \varepsilon < 1$

- $Prob(A(x) = F(x)) \ge \varepsilon$
- $Prob(A(x) = "?") \le 1 \varepsilon.$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Monte Carlo
Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Unbounded-Error Monte

Carlo Algorithms

## Classification of Randomized Algorithms

## LAS VEGAS Algorithms

- Guarantee that output is correct (always).
- Prob(A(x) = F(x)) = 1
- We investigate expected time complexity of the algorithms.
- Different run lengths on different inputs (otherwise we can construct a deterministic algorithm).
- Examples: Randomized Quick sort, Randomized RSEL.
- There a variation that can output "I do not know".

## LAS VEGAS Algorithms (2nd def.)

For some  $0 < \varepsilon < 1$ 

- $Prob(A(x) = F(x)) \ge \varepsilon$
- $Prob(A(x) = "?") \le 1 \varepsilon$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

andomized lgorithms

Las Vegas Algorithms

Monte Carlo
Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

# Classification of Randomized Algorithms

LAS VEGAS Algorithms

#### Example: LV<sub>10</sub>

- We have two computers  $R_I$  and  $R_{II}$
- $\{x_1, ..., x_{10}\}$  in  $R_I$  and  $\{y_1, ..., y_{10}\}$  on  $R_{II}$
- Question: Is there an index j s. t.  $x_j = y_j$ ?
- Complexity of protocol: # exchanged bits.
- Any deterministic protocol needs 10n bits exchange.
- Here we show a Las Vegas protocol with complexity  $n + \mathcal{O}(\log n)$ .
- Note that previous protocol is not Las Vegas.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

#### Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

LAS VEGAS Algorithms

### Example: LV<sub>10</sub>: The ptorocol

- $p_1, \ldots, p_{10}$ : 10 primes chosen randomly in PRIM $(n^2)$ .
- $R_I$  computes  $s_i = x_i \mod p_i, i = 1, \dots, 10$ .
- $R_I$  sends  $p_1, \ldots, p_{10}$  and  $s_1, \ldots, s_{10}$  to  $R_{II}$ .
- $R_{II}$  computes  $q_i = y_i \mod p_i, i = 1, \dots, 10$ .
- If  $s_i \neq q_i, \forall i = 1, \dots, 10$ , output NO.
- Else let j be the smallest index s. t.  $s_j = q_j$ , and  $R_{II}$  sends  $y_j$  and j to  $R_I$ .
- $R_I$  compare  $x_j$  and  $y_j$ , if  $x_j = y_j$  outputs Yes, otherwise outputs "?".

### **Protocol Complexity:**

Communications:  $p_1, \ldots, p_{10}, s_1, \ldots, s_10, j, y_j = n + \mathcal{O}(\log n)$  bits.



Randomized Algorithms-Fundamentals

Probability Theory

Models of Randomized Algorithms

#### Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

LAS VEGAS Algorithms

### Example: LV<sub>10</sub>: The ptorocol

- $p_1, \ldots, p_{10}$ : 10 primes chosen randomly in PRIM $(n^2)$ .
- $R_I$  computes  $s_i = x_i \mod p_i, i = 1, \dots, 10$ .
- $\bullet$   $R_I$  sends  $p_1, \ldots, p_{10}$  and  $s_1, \ldots, s_{10}$  to  $R_{II}$ .
- $R_{II}$  computes  $q_i = y_i \mod p_i, i = 1, \ldots, 10$ .
- If  $s_i \neq q_i, \forall i = 1, \ldots, 10$ , output NO.
- Else let j be the smallest index s. t.  $s_j = q_j$ , and  $R_{II}$  sends  $y_j$  and j to  $R_I$ .
- $R_I$  compare  $x_j$  and  $y_j$ , if  $x_j = y_j$  outputs Yes, otherwise outputs "?".

### **Protocol Complexity:**

Communications:  $p_1, \ldots, p_{10}, s_1, \ldots, s_10, j, y_j = n + \mathcal{O}(\log n)$  bits.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

#### Las Vegas Algorithms

#### Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte Carlo Algorithms

21/59

LAS VEGAS Algorithms

#### Example: LV<sub>10</sub>: The ptorocol is Las Vegas

- Obviously the output of the algorithm is always correct.
- We shows that the probability condition is also holds.
- Case (i):  $x_i \neq y_i, \forall i$ :
  - The probability that  $x_i \neq y_i \geq 1 \frac{2 \log n}{n}$ .
  - Since the primes are chosen independently:

$$Prob((s_1, ..., s_{10}) \neq (q_1, ..., q_{10})) \ge \left(1 - \frac{2\log n}{n}\right)^{10}$$

$$\begin{array}{ll} \bullet \ \ \mathsf{So}, & Prob(LV_{10}((x_1,\ldots,x_{10}),(y_1,\ldots,y_{10})) = No) \\ & \geq & \left(1-\frac{2\log n}{n}\right)^{10} \\ & \geq & \left(1-\frac{20\log n}{n}\right) \geq \frac{1}{2} \end{array}$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Monte Carlo
Algorithms
One-Sided-Error Monte

One-Sided-Error Monte
Carlo Algorithms
Bounded-Error Monte Carlo
Algorithms
Unbounded-Error Monte

22/59

LAS VEGAS Algorithms

#### Example: LV<sub>10</sub>: The ptorocol is Las Vegas

- Case (ii):  $x_i = y_i$ , for some i:
  - Let j be the smallest index s.t.  $x_j = y_j$ .
  - If the protocol exchange some i < j then the answer will be "?".
  - So,  $\forall i \in \{1, \dots, j-1\}$  we must have  $x_i \mod p_i \neq y_i \mod p_i$  (Event  $E_j$ ).
  - If j = 1, the answer is always correct.

• If 
$$j > 1$$
,  $Prob(E_j) \ge$ 

$$\ge \left(1 - \frac{2\log n}{n}\right)^{j-1}$$

$$\ge \left(1 - \frac{2(j-1)\log n}{n}\right)$$

• The function takes its minimum at j = 10, so

Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms One-Sided-Error Monte

Carlo Algorithms

Sounded-Error Monte Car
Algorithms

$$Prob(LV_{10}((x_1, \dots, x_{10}), (y_1, \dots, y_{10})) = Yes) \ge 1 - \frac{18 \log n}{n}$$

LAS VEGAS\* Algorithms

### LAS VEGAS\* Algorithms

•  $Prob(A(x) = F(x)) \rightarrow 1 \text{ as } |x| \rightarrow \infty$ 



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Randomized Algorithms Las Vegas

Models of

#### Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms



LAS VEGAS Algorithms

### Are two definitions equivalent? (with and without "?")

- A= a Las Vegas algorithm with output "?".
- A': Runs A as far as its output is "?".
- The output of the algorithm is always correct.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

#### Las Vegas Algorithms

Monte Carlo Algorithms

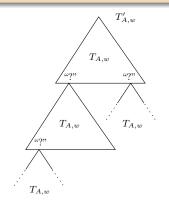
One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Ca



LAS VEGAS Algorithms

#### Are two definitions equivalent? (with and without "?")

- A= a Las Vegas algorithm with output "?".
- A': Runs A as far as its output is "?".
- The output of the algorithm is always correct.





Randomized Algorithms-Fundamentals

Elementary Probability Theory

Algorithms

#### Las Vegas Algorithms

Monte Carlo Algorithms

> One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms



LAS VEGAS Algorithms

### Are two definitions equivalent? (with and without "?")

- A= a Las Vegas algorithm with output "?".
- A': Runs A as far as its output is "?".
- The output of the algorithm is always correct.
- A' can have infinite computations.
- $Time_A(w)$ = the worst-case complexity of A.
- The probability that A' stops in time  $Time_A(w)$  is  $\geq 1/2$ .
- The probability that A' stops in time  $2 \times Time_A(w)$  is  $\geq 3/4$ .
- The probability that A' stops in time  $k \times Time_A(w)$  is  $\geq 1 1/2^k$ .
- Claim:  $Exp Time_{A'}(n) \in \mathcal{O}(Time_A(n))$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

#### Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms Unbounded-Error Monte

Carlo Algorithms

1

26/59

LAS VEGAS Algorithms

#### Are two definitions equivalent? (with and without "?")

- Claim:  $Exp Time_{A'}(n) \in \mathcal{O}(Time_A(n))$ .
  - $Set_i$ = all computations that end exactly at ith run.
  - $S_{A',w} = \bigcup_{1}^{\infty} Set_i$ , and  $Set_i \cap Set_j = \emptyset$ .

  - So,  $\sum_{C \in Set_i} Prob(\{C\}) \le \frac{1}{2^{i-1}}$ .

$$Exp - Time_{A'}(n) =$$

$$= \sum_{A'} Time_{A'}(C) \times Prob(\{C\})$$

$$= \sum_{i=1}^{C \in S_{A',w}} \sum_{C \in Set_i} Time_{A'}(C) \times Prob(\{C\})$$

$$= \sum_{i=1}^{\infty} \sum_{C \in Set_i} i \times Time_A(w) \times Prob(\{C\})$$

$$= \sum_{i=1}^{\infty} i \times Time_A(w) \times \sum_{C \in Set_i} Prob(\{C\})$$



. . . .

Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Algorithms
One-Sided-Error Monte
Carlo Algorithms
Bounded-Error Monte Ca

Algorithms
Unbounded-Error Monte
Carlo Algorithms

LAS VEGAS Algorithms

### Are two definitions equivalent? (with and without "?")

- Claim:  $Exp Time_{A'}(n) \in \mathcal{O}(Time_A(n))$ .
  - $Set_i$ = all computations that end exactly at ith run.
  - $S_{A',w} = \bigcup_{1}^{\infty} Set_i$ , and  $Set_i \cap Set_j = \emptyset$ .
  - $\qquad \qquad \sum\nolimits_{C \text{ ends before } k} Prob(\{C\}) \geq 1 \frac{1}{2^k}$
  - So,  $\sum_{C \in Set_i} Prob(\{C\}) \le \frac{1}{2^{i-1}}$ .

 $< 6 \times Time_A(w)$ .

$$Exp - Time_{A'}(n) =$$

$$= \sum_{i=1}^{\infty} i \times Time_{A}(w) \times \sum_{C \in Set_{i}} Prob(\{C\})$$

$$\leq \sum_{i=1}^{\infty} i \times Time_{A}(w) \times \frac{1}{2^{i-1}}$$



Yazd Univ.

Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

# Classification of Randomized Algorithms LAS VEGAS Algorithms

#### Are two definitions equivalent? (with and without "?")

- Obviously any algorithm without "?" can be considered as an algorithm with "?".
- Reasons to convert a Las Vegas algorithm without "?" into a Las Vegas algorithm with output "?".
  - Consider algorithm A that mostly runs fast but sometime runs slow.
  - When a run take more than the time for fast run, stop it with output "?".
  - Claim:  $2 \times Exp Time_A(w)$  is a suitable upper bound for stopping.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

#### Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms



LAS VEGAS Algorithms

### Are two definitions equivalent? (with and without "?")

- To show that the new algorithm is Las Vegas, we have to show that  $Prob(B(w) = "?") \le 1/2$ .
- Proof by contradiction:

$$Exp-Time_{A}(w) = \sum_{C \in S_{A,w}} Time_{A}(C) \times Prob(\{C\})$$

$$= \sum_{C \in S_{A,w}(^{n}?^{n})} Time_{A}(C) \times Prob(\{C\})$$

$$+ \sum_{C \in S_{A,w}(F(w))} Time_{A}(C) \times Prob(\{C\})$$

$$> \sum_{C \in S_{A,w}(^{n}?^{n})} Time_{A}(C) \times Prob(\{C\})$$

$$> \sum_{C \in S_{A,w}(^{n}?^{n})} (2 \times Exp-Time_{A}(w)+1) \times Prob(\{C\})$$

$$> (2 \times Exp-Time_{A}(w)+1) \times 1/2$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Algorithms

Las Vegas

Algorithms

Monte Carlo

Algorithms
One-Sided-Error Mor

One-Sided-Error Mont Carlo Algorithms Bounded-Error Monte

Algorithms
Unbounded-Error Monte

$$= Exp - Time_A(w) + 1/2$$
 (Contradiction!)

Monte Carlo Algorithms

#### One-Sided-Error Monte Carlo Alg.

- For decision problems.
- Let  $(\sigma, L)$  be a decision problem.
- Output "0" is almost correct, output "1" had bounded error.
- Definition: A is an one-sided-error Monte Carlo algorithm for L, 1MC algorithm for short, if
  - (i)  $\forall x \in L$ ,  $Prob(A(x) = 1) \ge 1/2$ , and
  - (ii)  $\forall x \notin L$ , Prob(A(x) = 0) = 1.

#### 1MC\*

(i')  $\forall x \in L, Prob(A(x) = 1)$  tends to 1 with growing |x|.

Similar to Las Vegas algorithms, one can decreases the error probability exponentially by repitations.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms

Algorithms
Unbounded-Error Monte Ca

Monte Carlo Algorithms

#### One-Sided-Error Monte Carlo Alg.

- After k repitition of A, the error probability decreases to  $2^{-k}$ .
- Notation:  $A_k$ : k independents runs of A.



Yazd Univ.

Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms

Bounded-Error Monte Carlo Algorithms

Monte Carlo Algorithms

### Bounded-Error Monte Carlo Algorithms

- **Definition:** A is a bounded-error Monte Carlo algorithm for F, 2MC algorithm for short, if  $\exists \epsilon \in (0,1/2]$  s.t.  $\forall x$  of F,  $Prob(A(x) = F(x)) \geq 1/2 + \epsilon$ .
- If A is a Las Vegas or 1MC algorithm then  $A_2$  is 2MC.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms

Bounded-Error Monte Carlo Algorithms

Unbounded-Error Monte Carlo Algorithms

**4** ∰ **4** ∰

Monte Carlo Algorithms

For any 2MC algorithm A and any positive integer t, let  $A_t$  denote the following randomized algorithm:

#### 2MC Algorithm $A_t$

Input: x

- Step 1: Perform t independent runs of A on x and save the t computed results  $\alpha_1, \ldots, \alpha_t$ .
- Step 2: if there is an  $\alpha$  that appears at least  $\lceil t/2 \rceil$  times in the sequence  $\alpha_1,\dots,\alpha_t$ , then output " $\alpha$ " else output "?"

Claim: The error probability of  $A_t$  tends to 0 with growing t.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms



Monte Carlo Algorithms

**Claim:** The error probability of  $A_t$  tends to 0 with growing t.

- A<sub>t</sub> computes a wrong result or "?" only if #correct results  $< \lceil t/2 \rceil$ .
- $pr_i(x)$ = the probability that  $A_t$  computes the correct
- result in exactly i runs.

sult in exactly 
$$i$$
 runs. 
$$pr_i(x) = \binom{t}{i} p^i (1-p)^{t-i}$$

$$= \binom{t}{i} (p(1-p))^i (1-p)^{t-2i}$$

$$= \binom{t}{i} \left(\left(\frac{1}{2} + \epsilon_x\right) \left(\frac{1}{2} - \epsilon_x\right)\right)^i \left(\frac{1}{2} - \epsilon_x\right)^{t-2i}$$

$$= \binom{t}{i} \left(\frac{1}{4} + \epsilon_x^2\right)^i \left(\left(\frac{1}{2} - \epsilon_x\right)^2\right)^{t/2-i}$$

$$\leq \binom{t}{i} \left(\frac{1}{4} - \epsilon^2\right)^{t/2}$$



Randomized Algorithms-**Fundamentals** 

Las Vegas Algorithms

Monte Carlo Algorithms

Bounded-Error Monte Carlo



#### Monte Carlo Algorithms

**Claim:** The error probability of  $A_t$  tends to 0 with growing t.

- A<sub>t</sub> computes a wrong result or "?" only if #correct results  $< \lceil t/2 \rceil$ .
- $pr_i(x) \le {t \choose i} (\frac{1}{4} \epsilon^2)^{t/2}$  $Prob(A_t(x) = F(x)) = 1 - \sum pr_i(x)$  $> 1 - \sum_{i=0}^{\lfloor t/2 \rfloor} {t \choose i} \left(\frac{1}{4} - \epsilon^2\right)^{t/2}$  $= 1 - \left(\frac{1}{4} - \epsilon^2\right)^{t/2} \sum_{i=1}^{\lfloor t/2 \rfloor} \binom{t}{i}$  $> 1 - \left(\frac{1}{4} - \epsilon^2\right)^{t/2} \times 2^t$

 $> 1 - (1 - 4\epsilon^2)^{t/2}$  (Done!)



Randomized Algorithms-**Fundamentals** 

Las Vegas Algorithms

Monte Carlo Algorithms One-Sided-Error Monte

Bounded-Error Monte Carlo

Algorithms

Monte Carlo Algorithms

**Claim:** The error probability of  $A_t$  tends to 0 with growing t.

- $A_t$  computes a wrong result or "?" only if #correct results  $< \lceil t/2 \rceil$ .
- $Prob(A_t(x) = F(x)) \ge 1 (1 4\epsilon^2)^{t/2}$
- Thus, if one looks for a k such that

$$Prob(A_k(x) = F(x)) \ge 1 - \delta,$$

for a chosen constant  $\delta$ , it is sufficient to take

$$k \ge \frac{2\log \delta}{\log(1 - 4 \times \epsilon^2)}$$

- So,  $Time_{A_k}(n) \in \mathcal{O}(Time_A(n))$ .
- So, if A is asymptotically faster than any deterministic algorithm computing F, then  $A_k$  with an error probability below a chosen  $\delta$  is also more efficient than any deterministic algorithm.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte
Carlo Algorithms
Bounded-Error Monte Carlo

Monte Carlo Algorithms

#### **Unbounded-Error Monte Carlo Algorithms**

- **Definition:** A randomized algorithm A is a (unbounded-error) Monte Carlo algorithm computing F, an MC algorithm, for short, if, for every input x of F, Prob(A(x) = F(x)) > 1/2.
- Question: What is the difference between 2MC and MC?
  - 2MC algorithms: the error probability to have a fixed distance from 1/2 for any input.
  - MC algorithm: the distance between the error probability and 1/2 may tends to 0 with growing input size |x|.
- Question: How many independent runs of A on x are necessary in order to get

$$Prob(A_k(x) = F(x)) > 1 - \delta$$
 for a fixed chosen constant  $\delta$ ?



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Monte Carlo Algorithms

#### **Unbounded-Error Monte Carlo Algorithms**

 Question: How many independent runs of A on x are necessary in order to get

$$Prob(A_k(x) = F(x)) > 1 - \delta$$

for a fixed chosen constant  $\delta$ ?

• 
$$Prob(A_t(x) = F(x)) \ge 1 - (1 - 4\epsilon_x^2)^{t/2}$$

• Thus, if one looks for a k such that

$$Prob(A_k(x) = F(x)) \ge 1 - \delta,$$

for a chosen constant  $\delta$ , it is sufficient to take

$$k = k(|x|) \ge \frac{2\log\delta}{\log(1 - 4 \times \epsilon_x^2)} \ge (-2\log\delta) \times 2^{2\cdot |x|}.$$

• So,  $Time_{A_k}(x) \ge (-2\log \delta).2^{2\cdot |x|}.Time_A(x).$ 



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

Carlo Algorithms Bounded-Error Monte Carlo Algorithms

Monte Carlo Algorithms

#### MC Algorithms: Example

#### Protocol UMC

- Initial situation:  $R_I$  has n bits x,  $R_{II}$  has n bits y. The input (x,y) has to be accepted if and only if  $x \neq y$ .
- Phase 1:  $R_I$  uniformly chooses a number  $j \in \{1, 2, \ldots, n\}$  at random and sends j and the bit  $x_j$  to  $R_{II}$ .
- $R_{II}$  compares  $x_j$  with  $y_j$ . If  $x_j \neq y_j$ ,  $R_{II}$  accepts the input (x,y). If  $x_j = y_j$ , then  $R_{II}$  accepts (x,y) with probability 1/2 1/2n, and rejects (x,y) with probability 1/2 + 1/2n.

#### **Protocol Complexity**

 $\lceil \log_2(n+1) \rceil + 1$ 



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

Carlo Algorithms
Sounded-Error Monte Carlo
Algorithms

Monte Carlo Algorithms

#### MC Algorithms: Example

#### Protocol UMC

- Initial situation:  $R_I$  has n bits x,  $R_{II}$  has n bits y. The input (x,y) has to be accepted if and only if  $x \neq y$ .
- Phase 1:  $R_I$  uniformly chooses a number  $j \in \{1, 2, \ldots, n\}$  at random and sends j and the bit  $x_j$  to  $R_{II}$ .
- $R_{II}$  compares  $x_j$  with  $y_j$ . If  $x_j \neq y_j$ ,  $R_{II}$  accepts the input (x,y). If  $x_j = y_j$ , then  $R_{II}$  accepts (x,y) with probability 1/2 1/2n, and rejects (x,y) with probability 1/2 + 1/2n.

#### **Protocol Complexity**

$$\lceil \log_2(n+1) \rceil + 1$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

Monte Carlo Algorithms

#### Claim: UMC Protocol is a Monte Carlo Protocol.

Case 1: x = y

 $C_{il}$  = the computation in which  $R_I$  chooses the number i at random in Phase 1 and  $R_{II}$  outputs l.

$$Prob(C_{i0}) = \frac{1}{n} \times \left(\frac{1}{2} + \frac{1}{2n}\right)$$
$$Prob(C_{i1}) = \frac{1}{n} \times \left(\frac{1}{2} - \frac{1}{2n}\right)$$

$$A_0 = \{C_{i0} | 1 \le i \le n\}$$
: correct answer

$$Prob(A_0) = \sum_{i=1}^n \frac{1}{n} \times (\frac{1}{2} + \frac{1}{2n}) = n \times \frac{1}{n} \times (\frac{1}{2} + \frac{1}{2n}) > \frac{1}{2}.$$

Case 2:  $x \neq y$ 

 $\exists j \in \{1, 2, \dots, n\} \text{ s.t. } x_j \neq y_j$ 

Worst case: Only one j exists with  $x_j \neq y_j$ .

$$A_1 = \{C_j\} \cup \{C_{i1} | 1 \le i \le n, i \ne j\}$$

$$Prob(A_1) = Prob(C_j) + \sum_{i} Prob(C_{i1})$$

$$= \frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \times \left(\frac{1}{2} - \frac{1}{2n}\right) = \frac{1}{2} + \frac{1}{2n^2} > \frac{1}{2}$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte C

Algorithms

Unbounded-Error Monte Cario

Monte Carlo Algorithms

#### Claim: UMC Protocol is a Monte Carlo Protocol.

#### Case 1: x = y

 $C_{il}$  = the computation in which  $R_I$  chooses the number i at random in Phase 1 and  $R_{II}$  outputs l.

$$Prob(C_{i0}) = \frac{1}{n} \times \left(\frac{1}{2} + \frac{1}{2n}\right)$$

$$Prob(C_{i1}) = \frac{1}{n} \times \left(\frac{1}{2} - \frac{1}{2n}\right)$$

 $A_0 = \{C_{i0} | 1 \leq i \leq n\}$ : correct answer

$$Prob(A_0) = \sum_{i=1}^{n} \frac{1}{n} \times \left(\frac{1}{2} + \frac{1}{2n}\right) = n \times \frac{1}{n} \times \left(\frac{1}{2} + \frac{1}{2n}\right) > \frac{1}{2}.$$

Case 2: 
$$x \neq y$$

$$\exists j \in \{1, 2, \dots, n\} \text{ s.t. } x_j \neq y_j$$

Worst case: Only one j exists with  $x_j \neq y_j$ .

$$A_{1} = \{C_{j}\} \cup \{C_{i1} | 1 \leq i \leq n, i \neq j\}$$

$$Prob(A_{1}) = Prob(C_{j}) + \sum_{i=1, i \neq j}^{n} Prob(C_{i1})$$

$$= \frac{1}{n} + \sum_{i=1, i \neq j}^{n} \frac{1}{n} \times \left(\frac{1}{2} - \frac{1}{2n}\right) = \frac{1}{2} + \frac{1}{2n^2} > \frac{1}{2}.$$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms One-Sided-Error Monte Carlo Algorithms

Bounded-Error Monte Carl Algorithms Unbounded-Error Monte

for Optimization Problems

- We gave a classification of randomized algorithms for solving decision problems and for computing functions.
- For optimization problems, it is different. One can execute k runs of a randomized algorithm for an optimization problem and select the best one with respect to the optimization goal.
- A: computes an optimal solution only for an input x with probability  $\geq \frac{1}{|x|}$ .
- A<sub>|x|</sub>: execute |x| independent runs of A on x and then take the best output.
- Probability that  $A_{|x|}$  does not find any optimal solution  $\leq \left(1-\frac{1}{|x|}\right)^{|x|} < \frac{1}{e}.$



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo
Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

for Optimization Problems

- We gave a classification of randomized algorithms for solving decision problems and for computing functions.
- For optimization problems, it is different. One can execute k runs of a randomized algorithm for an optimization problem and select the best one with respect to the optimization goal.
- A: computes an optimal solution only for an input x with probability  $\geq \frac{1}{|x|}$ .
- $A_{|x|}$ : execute |x| independent runs of A on x and then take the best output.
- Probability that  $A_{|x|}$  does not find any optimal solution  $\leq \left(1-\frac{1}{|x|}\right)^{|x|} < \frac{1}{e}$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Mgorithms

Las Vegas Algorithms Monte Carlo

Monte Carlo
Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

for Optimization Problems

- We gave a classification of randomized algorithms for solving decision problems and for computing functions.
- For optimization problems, it is different. One can execute k runs of a randomized algorithm for an optimization problem and select the best one with respect to the optimization goal.

### Time Complexity of $A_{|x|}$ :

 $|x| \times$  the time complexity of A.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

for Optimization Problems

### For Optimization Problems

- the task is not necessarily to find an optimal solution, but one is usually satisfied with a feasible solution whose cost (quality) does not differ too much from the cost (quality) of an optimal solution.
- In such a case one can be looking for the probability of finding a relatively good situation, which leads to another classification of randomized algorithms.
- Solving an optimization problem cannot in general be considered as computing a function.
- Solving an optimization problem: computing a relation R in the sense that, for a given x, it is sufficient to find a y such that  $(x, y) \in R$ .
- There can exist many optimal solutions for an input x, and we are satisfied with any one of them.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

for Optimization Problems

#### Optimization Problem:

- L: problem instances.
- M(x): feasible solutions for input  $x \in L$ .
- cost: cost function
- goal: maximum/minimum
- A feasible solution  $\alpha \in M(x)$  is **optimal** for x if  $cost(\alpha, x) = goal\{cost(\beta, x) | \beta \in M(x)\}.$

#### Solving optimization problems

- Naive Algorithm: compute cost of all feasible solutions from M(x), and pick the best one.
- **Problem:** The cardinality of M(x) can be very large that it is practically impossible to generate M(x).



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte C Algorithms

for Optimization Problems

#### Optimization Problem:

- *L*: problem instances.
- M(x): feasible solutions for input  $x \in L$ .
- cost: cost function
- goal: maximum/minimum
- A feasible solution  $\alpha \in M(x)$  is **optimal** for x if  $cost(\alpha, x) = goal\{cost(\beta, x) | \beta \in M(x)\}.$

### Solving optimization problems

- Naive Algorithm: compute cost of all feasible solutions from M(x), and pick the best one.
- **Problem:** The cardinality of M(x) can be very large that it is practically impossible to generate M(x).



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Car Algorithms

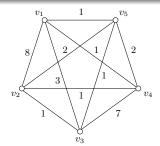
for Optimization Problems

#### Example: Traveling Salesman Problem (TSP)

- $\bullet \ \ \text{Input: An edge weighted complete graph } (G,c) \\$
- M(G,c): the set of all Hamiltonian cycles (i.e.  $v_{i_1},v_{i_2},\ldots,v_{i_n},v_{i_1}$  of vertices) of G.

• 
$$cost(v_{i_1}, v_{i_2}, \dots, v_{i_n}, v_{i_1}) = \sum_{j=1}^{n} c(\{v_{i_j}, v_{i_{(j \mod n)+1}}\}).$$

goal: minimum





Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

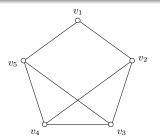
One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms



for Optimization Problems

### Example: minimum vertex cover problem (MIN-VCP)

- Input: A graph G(V, E)
- M(G): the set of all vertex covers of G.  $U \subseteq V$  is a vertex cover of G = (V, E), if every edge from E is incident to at least one vertex from U.
- cost = # vertices in a vertex cover.
- goal: minimum if every edge from E is incident to at least one vertex from U.





Randomized Algorithms-Fundamentals

Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms



for Optimization Problems

### Example: maximum satisfiability problem (MAX-SAT)

- Input: A boolean formula  $\phi = F_1 \wedge F_2 \wedge \cdots \wedge F_m$  in conjunctive normal form (CNF).
- $M(\phi) = \{0,1\}^n$ .
- $cost(\alpha) = \#$  clauses of  $\phi$  satisfied by  $\alpha$ .
- goal: maximum

$$\phi = (x_1 \vee x_2) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \wedge \bar{x}_2 \wedge (x_2 \vee x_3) \wedge x_3 \wedge (\bar{x}_1 \vee \bar{x}_3).$$

| $_{1} x_{2}$ | $x_3$ | $x_1 \vee x_2$ | $\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3$ | $\overline{x}_2$ | $x_2 \vee x_3$ | $x_3$ | $\overline{x}_1 \vee \overline{x}_3$ | # of satisfied clauses |
|--------------|-------|----------------|----------------------------------------------------------|------------------|----------------|-------|--------------------------------------|------------------------|
| 0 (          | 0     | 0              | 1                                                        | 1                | 0              | 0     | 1                                    | 3                      |
| 0 (          | 1     | 0              | 1                                                        | 1                | 1              | 1     | 1                                    | 5                      |
| ) 1          | 0     | 1              | 1                                                        | 0                | 1              | 0     | 1                                    | 4                      |
| ) 1          | 1     | 1              | 1                                                        | 0                | 1              | 1     | 1                                    | 5                      |
| 0            | 0     | 1              | 1                                                        | 1                | 0              | 0     | 1                                    | 4                      |
| 0            | 1     | 1              | 1                                                        | 1                | 1              | 1     | 0                                    | 5                      |
| 1            | 0     | 1              | 1                                                        | 0                | 1              | 0     | 1                                    | 4                      |
| 1            | 1     | 1              | 0                                                        | 0                | 1              | 1     | 0                                    | 3                      |



Randomized Algorithms-**Fundamentals** 

Algorithms Las Vegas

Monte Carlo

Algorithms One-Sided-Error Monte

for Optimization Problems

### Example: Integer linear programming (ILP)

- Input: An  $m \times n$  matrix  $A = [a_{ij}]_{i=1,\dots,m,j=1,\dots,n}$  and two vectors b and c (integers entries).
- $M(A, b, c) = \{X | AX = b\}.$
- cost(X) = c.X.
- goal: minimum



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Car



for Optimization Problems

#### **Definitions:**

- A is a **consistent algorithm** for U if, for every xinL, the output A(x) is a feasible solution for x (i.e.,  $A(x) \in M(x)$ ).
- Let A be a consistent algorithm for U. For every  $x \in L$ , we define the **approximation ratio** of A on x as

$$Ratio_A(x) = \max \left\{ \frac{cost(A(x))}{Opt_U(x)}, \frac{Opt_U(x)}{cost(A(x))} \right\}$$

• A is a  $\delta$ -approximation algorithm for U if  $Ratio_A(x) \leq \delta, \forall x \in L.$ 



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

for Optimization Problems

#### Example: Approximation algorithm for vertex cover problem

#### Algorithm 4.1: VCA

```
Input: A graph G(V, E).
  Output: A vertex cover of G = (V, E).
1 C := \emptyset; A := \emptyset E' := E;
  while E' \neq \emptyset do
        take an arbitrary edge (u, v) \in E';
        C := C \cup \{u, v\}; A := A \cup \{u, v\};
```

 $E' := E' - \{ \text{ all edges incident to } u \text{ or } v \};$ 

end

3

return C:



Randomized Algorithms-**Fundamentals** 

Algorithms

Las Vegas Algorithms

Monte Carlo

One-Sided-Error Monte

Unbounded-Error Monte

for Optimization Problems

# Example: Approximation algorithm for vertex cover problem

Claim:  $Time_{VCA(G)} \in O(|E|)$ : Obvious.

**Claim:** the algorithm VCA is a 2-approximation algorithm for MIN-VCP.

Proof

- VCA is a consistent algorithm for MIN-VCP: Since  $E' = \emptyset$  at the end of any computation, VCA computes a vertex cover in G.
- $|C| = 2\Delta |A|.$
- A is a matching in G.
- $Opt_{MIN-VCP}(G) \ge |A|$  (one needs |A| vertives to cover matching A).

Hence,  $\dfrac{|C|}{Opt_{MIN-VCP}(G)}=\dfrac{2|A|}{Opt_{MIN-VCP}(G)}\leq 2.$ 



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo

Algorithms
Unbounded-Error Monte

for Optimization Problems

### Example: Approximation algorithm for vertex cover problem

Claim:  $Time_{VCA(G)} \in O(|E|)$ : Obvious.

**Claim:** the algorithm VCA is a 2-approximation algorithm

for MIN-VCP.

#### Proof.

- VCA is a consistent algorithm for MIN-VCP: Since  $E' = \emptyset$  at the end of any computation, VCA computes a vertex cover in G.
- $|C| = 2\Delta |A|$ .
- A is a matching in G.
- $Opt_{MIN-VCP}(G) \geq |A|$  (one needs |A| vertives to cover matching A).

Hence, 
$$\frac{|C|}{Opt_{MIN-VCP}(G)} = \frac{2|A|}{Opt_{MIN-VCP}(G)} \le 2$$
.



Randomized Algorithms-**Fundamentals** 

Las Vegas Algorithms

Monte Carlo

One-Sided-Error Monte

Unbounded-Error Monte

for Optimization Problems

### Main goal of randomization:

- Improve the approximation ratio.
- produce feasible solutions whose cost (quality) is not very far from oprimal cost.
  - ullet to estimate the expected value E(Ratio), or
  - to guarantee that an approximation ratio  $\delta$  is achieved with probability at least 1/2.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carle

for Optimization Problems

### Classes of Ramdomized Algorithms:

- A randomized algorithm A is called a **randomized**  $E[\delta]$ -approximation algorithm for U if  $\forall x \in L$ 
  - (i)  $Prob(A(x) \in M(x)) = 1$ , and
  - (ii)  $E[Ratio_A(x)] \leq \delta$ .
- For any positive real  $\delta > 1$ , a randomized algorithm A is called a **randomized**  $\delta$ -approximation algorithm for U if  $\forall x \in L$ 
  - (i)  $Prob(A(x) \in M(x)) = 1$ , and
  - (ii)  $Prob(Ratio_A(x) \le \delta) \ge 1/2$ .

#### Claim:

These two classes are different in the strongly formal sense. i.e. a randomized  $E[\delta]$ -approximation algorithm for U is not necessarily a randomized  $\delta$ - approximation algorithm for U, and vice versa.



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

for Optimization Problems

#### Claim:

These two classes are different in the strongly formal sense. i.e. a randomized  $E[\delta]$ -approximation algorithm for U is not necessarily a randomized  $\delta$ - approximation algorithm for U, and vice versa.

#### Proof.

Consider a randomized algorithm A that has exactly 12 runs,  $C_1, C_2, \ldots, C_{12}$ , on an input x, and all runs have the same probability and  $Ratio_{A,x}(C_i) = 2$  for i = 1, 2, ..., 10and  $Ratio_{A,x}(C_i) = 50$  for  $j \in \{11, 12\}$ .

- Wer have
  - $E[Ratio_{A,x}] = \frac{1}{12}\Delta(10 \times 2 + 2 \times 50) = 10$
  - $Prob(Ratio_{A,x} \le 2) = 10 \times \frac{1}{12} = \frac{5}{6} \ge \frac{1}{2}$ .

So, A is a randomized 2- approximation algorithm for U, but not a randomized E[2]-approximation algorithm.



Randomized Algorithms-**Fundamentals** 

Monte Carlo

Las Vegas

Algorithms Bounded-Error Monte Carlo

Unbounded-Error Monte

for Optimization Problems

#### Claim:

These two classes are different in the strongly formal sense. i.e. a randomized  $E[\delta]$ -approximation algorithm for U is not necessarily a randomized  $\delta$ - approximation algorithm for U, and vice versa.

#### Proof. (Cont.)

Consider a randomized algorithm B that has exactly 1999 runs, on any input x, and all runs have the same probability. Assume that 1000 of these runs lead to results with approximation ratio 11 and that the remaining 999 runs compute an optimal solution. Wer have

- $E[Ratio_B] \sim 6$
- B is not a randomized  $\delta$ -approximation algorithm for any  $\delta < 11$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

for Optimization Problems

#### Lemma 2.5.71.

Let  $\delta>0$  be a real number, and let U be an optimization problem. For any randomized algorithm B, if B is a randomized  $E[\delta]$ - approximation algorithm for U, then B is a randomized  $\gamma$ -approximation algorithm for U for  $\gamma=2\times E[\delta]$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Ca

for Optimization Problems

#### Claim:

These two classes are different in the strongly formal sense. i.e. a randomized  $E[\delta]$ -approximation algorithm for U is not necessarily a randomized  $\delta$ - approximation algorithm for U, and vice versa.

#### Proof. (Cont.)

Consider a randomized algorithm B that has exactly 1999 runs, on any input x, and all runs have the same probability. Assume that 1000 of these runs lead to results with approximation ratio 11 and that the remaining 999 runs compute an optimal solution. Wer have

- $E[Ratio_B] \sim 6$
- B is not a randomized  $\delta$ -approximation algorithm for any  $\delta < 11$ .



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms Monte Carlo

Algorithms
One-Sided-Error Monte

Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

# Paradigms of the Design of Randomized Algorithms

- FOILING THE ADVERSARY
- ABUNDANCE OF WITNESSES
- FINGERPRINTING
- RANDOM SAMPLING
- AMPLIFICATION
- RANDOM ROUNDING



Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo





Randomized Algorithms-Fundamentals

Elementary Probability Theory

Models of Randomized Algorithms

Las Vegas Algorithms

Monte Carlo Algorithms

One-Sided-Error Monte Carlo Algorithms Bounded-Error Monte Carlo Algorithms

Unbounded-Error Monte Carlo Algorithms

< ≣ → ≣

= ′