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Elementary Probability Theory
S: sample space
Probability distribution: Prob : P (S)→ [0, 1], s.t.

Prob({x}) ≥ 0, ∀x ∈ S,
Prob(S) = 1,
Prob(A ∪B) = Prob(A) + Prob(B),∀A,B ⊂
S with A ∩B = ∅.

A ⊂ S: event
Prob(A): probability of event A.
Uniform probability distribution on S:

Prob({x}) =
1

|S|
,∀x ∈ S.

.
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Elementary Probability Theory
Prob(∅) = 0. .
Prob(S −A) = 1− Prob(A), ∀A ⊂ S.
Prob(A) ≤ Prob(B), ∀A ⊂ B
Prob(A ∪B) = Prob(A) + Prob(B)− Prob(A ∩B)

Prob(A) =
∑

x∈A Prob({x}),∀A ⊂ S.
Probability of A given B:

Prob(A|B) =
Prob(A ∩B)

Prob(B)
.

Two events A,B ⊂ S are independent, if .

Prob(A ∩B) = Prob(A)× Prob(B).
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Elementary Probability Theory
Probabilistic Experiment: like, Flipping a coin.
A (discrete) random variable on a sample space S: a
function X from S to R
Example: S = {head, tail},
X(head) = 1, X(tail) = 0.
Example: Consider a ramdomized algorithm.
S: different reuns of the algorithm on a same input.
X: running time of each run.
Event(X = z) = {s ∈ S|X(s) = z}.
The probability density function of the random
variable X: fX : R→ [0, 1],
fX(z) = Prob(Event(X = z)).
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Elementary Probability Theory
The distribution function of X is a function
DisX : R→ [0, 1], defined by

DisX(z) = Prob(X ≤ z)

The expectation of X (or the expected value of X) is

E[X] =
∑
x

x× Prob(X = x).

(S, Prob): a finite probability space.
X: a random variable on S.

E[X] =
∑
s∈S

X(s)× Prob({s}).
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Elementary Probability Theory
The expectation of X (or the expected value of X) is

E[X] =
∑
x

x× Prob(X = x).

(S, Prob): a finite probability space.
X: a random variable on S.

E[X] =
∑
s∈S

X(s)× Prob({s}).

E[a×X + b] = a× E[X] + b (weak linearity of
expectation).
E[X + Y ] = E[X] + E[Y ] (linearity of expectation).
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stochastic algorithms vs. randomized algorithms
stochastic algorithm: use random choices in
algorithm.
stichastic algorithm can behaves “poorl” on some
input instances when the algorithm is “good” for most
inputs.
The randomized algorithms: an stochastic algorithms
that are not allowed to behave poorly on any input
instance.
one has to investigate the behavior of a randomized
algorithm on any feasible input.
Therefore, it does not make any sense to consider
here probability distributions on input sets.
The only source of randomness under consideration
is the randomized control of the algorithm itself.
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1st Model
{A1, A2, . . . , An}: deterministic algorithms
for any input w, A chooses an Ai at random and lets
Ai work on w.
Ci: the computation of Ai on w.
A chooses Ai with probability Prob({Ai}).
Z(Ci) = Time(Ci)

2.3 Models of Randomized Algorithms 39

Typically, Prob is a uniform probability distribution. We usually prefer to
consider

SA,w = {C1, C2, . . . , Cn}
as the set of all runs (computations) of A on w, where Ci is the computation
of the i-th deterministic algorithm on w. Given Ai and w, the computation
of Ci is unambiguously determined and therefore formally it does not matter
whether one consider SA,w as {A1, A2, . . . , An} or as {C1, C2, . . . , Cn}. We
prefer the latter because we in fact investigate the concrete computations
C1, . . . , Cn, and not the general descriptions of the algorithms A1, . . . , An, in
this random experiment.15

This modeling is transparently presented in Figure 2.1. For a given input
w the randomized algorithm A chooses the i-th deterministic algorithm with
probability Prob({Ai}) for i = 1, . . . , n at the beginning, and the rest of the
computation is completely deterministic.

A1 A2 A3 An

C1

C2

C3

Cn

. . .

TA,w

Prob({A1}) Prob({An})

Fig. 2.1.

As indicated in Figure 2.1, the particular runs {C1, C2, . . . , Cn} of A on
w can be of different lengths. Let Time(Ci) denote the length (the time
complexity) of the computation Ci. If one wants to study the efficiency of A
on w, one can consider the random variable16 Z : SA,w → IN defined by

Z(Ci) = Time(Ci) for i = 1, . . . , n.

Then one can measure the efficiency of the work of A on w by the expected
time complexity of A on w, defined by

15of the work of A on w
16In fact, one can directly use Time as the name of this random variable.

expected time complexity
The expected time complexity of A
Exp− TimeA(n) =
max{Exp− TimeA(w)| the length of w is n}
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{A1, A2, . . . , An}: deterministic algorithms
for any input w, A chooses an Ai at random and lets
Ai work on w.
Ci: the computation of Ai on w.
A chooses Ai with probability Prob({Ai}).
Z(Ci) = Time(Ci)

the expected time complexity of A on w:

Exp− TimeA(w) = E[Z] =

n∑
i=1

Prob({Ci})× Z(Ci)

=

n∑
i=1

Prob({Ci})× Time(Ci).

expected time complexity
The expected time complexity of A
Exp− TimeA(n) =
max{Exp− TimeA(w)| the length of w is n}
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Models of Randomized Algorithms

1st Model– “reliability” of a randomized algorithm
“reliability” of a randomized algorithm A on input w:

X(Ci) =

{
1 if Ci is correct on w
0 if Ci is wrong on w

E[X] =

n∑
i=1

X(Ci)× Prob({Ci})

=
∑

X(Ci)=1

1× Prob({Ci}) +
∑

X(Ci)=0

0× Prob({Ci})

= Prob(Event(X = 1))

= the probability that A computes the right result.

Error probability of A:

ErrorA(n) = max {ErrorA(w)| the length of w is n}
9 / 59
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Models of Randomized Algorithms
Example: Randomized protocol

No analysis on protocol complexity.
For input (x, y), when x = y, the error prob. = 0.

If x 6= y, X(Cp) =

{
1 if p is good.
0 if p is bad.

Prob(Cp) = 1
PRIM(n2)

.

Error probability of protocol:

ErrorR(x, y) = 1− E[X] ≤ n− 1

Prim(n2)
≤ 2 log n

n

Error probability of modofied protocol (two primes):

ErrorR2(x, y) ≤
(

2 log n

n

)2
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{
1 if p is good.
0 if p is bad.

Prob(Cp) = 1
PRIM(n2)

.

E[X] =
∑

p∈PRIM(n2)

X(Cp)× Prob({Cp})

=
∑

p∈PRIM(n2)

X(Cp)×
1

Prim(n2)

=
1

Prim(n2)
×
∑

p is good

X(Cp)

≥ 1

Prim(n2)
×
(
Prim(n2)− (n− 1)

)
= 1− n− 1

Prim(n2)
.
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Example: MAX-SAT

Given a formula φ = F1 ∧ F2 ∧ · · · ∧ Fm, in CNF over
{x1, . . . , xn}, find an assigment that maximized the
satisfied clauses.
RSAM Algorithm (Random Sampling): assign 0 and
1 with same probability to each variable.
No error probability here.
How good is the answer?
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Example: MAX-SAT

Given a formula φ = F1 ∧ F2 ∧ · · · ∧ Fm, in CNF over
{x1, . . . , xn}, find an assigment that maximized the
satisfied clauses.
RSAM Algorithm (Random Sampling): assign 0 and
1 with same probability to each variable.
No error probability here.
How good is the answer?

Zi(α) =

{
1 Fi is satisfied by α
0 Fi is not satisfied by α

Z =
∑m

i=1 Zi.
E[Z] = E [

∑m
i=1 Zi] =

∑m
i=1E[Zi].

Fi = `i1 ∨ `i2 ∨ . . . ∨ `ik.
E[Zi] = 1− 1

2k
≥ 1

2 .
E[Z] ≥ m

2 .
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The Second Model

The Second model
Nondeterministic algorithm with probability
distribution for any nondeterministic choice.
Computation tree
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46 2 Fundamentals

Step 1: Choose uniformly an assignment (α1, α2, . . . , αn) to x1, x2, . . . , xn at
random.

Step 2: Compute the number r(α1, α2, . . . , αn) of clauses that are satisfied by
(α1, α2, . . . , αn).

Step 3: If r(α1, α2, . . . , αn) ≥ m
2 , then output (α1, α2, . . . , αn), else repeat

Step 1.

If this algorithm halts, then we have the assurance that it outputs an assign-
ment satisfying at least half the clauses. Estimate the expected value of the
number of executions of Step 1 of the algorithm (i.e., the expected running
time of the algorithm).

Exercise 2.3.37. Let us choose t assignments of the variables of a given for-
mula Φ at random. How large is the probability that the best one of these t
assignments satisfies at least half the clauses of Φ?

THE SECOND MODEL

Sometimes it is more natural to represent a randomized algorithm as a nonde-
terministic algorithm with a probability distribution for every nondeterminis-
tic choice. To simplify the matter, one usually considers random choices from
only two possibilities, each with probability 1/2. In general, one can describe
all computations (runs) of a randomized algorithm A on an input w by the
so-called computation tree25 TA,w of A on w (Figure 2.2).

TA,w

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
41

4

2
3

Fig. 2.2.

The vertices of the tree are labeled by the configurations of A. Every path
from the root to a leaf in this tree corresponds to a computation of A on w.

25This tree is in fact the same as a computation tree of a nondeterministic algo-
rithm, except for the labeling of the edges [Hro04].
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The Second Model

The Second model
Nondeterministic algorithm with probability
distribution for any nondeterministic choice.
Computation tree
SA,w = all runs of A on w.
If C ∈ SA,w then Prob(C) = product of label of all
edges on the path.
The second model is a generalization of the first
model.
The second model is used for algorithms that
repeatedly makes a random choice.
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The Second Model

Example: Randomized Quick Sort
Input: A set A of elements.
Step 1: If A contains one elements return it.
Step 2: If |A| ≥ 2, choose a random elements a ∈ A
Split A to two sets, elements bigger than a and
elemets less than a.
Recursively sort each subset and the result is the
first subset, a, the second subset.

Analysis
The error probability is 0.
Step 2: |A| − 1 comparisons
If the algorithm chooses first or last element, there is
n− 1 recursive calls, O(n2) comparisons.
If the algorithm chooses median at each step, the
time complexity is O(n log n). 14 / 59
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Example: Randomized Quick Sort
Input: A set A of elements.
Step 1: If A contains one elements return it.
Step 2: If |A| ≥ 2, choose a random elements a ∈ A
Split A to two sets, elements bigger than a and
elemets less than a.
Recursively sort each subset and the result is the
first subset, a, the second subset.

Analysis
Except median, there are several other good
choices: if algorithm chooses αnth element, for some
constant α < 1, the recursion changes to
T (n) ≤ T (αn) + T ((1− α)n) + n− 1 which solves to
T (n) ∈ O(n log n).
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The Second Model

Example: Randomized Quick Sort-Analysis
The computation tree of RQS is large and irregular.
C: a run of RQS on A, X(C) = # comparisons in C.
Let s1, . . . , sn is output of RQS.

Xij(C) =

{
1 si, sj compared in C
0 otherwise.

T (C) =
∑n

i=1

∑
j>iXij(C)= # comparisons in C.

E[T ] = Exp− TimeRQS(A).
E[T ] =

∑n
i=1

∑
j>iE[Xij ].

pij = probability that si and sj are compared.
E[Xij ] = pij .

16 / 59
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The Second Model

Example: Randomized Quick Sort-Analysis
pij = probability that si and sj are compared.
E[Xij ] = pij .
pij = probability that si of sj is choosen as pivot
before any of Middle points.
If an element from Left or right is choosen, it does
not influence the comparison of si and sj .

pij =
|{si, sj}|

|Middle ∪ {si, sj}|
=

2

j − i+ 1
.
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If an element from Left or right is choosen, it does
not influence the comparison of si and sj .

pij =
|{si, sj}|

|Middle ∪ {si, sj}|
=

2

j − i+ 1
.

2.3 Models of Randomized Algorithms 49

counts the total number of comparisons, and so E[T ] = Exp-TimeRQS(A).
Due to linearity of expectation we have

E[T ] = E

⎡⎣ n∑
i=1

∑
j>i

Xij

⎤⎦ =

n∑
i=1

∑
j>i

E[Xij ] . (2.3)

In order to estimate E[T ], it remains to estimate the expectations E[Xij ]
for all i, j ∈ {1, . . . , n}, i < j. Let pij denote the probability that si and sj

are compared in an execution of RQS(A). Since Xij is an indicator variable,
we have29

E[Xij ] = pij · 1 + (1 − pij) · 0 = pij , (2.4)

and so it remains to estimate pij . In which computations are si and sj com-
pared? Only in those in which one of the elements si and sj is chosen as a pivot
at random by RQS(A) before any of the elements si+1, si+2, . . . , sj−1 between
si and sj have been chosen as a pivot (Figure 2.3). Namely, if the first pivot of
the set {si, si+1, . . . , sj} is an element from the set Middle = {si+1, . . . , sj−1},
then si is put into A< and sj is put into A>, and so si and sj cannot be com-
pared in the rest of the computation. On the other hand, if si [or sj ] is chosen
as the first pivot element of the set {si, . . . , sj}, then si [sj ] is compared with
all elements from Middle ∪ {sj} [ or Middle ∪ {si}], and so with sj [si].

s1 si−1 si si+1 si+2 sj−1 sj sj+1 sn. . .. . .. . .

Left Middle Right

Fig. 2.3.

Each of the elements of A has the same probability of being chosen as the
first pivot. If an element from Left or Right (Figure 2.3) is chosen, then si

and sj are put into the same set A> or A<, and so this choice does not have
any influence on whether si and sj will be compared later or not. Thus, we
may model this situation as a probabilistic experiment of uniformly choosing
an element from Middle ∪ {si, sj} at random. Hence,

pij =
|{si, sj}|

|Middle ∪ {si, sj}| =
2

j − i + 1
. (2.5)

Let Har (n) =
∑n

k=1
1
k be the nth Harmonic number.30 Inserting (2.5) into

(2.3) we obtain

29see Lemma 2.2.27.
30For some estimations of Har (n), see Section A.3.
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The Second Model

Example: Randomized Quick Sort-Analysis
E[T ] =

∑n
i=1

∑
j>iE[Xij ].

pij = probability that si and sj are compared.
E[Xij ] = pij = 2

j−i+1 .

E[T ] =

n∑
i=1

∑
j>i

pij

=
n∑

i=1

∑
j>i

2

j − i+ 1

≤
n∑

i=1

n−i+1∑
k=1

2

k

= 2nHar(n) = 2n log n+ Θ(n).
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Classification of Randomized Algorithms

LAS VEGAS Algorithms
Guarantee that output is correct (always).
Prob(A(x) = F (x)) = 1

We investigate expected time complexity of the
algorithms.
Different run lengths on different inputs (otherwise
we can construct a deterministic algorithm).
Examples: Randomized Quick sort, Randomized
RSEL.
There a variation that can output "I do not know".

LAS VEGAS Algorithms (2nd def.)
For some 0 < ε < 1

Prob(A(x) = F (x)) ≥ ε
Prob(A(x) = ”?”) ≤ 1− ε.
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LAS VEGAS Algorithms

Example: LV10

We have two computers RI and RII

{x1, . . . , x10} in RI and {y1, . . . , y10} on RII

Question: Is there an index j s. t. xj = yj?
Complexity of protocol: # exchanged bits.
Any deterministic protocol needs 10n bits exchange.
Here we show a Las Vegas protocol with complexity
n+O(log n).
Note that previous protocol is not Las Vegas.
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Example: LV10: The ptorocol
p1, . . . , p10: 10 primes chosen randomly in PRIM(n2).
RI computes si = xi mod pi, i = 1, . . . , 10.
RI sends p1, . . . , p10 and s1, . . . , s10 to RII .
RII computes qi = yi mod pi, i = 1, . . . , 10.
If si 6= qi,∀i = 1, . . . , 10, output NO.
Else let j be the smallest index s. t. sj = qj , and RII

sends yj and j to RI .
RI compare xj and yj , if xj = yj outputs Yes,
otherwise outputs "?".

Protocol Complexity:
Communications: p1, . . . , p10, s1, . . . , s10, j, yj=
n+O(log n) bits.
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Classification of Randomized Algorithms
LAS VEGAS Algorithms

Example: LV10: The ptorocol is Las Vegas
Obviously the output of the algorithm is always
correct.
We shows that the probability condition is also holds.
Case (i): xi 6= yi, ∀i:

The probability that xi 6= yi ≥ 1− 2 logn
n .

Since the primes are chosen independently:

Prob((s1, . . . , s10) 6= (q1, . . . , q10)) ≥
(

1− 2 log n

n

)10

So, Prob(LV10((x1, . . . , x10), (y1, . . . , y10)) = No) ≥

≥
(

1− 2 log n

n

)10

≥
(

1− 20 log n

n

)
≥ 1

2
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LAS VEGAS Algorithms

Example: LV10: The ptorocol is Las Vegas
Case (ii): xi = yi, for some i:

Let j be the smallest index s.t. xj = yj .
If the protocol exchange some i < j then the answer
will be "?".
So, ∀i ∈ {1, . . . , j − 1} we must have
xi mod pi 6= yimod pi (Event Ej).
If j = 1, the answer is always correct.
If j > 1, Prob(Ej) ≥

≥
(

1− 2 log n

n

)j−1

≥
(

1− 2(j − 1) log n

n

)
The function takes its minimum at j = 10, so

Prob(LV10((x1, . . . , x10), (y1, . . . , y10)) = Y es) ≥ 1−18 log n

n
.
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Classification of Randomized Algorithms
LAS VEGAS* Algorithms

LAS VEGAS* Algorithms
Prob(A(x) = F (x))→ 1 as |x| → ∞
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LAS VEGAS Algorithms

Are two definitions equivalent? (with and without "?")
A= a Las Vegas algorithm with output "?".
A′: Runs A as far as its output is "?".
The output of the algorithm is always correct.
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Are two definitions equivalent? (with and without "?")
A= a Las Vegas algorithm with output "?".
A′: Runs A as far as its output is "?".
The output of the algorithm is always correct.58 2 Fundamentals

“?”

“?”

“?”

TA,w

TA,w TA,w

TA,w

T ′
A,w

Fig. 2.4.

How high is the probability that A′ halts? This probability is high because
it tends to 1 with growing running time. Why is it so? Let TimeA(w) be
the worst-case complexity of A, i.e., the depth of TA,w. This means that the
probability that A′ stops with outputting the right result in time TimeA(w) is
at least 1/2. The probability of successfully finishing the work in 2 ·TimeA(w)
is already at least 3/4, because A′ starts new runs of A on w for every leaf
of TA,w with the output “?”. This means that after time k · TimeA(w) the
algorithm A′ computes the correct result with probability at least

1 − 1

2k
,

because 2−k is an upper bound on the probability of getting the output “?”
in k independent runs of A on w.

How large is the expected value of the time complexity Exp-TimeA′ (n) of
A′? We claim that

Exp-TimeA′ (n) ∈ O(TimeA(n)) .

In what follows, we prove this claim. Without loss of generality one may
assume that all computations of A on w with the output “?” have the maximal
length TimeA(w), and so all these computations have the same length. Let,
for all i ∈ IN − {0},

Seti = {C ∈ SA′,w | (i − 1) · TimeA(w) < Time(C) ≤ i · TimeA(w)}
be the set of all computations that end (halt) exactly39 in the ith run of A.
Clearly, SA′,w =

⋃∞
i=1 Seti and Setr ∩ Sets = ∅ for r �= s. Above, we have

39those computations of A′ that contain (i − 1) starts of A on w
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LAS VEGAS Algorithms

Are two definitions equivalent? (with and without "?")
A= a Las Vegas algorithm with output "?".
A′: Runs A as far as its output is "?".
The output of the algorithm is always correct.
A′ can have infinite computations.
TimeA(w)= the worst-case complexity of A.
The probability that A′ stops in time TimeA(w) is
≥ 1/2.
The probability that A′ stops in time 2× TimeA(w) is
≥ 3/4.
The probability that A′ stops in time k × TimeA(w) is
≥ 1− 1/2k.
Claim: Exp− TimeA′(n) ∈ O(TimeA(n)) .

26 / 59



Yazd Univ.

Randomized
Algorithms-

Fundamentals

Elementary
Probability Theory

Models of
Randomized
Algorithms

Las Vegas
Algorithms

Monte Carlo
Algorithms
One-Sided-Error Monte
Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Unbounded-Error Monte
Carlo Algorithms

Classification of Randomized Algorithms
LAS VEGAS Algorithms

Are two definitions equivalent? (with and without "?")
Claim: Exp− TimeA′(n) ∈ O(TimeA(n)) .

Seti= all computations that end exactly at ith run.
SA′,w = ∪∞1 Seti, and Seti ∩ Setj = ∅.∑

C ends before k Prob({C}) ≥ 1− 1
2k

So,
∑

C∈Seti
Prob({C}) ≤ 1

2i−1 .

Exp− TimeA′(n) =

=
∑

C∈SA′,w

TimeA′(C)× Prob({C})

=

∞∑
i=1

∑
C∈Seti

TimeA′(C)× Prob({C})

=

∞∑
i=1

∑
C∈Seti

i× TimeA(w)× Prob({C})

=

∞∑
i=1

i× TimeA(w)×
∑

C∈Seti

Prob({C})

≤
∞∑
i=1

i× TimeA(w)× 1

2i−1

< 6× TimeA(w).
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Are two definitions equivalent? (with and without "?")
Obviously any algorithm without "?" can be
considered as an algorithm with "?".
Reasons to convert a Las Vegas algorithm without
"?" into a Las Vegas algorithm with output "?".

Consider algorithm A that mostly runs fast but
sometime runs slow.
When a run take more than the time for fast run, stop
it with output "?".
Claim: 2× Exp− TimeA(w) is a suitable upper
bound for stopping.
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Are two definitions equivalent? (with and without "?")
To show that the new algorithm is Las Vegas, we
have to show that Prob(B(w) = ”?”) ≤ 1/2.
Proof by contradiction:

Exp− TimeA(w) =
∑

C∈SA,w

TimeA(C)× Prob({C})

=
∑

C∈SA,w(”?”)

TimeA(C)× Prob({C})

+
∑

C∈SA,w(F (w))

TimeA(C)× Prob({C})

>
∑

C∈SA,w(”?”)

TimeA(C)× Prob({C})

>
∑

C∈SA,w(”?”)

(2× Exp− TimeA(w) + 1)× Prob({C})

> (2× Exp− TimeA(w) + 1)× 1/2

= Exp− TimeA(w) + 1/2 (Contradiction!)
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One-Sided-Error Monte Carlo Alg.
For decision problems.
Let (σ, L) be a decision problem.
Output "0" is almost correct, output "1" had bounded
error.
Definition: A is an one-sided-error Monte Carlo
algorithm for L, 1MC algorithm for short, if

(i) ∀x ∈ L, Prob(A(x) = 1) ≥ 1/2, and
(ii) ∀x 6∈ L, Prob(A(x) = 0) = 1.

1MC*
(i’) ∀x ∈ L,Prob(A(x) = 1) tends to 1 with growing |x|.

Similar to Las Vegas algorithms, one can decreases the
error probability exponentially by repitations.
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Monte Carlo Algorithms

One-Sided-Error Monte Carlo Alg.
After k repitition of A, the error probability decreases
to 2−k.
Notation: Ak: k independents runs of A.
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Bounded-Error Monte Carlo Algorithms
Definition: A is a bounded-error Monte Carlo
algorithm for F , 2MC algorithm for short, if
∃ε ∈ (0, 1/2] s.t. ∀ x of F ,
Prob(A(x) = F (x)) ≥ 1/2 + ε.
If A is a Las Vegas or 1MC algorithm then A2 is 2MC.
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For any 2MC algorithm A and any positive integer t, let At

denote the following randomized algorithm:

2MC Algorithm At

Input: x

Step 1: Perform t independent runs of A on x and
save the t computed results α1, . . . , αt.
Step 2: if there is an α that appears at least dt/2e
times in the sequence α1, . . . , αt, then

output "α"
else

output "?"

Claim: The error probability of At tends to 0 with
growing t.
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Claim: The error probability of At tends to 0 with
growing t.

At computes a wrong result or "?" only if #correct
results < dt/2e.
pri(x)= the probability that At computes the correct
result in exactly i runs.

pri(x) =

(
t

i

)
pi(1− p)t−i

=

(
t

i

)
(p(1− p))i(1− p)t−2i

=

(
t

i

)((
1

2
+ εx

)(
1

2
− εx

))i(
1

2
− εx

)t−2i

=

(
t

i

)(
1

4
+ ε2x

)i
((

1

2
− εx

)2
)t/2−i

≤
(
t

i

)(
1

4
− ε2

)t/2

35 / 59



Yazd Univ.

Randomized
Algorithms-

Fundamentals

Elementary
Probability Theory

Models of
Randomized
Algorithms

Las Vegas
Algorithms

Monte Carlo
Algorithms
One-Sided-Error Monte
Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Unbounded-Error Monte
Carlo Algorithms

Classification of Randomized Algorithms
Monte Carlo Algorithms

Claim: The error probability of At tends to 0 with
growing t.

At computes a wrong result or "?" only if #correct
results < dt/2e.
pri(x) ≤

(
t
i

) (
1
4 − ε

2
)t/2

Prob(At(x) = F (x)) = 1−
bt/2c∑
i=0

pri(x)

> 1−
bt/2c∑
i=0

(
t

i

)(
1

4
− ε2

)t/2

= 1−
(

1

4
− ε2

)t/2 bt/2c∑
i=0

(
t

i

)

> 1−
(

1

4
− ε2

)t/2

× 2t

≥ 1− (1− 4ε2)t/2 (Done!)
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Claim: The error probability of At tends to 0 with
growing t.

At computes a wrong result or "?" only if #correct
results < dt/2e.
Prob(At(x) = F (x)) ≥ 1− (1− 4ε2)t/2

Thus, if one looks for a k such that

Prob(Ak(x) = F (x)) ≥ 1− δ,

for a chosen constant δ, it is sufficient to take

k ≥ 2 log δ

log(1− 4× ε2)
So, TimeAk

(n) ∈ O(TimeA(n)).

So, if A is asymptotically faster than any
deterministic algorithm computing F , then Ak with an
error probability below a chosen δ is also more
efficient than any deterministic algorithm.
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Unbounded-Error Monte Carlo Algorithms
Definition: A randomized algorithm A is a
(unbounded-error) Monte Carlo algorithm computing
F , an MC algorithm, for short, if, for every input x of
F , Prob(A(x) = F (x)) > 1/2.
Question: What is the difference between 2MC and
MC?

2MC algorithms: the error probability to have a fixed
distance from 1/2 for any input.
MC algorithm: the distance between the error
probability and 1/2 may tends to 0 with growing input
size |x|.

Question: How many independent runs of A on x
are necessary in order to get

Prob(Ak(x) = F (x)) > 1− δ
for a fixed chosen constant δ?

38 / 59



Yazd Univ.

Randomized
Algorithms-

Fundamentals

Elementary
Probability Theory

Models of
Randomized
Algorithms

Las Vegas
Algorithms

Monte Carlo
Algorithms
One-Sided-Error Monte
Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Unbounded-Error Monte
Carlo Algorithms

Classification of Randomized Algorithms
Monte Carlo Algorithms

Unbounded-Error Monte Carlo Algorithms
Question: How many independent runs of A on x
are necessary in order to get

Prob(Ak(x) = F (x)) > 1− δ
for a fixed chosen constant δ?
Prob(At(x) = F (x)) ≥ 1− (1− 4ε2x)t/2

Thus, if one looks for a k such that

Prob(Ak(x) = F (x)) ≥ 1− δ,

for a chosen constant δ, it is sufficient to take

k = k(|x|) ≥ 2 log δ

log(1− 4× ε2x)
≥ (−2 log δ)× 22.|x|.

So, TimeAk
(x) ≥ (−2 log δ).22.|x|.T imeA(x).
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MC Algorithms: Example
Protocol UMC

Initial situation: RI has n bits x, RII has n bits y. The
input (x, y) has to be accepted if and only if x 6= y.
Phase 1: RI uniformly chooses a number
j ∈ {1, 2, . . . , n} at random and sends j and the bit xj
to RII .
RII compares xj with yj . If xj 6= yj , RII accepts the
input (x, y). If xj = yj , then RII accepts (x, y) with
probability 1/2− 1/2n, and rejects (x, y) with
probability 1/2 + 1/2n.

Protocol Complexity
dlog2(n+ 1)e+ 1
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Claim: UMC Protocol is a Monte Carlo Protocol.
Case 1: x = y
Cil = the computation in which RI chooses the number i
at random in Phase 1 and RII outputs l.
Prob(Ci0) = 1

n ×
(
1
2 + 1

2n

)
Prob(Ci1) = 1

n ×
(
1
2 −

1
2n

)
A0 = {Ci0|1 ≤ i ≤ n}: correct answer
Prob(A0) =

∑n
i=1

1
n ×

(
1
2 + 1

2n

)
= n× 1

n ×
(
1
2 + 1

2n

)
> 1

2 .
Case 2: x 6= y
∃j ∈ {1, 2, . . . , n} s.t. xj 6= yj
Worst case: Only one j exists with xj 6= yj .
A1 = {Cj} ∪ {Ci1|1 ≤ i ≤ n, i 6= j}

Prob(A1) = Prob(Cj) +

n∑
i=1,i 6=j

Prob(Ci1)

=
1

n
+

n∑
i=1,i 6=j

1

n
×
(

1

2
− 1

2n

)
=

1

2
+

1

2n2
>

1

2
.
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Classification of Randomized Algorithms
for Optimization Problems

We gave a classification of randomized algorithms
for solving decision problems and for computing
functions.
For optimization problems, it is different. One can
execute k runs of a randomized algorithm for an
optimization problem and select the best one with
respect to the optimization goal.

A: computes an optimal solution only for an input x
with probability ≥ 1

|x| .

A|x|: execute |x| independent runs of A on x and
then take the best output.
Probability that A|x| does not find any optimal

solution ≤
(

1− 1
|x|

)|x|
< 1

e .
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Classification of Randomized Algorithms
for Optimization Problems

We gave a classification of randomized algorithms
for solving decision problems and for computing
functions.
For optimization problems, it is different. One can
execute k runs of a randomized algorithm for an
optimization problem and select the best one with
respect to the optimization goal.

Time Complexity of A|x|:

|x|× the time complexity of A.
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Classification of Randomized Algorithms
for Optimization Problems

For Optimization Problems
the task is not necessarily to find an optimal solution,
but one is usually satisfied with a feasible solution
whose cost (quality) does not differ too much from
the cost (quality) of an optimal solution.
In such a case one can be looking for the probability
of finding a relatively good situation, which leads to
another classification of randomized algorithms.
Solving an optimization problem cannot in general be
considered as computing a function.
Solving an optimization problem: computing a
relation R in the sense that, for a given x, it is
sufficient to find a y such that (x, y) ∈ R.
There can exist many optimal solutions for an input
x, and we are satisfied with any one of them.
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Classification of Randomized Algorithms
for Optimization Problems

Optimization Problem:
L: problem instances.
M(x): feasible solutions for input x ∈ L.
cost: cost function
goal: maximum/minimum
A feasible solution α ∈M(x) is optimal for x if
cost(α, x) = goal{cost(β, x)|β ∈M(x)}.

Solving optimization problems
Naive Algorithm: compute cost of all feasible
solutions from M(x), and pick the best one.
Problem: The cardinality of M(x) can be very large
that it is practically impossible to generate M(x).
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for Optimization Problems

Example: Traveling Salesman Problem (TSP)
Input: An edge weighted complete graph (G, c)

M(G, c): the set of all Hamiltonian cycles (i.e.
vi1 , vi2 , . . . , vin , vi1 of vertices) of G.

cost(vi1 , vi2 , . . . , vin , vi1) =

n∑
j=1

c({vij , vi(j mod n)+1
}).

goal: minimum

76 2 Fundamentals

Costs: For every Hamiltonian cycle H = vi1 , vi2 , . . . , vin , vi1 ∈ M(G, c),

cost((vi1 , . . . , vin , vi1), (G, c)) =

n∑
j=1

c
({vij , vi(j mod n)+1

}) ,

i.e., the cost of every Hamiltonian cycle is the sum of the weights of all
its edges.

Goal: minimum.

For the problem instance of TSP in Figure 2.6, we have

cost((v1, v2, v3, v4, v5, v1) , (G, c)) = 8 + 1 + 7 + 2 + 1 = 19 and

cost((v1, v5, v3, v2, v4, v1), (G, c)) = 1 + 1 + 1 + 1 + 1 = 5.

The Hamiltonian cycle v1, v5, v3, v2, v4, v1 is the only optimal solution for
this problem instance of TSP. ��

v1

1

1

1

1

1

22

3

v2

7

8

v3

v4

v5

Fig. 2.6.

Exercise 2.5.62. Prove, for any integer n ≥ 2m, that

|M((G, c)) | = (n − 1)!/2

for any graph G with n vertices.

A vertex cover of a graph G = (V, E) is any set U of vertices of G (i.e.,
U ⊆ E) such that every edge from E is incident62 to at least one vertex from U .
For example, the set {v2, v4, v5} is a vertex cover of the graph in Figure 2.7
because each edge of this graph is incident to at least one of there three
vertices. The set {v1, v2, v3} is not a vertex cover of the graph in Figure 2.7
because the edge {v4, v5} is not covered by any of the vertices v1, v2, and v3.

62An edge is incident to a vertex if this vertex is one of the two endpoints of this
edge, i.e., the edge {u, v} is incident to the vertices u and v.

46 / 59



Yazd Univ.

Randomized
Algorithms-

Fundamentals

Elementary
Probability Theory

Models of
Randomized
Algorithms

Las Vegas
Algorithms

Monte Carlo
Algorithms
One-Sided-Error Monte
Carlo Algorithms

Bounded-Error Monte Carlo
Algorithms

Unbounded-Error Monte
Carlo Algorithms

Classification of Randomized Algorithms
for Optimization Problems

Example: minimum vertex cover problem (MIN-VCP)
Input: A graph G(V,E)

M(G): the set of all vertex covers of G.
U ⊆ V is a vertex cover of G = (V,E), if every

edge from E is incident to at least one vertex from U .
cost = # vertices in a vertex cover.
goal: minimum if every edge from E is incident to at
least one vertex from U .

2.5 Classification of Randomized Algorithms for Optimization Problems 77

Exercise 2.5.63. The minimum vertex cover problem, MIN-VCP, is
a minimization problem, where one searches for a vertex cover of minimal
cardinality for a given graph G.

(i) Estimate the set of all vertex covers of the graph in Figure 2.7.
(ii) Give a formal specification of MIN-VCP as a 6-tuple. Use the alphabet

{0, 1, #} to represent the input instances and the feasible solutions.

v1

v2

v3v4

v5

Fig. 2.7.

Example 2.5.64. The maximum satisfiability problem (MAX-SAT)
Let X = {x1, x2, . . .} be the set of Boolean variables. The set of all literals

over X is LitX = {x, x | x ∈ X}, where x is the negation of x for every variable
x. The values 0 and 1 are called Boolean values (constants). A clause is any
finite disjunction over literals (for instance, x1 ∨ x3 ∨ x4 ∨ x7). A (Boolean)
formula F is in conjunctive normal form (CNF) if F is a finite conjunction
of clauses. A formula F is in k-conjunctive normal form (kCNF) for a positive
integer k if every clause of F consists of at most k literals. A formula F is
in EkCNF for a positive integer k if every clause of F consists of exactly k
literals over k different variables.

An example of a formula over X in CNF is

Φ = (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x2 ∧ (x2 ∨ x3) ∧ x3 ∧ (x1 ∨ x3).

The maximum satisfiability problem, MAX-SAT, is to find an input assign-
ment to the variables of a given formula in CNF such that the number of
satisfied clauses is maximized.

MAX-SAT
Input: A formula Φ = F1 ∧F2 ∧ · · · ∧Fm over X in CNF, where Fi is a clause

for i = 1, . . . , m, m ∈ IN − {0}.
Constraints: For every formula Φ over a set {xi1 , xi2 , . . . , xin} of n Boolean

variables, the set of feasible solutions is
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Classification of Randomized Algorithms
for Optimization Problems

Example: maximum satisfiability problem
(MAX-SAT)

Input: A boolean formula φ = F1 ∧ F2 ∧ · · · ∧ Fm in
conjunctive normal form (CNF) .
M(φ) = {0, 1}n.
cost(α) = # clauses of φ satisfied by α.
goal: maximum

φ = (x1∨x2)∧ (x̄1∨ x̄2∨ x̄3)∧ x̄2∧ (x2∨x3)∧x3∧ (x̄1∨ x̄3).

78 2 Fundamentals

M(Φ) = {0, 1}n.

{Every α = α1 . . . αn ∈ M(Φ), αj ∈ {0, 1} for j = 1, . . . , n, represents an
assignment where the value αj is assigned to the variable xij .}

Costs: For every formula Φ and any α ∈ M(Φ), cost(α, Φ) is the number of
clauses of Φ satisfied by α.

Goal: maximum.

For the formula Φ described above, Table 2.1 presents all eight assignments
to the variables x1, x2, and x3 and we can easily observe that the assignments
001, 011, and 101 satisfy five clauses each, and are hence optimal solutions
for Φ.

Table 2.1.

x1 x2 x3 x1 ∨ x2 x1 ∨ x2 ∨ x3 x2 x2 ∨ x3 x3 x1 ∨ x3 # of satisfied clauses

0 0 0 0 1 1 0 0 1 3
0 0 1 0 1 1 1 1 1 5
0 1 0 1 1 0 1 0 1 4
0 1 1 1 1 0 1 1 1 5
1 0 0 1 1 1 0 0 1 4
1 0 1 1 1 1 1 1 0 5
1 1 0 1 1 0 1 0 1 4
1 1 1 1 0 0 1 1 0 3

If the set of feasible inputs is restricted to formulas in kCNF for a positive
integer k, we speak of the MAX-kSAT problem. If one allows only formulas
in EkCNF as inputs, then one speaks of the MAX-EkSAT problem.

Example 2.5.65. Integer linear programming (ILP)
Given a system of linear equations and a linear function over variables of

this linear equation system, the task is to find a solution to the system of
equations such that the value of the linear function is minimized. ILP can be
phrased as an optimization problem as follows:

ILP
Input: An m × n matrix

A = [aij ]i=1,...m,j=1,...,n

and two vectors

b = (b1, . . . , bm)T and c = (c1, . . . , cn)

for n, m ∈ IN − {0}, where aij , bi, cj are integers for i = 1, . . . , m and
j = 1, . . . , n.
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Classification of Randomized Algorithms
for Optimization Problems

Example: Integer linear programming (ILP)
Input: An m× n matrix A = [aij ]i=1,...m,j=1,...,n and
two vectors b and c (integers entries).
M(A, b, c) = {X|AX = b}.
cost(X) = c.X.
goal: minimum
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Classification of Randomized Algorithms
for Optimization Problems

Definitions:
A is a consistent algorithm for U if, for every xinL,
the output A(x) is a feasible solution for x (i.e.,
A(x) ∈M(x)).
Let A be a consistent algorithm for U . For every
x ∈ L, we define the approximation ratio of A on x
as

RatioA(x) = max

{
cost(A(x))

OptU (x)
,
OptU (x)

cost(A(x))

}
A is a δ-approximation algorithm for U if
RatioA(x) ≤ δ, ∀x ∈ L.
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Classification of Randomized Algorithms
for Optimization Problems

Example: Approximation algorithm for vertex cover
problem

Algorithm 4.1: VCA

Input: A graph G(V,E).
Output: A vertex cover of G = (V,E).
C := ∅; A := ∅ E′ := E;1

while E′ 6= ∅ do2

take an arbitrary edge (u, v) ∈ E′;3

C := C ∪ {u, v}; A := A ∪ {u, v};4

E′ := E′ − { all edges incident to u or v};5

end6

return C;7
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Classification of Randomized Algorithms
for Optimization Problems

Example: Approximation algorithm for vertex cover
problem
Claim: TimeV CA(G) ∈ O(|E|): Obvious.
Claim: the algorithm VCA is a 2-approximation algorithm
for MIN-VCP.
Proof.

VCA is a consistent algorithm for MIN-VCP: Since
E′ = ∅ at the end of any computation, VCA computes
a vertex cover in G.
|C| = 2∆|A|.
A is a matching in G.
OptMIN−V CP (G) ≥ |A| (one needs |A| vertives to
cover matching A).

Hence, |C|
OptMIN−V CP (G)

=
2|A|

OptMIN−V CP (G)
≤ 2.
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Classification of Randomized Algorithms
for Optimization Problems

Main goal of randomization:
Improve the approximation ratio.
produce feasible solutions whose cost (quality) is not
very far from oprimal cost.

to estimate the expected value E(Ratio), or
to guarantee that an approximation ratio δ is
achieved with probability at least 1/2.
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Classification of Randomized Algorithms
for Optimization Problems

Classes of Ramdomized Algorithms:
A randomized algorithm A is called a randomized
E[δ]-approximation algorithm for U if ∀x ∈ L
(i) Prob(A(x) ∈M(x)) = 1, and
(ii) E[RatioA(x)] ≤ δ.
For any positive real δ > 1, a randomized algorithm A
is called a randomized δ-approximation algorithm
for U if ∀x ∈ L
(i) Prob(A(x) ∈M(x)) = 1, and
(ii) Prob(RatioA(x) ≤ δ) ≥ 1/2.

Claim:
These two classes are different in the strongly formal
sense. i.e. a randomized E[δ]-approximation algorithm for
U is not necessarily a randomized δ- approximation
algorithm for U , and vice versa. 54 / 59
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Classification of Randomized Algorithms
for Optimization Problems

Claim:
These two classes are different in the strongly formal
sense. i.e. a randomized E[δ]-approximation algorithm for
U is not necessarily a randomized δ- approximation
algorithm for U , and vice versa.

Proof.
Consider a randomized algorithm A that has exactly 12
runs, C1, C2, . . . , C12, on an input x, and all runs have the
same probability and RatioA,x(Ci) = 2 for i = 1, 2, . . . , 10
and RatioA,x(Cj) = 50 for j ∈ {11, 12}.
Wer have

E[RatioA,x] = 1
12∆(10× 2 + 2× 50) = 10

Prob(RatioA,x ≤ 2) = 10× 1
12 = 5

6 ≥
1
2 .

So, A is a randomized 2- approximation algorithm for U ,
but not a randomized E[2]-approximation algorithm. 55 / 59
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Classification of Randomized Algorithms
for Optimization Problems

Claim:
These two classes are different in the strongly formal
sense. i.e. a randomized E[δ]-approximation algorithm for
U is not necessarily a randomized δ- approximation
algorithm for U , and vice versa.

Proof. (Cont.)
Consider a randomized algorithm B that has exactly 1999
runs, on any input x, and all runs have the same
probability. Assume that 1000 of these runs lead to
results with approximation ratio 11 and that the remaining
999 runs compute an optimal solution. Wer have

E[RatioB] ∼ 6

B is not a randomized δ-approximation algorithm for
any δ < 11.
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Classification of Randomized Algorithms
for Optimization Problems

Lemma 2.5.71.
Let δ > 0 be a real number, and let U be an optimization
problem. For any randomized algorithm B, if B is a
randomized E[δ]- approximation algorithm for U , then B
is a randomized γ-approximation algorithm for U for
γ = 2× E[δ].
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Classification of Randomized Algorithms
for Optimization Problems

Claim:
These two classes are different in the strongly formal
sense. i.e. a randomized E[δ]-approximation algorithm for
U is not necessarily a randomized δ- approximation
algorithm for U , and vice versa.

Proof. (Cont.)
Consider a randomized algorithm B that has exactly 1999
runs, on any input x, and all runs have the same
probability. Assume that 1000 of these runs lead to
results with approximation ratio 11 and that the remaining
999 runs compute an optimal solution. Wer have

E[RatioB] ∼ 6

B is not a randomized δ-approximation algorithm for
any δ < 11.
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Paradigms of the Design of Randomized
Algorithms

FOILING THE ADVERSARY
ABUNDANCE OF WITNESSES
FINGERPRINTING
RANDOM SAMPLING
AMPLIFICATION
RANDOM ROUNDING
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