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Elementary Probability Theory @

Elementary Probability Theory w,
Yazd Univ.
@ S: sample space
@ Probability distribution: Prob : P(S) — [0, 1], s.t. Randomized
Y PT‘Ob({fL‘}) >0,Vz e S, Fundamentals
@ Prob(S) =1,
@ Prob(AU B) = Prob(A) + Prob(B),VYA,B C 2
S with An B = 0. o f ’
@ A C S:event e
@ Prob(A): probability of event A. Las Vegas
gorithms
@ Uniform probability distribution on S Monte Carlo
Algorithms
1
Prob({z}) = —,Vz € S.
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Elementary Probability Theory

Elementary Probability Theory
Prob(0) = 0. .
Prob(S —A) =1— Prob(A),VA C S.
Prob(A) < Prob(B),YA C B

Prob(AU B) = Prob(A) + Prob(B) — Prob(AN B)

Prob(A) =3 ., Prob({z}),VAC S.
Probability of A given B:

Two events A, B C S are independent, if .

Prob(AN B) = Prob(A) x Prob(B).

Prob(A|B) =

Prob(AnN B)

Prob(B)
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Elementary Probability Theory

Elementary Probability Theory

@ Probabilistic Experiment: like, Flipping a coin.

@ A (discrete) random variable on a sample space S: a
function X from S to R

@ Example: S = {head, tail},
X (head) = 1, X (tail) = 0.

@ Example: Consider a ramdomized algorithm.
S: different reuns of the algorithm on a same input.
X running time of each run.

@ Fvent(X =z) ={se S|X(s) ==z}.

@ The probability density function of the random
variable X: fx : R — [0, 1],
fx(z) = Prob(Event(X = z)).
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Elementary Probability Theory

Elementary Probability Theory

@ The distribution function of X is a function
Disx : R — [0, 1], defined by

Disx(z) = Prob(X < z)

@ The expectation of X (or the expected value of X) is
= Zx x Prob(X = z).

@ (S, Prob): afinite probability space.
X: arandom variable on S.

ZX X Prob({s}).

seS
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Elementary Probability Theory

Elementary Probability Theory

@ The expectation of X (or the expected value of X) is

= Zx x Prob(X = z).

@ (S, Prob): a finite probability space.
X: arandom variable on S.

ZX X Prob({s}).

seS

@ Elax X +b] =ax E[X]+ b (weak linearity of
expectation).

@ EX+Y]

= E[X] + E]Y] (linearity of expectation).
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Models of Randomized Algorithms @

stochastic algorithms vs. randomized algorithms

@ stochastic algorithm: use random choices in Vo Uk
algorithm.
. . . @ o Randomized
@ stichastic algorithm can behaves “poorl” on some Algorithms-
a q 2 A @ 0 Fundamentals
input instances when the algorithm is “good” for most
InpUtS' E\emen_t_ary
@ The randomized algorithms: an stochastic algorithms | 77 heow
that are not allowed to behave poorly on any input Hangomized
instance Algorithms

Las Vegas

@ one has to investigate the behavior of a randomized Algorithms
algorithm on any feasible input. Jonte Garlo

@ Therefore, it does not make any sense to consider
here probability distributions on input sets.

@ The only source of randomness under consideration
is the randomized control of the algorithm itself.




Models of Randomized Algorithms

1st Model
@ {A;, Ay, ..., A, }: deterministic algorithms

@ for any input w, A chooses an A; at random and lets
A; work on w.

@ (;: the computation of A; on w.

@ A chooses A; with probability Prob({4;}).

Prob({A:1}) Prob({A4,})

Ay

Ch
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Models of Randomized Algorithms

1st Model
@ {A;, Ay, ..., A, }: deterministic algorithms

@ for any input w, A chooses an A; at random and lets
A; work on w.

@ (;: the computation of A; on w.
@ A chooses A; with probability Prob({4;}).

the expected time complexity of A on w:

Exp — Times(w) = E[Z] = ZPTOb({Ci}) x Z(C;)
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Models of Randomized Algorithms

1st Model
@ {A;, As, ..., A, }: deterministic algorithms
@ for any input w, A chooses an A; at random and lets
A; work on w.

@ (;: the computation of A; on w.
@ A chooses A; with probability Prob({A;}).
@ Z(C;) = Time(C;)

expected time complexity

The expected time complexity of A

Exp —Times(n) =

max{Exp — Time4(w)| the length of w is n}
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Models of Randomized Algorithms

1st Model- “reliability” of a randomized algorithm 7z,
@ ‘“reliability” of a randomized algorithm A on input w: vazd Oniv.
1 if C; is correct on w b
) — 7 Algorithms-
X(Cz) = { 0 |f C@ iS Wrong on w Fundamentals
Elementary
Probability Theory
E[X] = Z X(Cy) x Prob({Ci}) o
Algorithms
= Z 1 x Prob({C;}) + Z 0 x Prol;g{\/(?ﬁ
HG=t e m;z:ifs;‘°
= PT‘Ob(EUe’TLt(X — 1)) O;:‘.H\dﬂc Error Monte

— the probability that A computes the right result,




@ ‘“reliability” of a randomized algorithm A on input w:

1 if C; is correct on w
X(C) = { 0 if C;is wrong on w

Errora(n) = max { Errora(w)| the length of w is n}

gorithms

Monte Carlo

Algorithms
One-Sided-Error Monte
Carlo Algorithms
Bounded-Error Monte Carlo
Algorithms
Unbounded-Error Monte
Carlo Algorithms
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@ No analysis on protocol complexity.

@ Forinput (z,y), when x = y, the error prob. = 0.

° |fa;7éy,x(cp)={ L

@ Prob(Cp)

0

_ 1
= PRIM(n2)"

if p is good.

if p is bad.

Las Vegas
Algorithms
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Algorithms
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Models of Randomized Algorithms
Example: Randomized protocol
@ No analysis on protocol complexity.
@ Forinput (x,y), when x = y, the error prob. = 0.

1 if pis good.
o Ifz+#y, X(Cp) = { 0 ifpp isgbad.
® Prob(Cp) = prmrry-
E[X] _ Z X(Cp) X PTOb({CP})
pEPRIM (n?) 1
p— X Doio (02)
(Cp) x Prim(n2)
pePR{M( 2)
~ Prim nQ . Z
1 P is good
S 2\ (0
- Prim(nQ) (Pmm(n )—(n 1))

Prim(n2)’
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Models of Randomized Algorithms
Example: Randomized protocol
@ No analysis on protocol complexity.
@ Forinput (x,y), when x = y, the error prob. = 0.

1 if pis good.
o Ifz+#y, X(Cp) = { 0 ifpp isgbad.

o PTOb(Cp) = m
E[X] =1~ poiny

Error probability of protocol:

—1 21
Errorg(z,y) =1—- E[X] < i < zoen

Prim(n?) = n
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Models of Randomized Algorithms
Example: Randomized protocol
@ No analysis on protocol complexity.
@ Forinput (x,y), when x = y, the error prob. = 0.
[ 1 ifpisgood.
° Itz #y, X(Ch) = { 0 ifpis bad.
o PrOb(Cp) = ﬁ]\f(ng)
Error probability of protocol:
n—1 - 2logn

E =1—-FX| <
TTOTR(‘T’Z/) [ ]— Przm(nz) = T

Error probability of modofied protocol (two primes):

2logn 2
n

Errorg,(z,y) < <
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Models of Randomized Algorithms
Example: MAX-SAT

@ Given aformula ¢ = Fy A F5 A\ --- A F,, in CNF over

{z1,...,z,}, find an assigment that maximized the
satisfied clauses.

@ RSAM Algorithm (Random Sampling): assign 0 and
1 with same probability to each variable.
@ No error probability here.

@ How good is the answer?
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Models of Randomized Algorithms

Example: MAX-SAT

@ Given aformula ¢ = Fy A F5 A\ --- A Fp,, in CNF over
{z1,...,z,}, find an assigment that maximized the
satisfied clauses.

@ RSAM Algorithm (Random Sampling): assign 0 and
1 with same probability to each variable.

@ No error probability here.

@ How good is the answer?

| 1 F;is satisfied by «

Zi(a) = 0 F; is not satisfied by «

Z =3 Zi.
E[Z] =F [Z?il Zi] = Zgl E[Zz]
F, =01Vl ...V .
E[Z]=1- 3 > 3.
E[Z] > .
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@ Nondeterministic algorithm with probability
distribution for any nondeterministic choice.

@ Computation tree

One-Sided-Error Monte
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@ Nondeterministic algorithm with probability
distribution for any nondeterministic choice.

@ Computation tree

Monte Carlo

Algorithms
One-Sided-Error Monte
Carlo Algorithms
Bounded-Error Monte Carlo
Algorithms
Unbounded-Error Monte
Carlo Algorithms

@ o
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Models of Randomized Algorithms
The Second Model

The Second model
@ Nondeterministic algorithm with probability

distribution for any nondeterministic choice.

@ Computation tree
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Models of Randomized Algorithms
The Second Model

The Second model
@ Nondeterministic algorithm with probability

distribution for any nondeterministic choice.

@ Computation tree
@ Sy, = all runs of A on w.
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Models of Randomized Algorithms
The Second Model

The Second model

@ Nondeterministic algorithm with probability
distribution for any nondeterministic choice.

@ Computation tree

@ Sy, = all runs of A on w.

@ If C € S4, then Prob(C') = product of label of all
edges on the path.
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Models of Randomized Algorithms
The Second Model

The Second model

@ Nondeterministic algorithm with probability
distribution for any nondeterministic choice.

@ Computation tree
@ Sy, = all runs of A on w.

@ If C € S4, then Prob(C') = product of label of all
edges on the path.

@ The second model is a generalization of the first
model.
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Models of Randomized Algorithms
The Second Model

The Second model

@ Nondeterministic algorithm with probability
distribution for any nondeterministic choice.

@ Computation tree
@ Sy, = all runs of A on w.

@ If C € S4, then Prob(C') = product of label of all
edges on the path.

@ The second model is a generalization of the first
model.

@ The second model is used for algorithms that
repeatedly makes a random choice.

()

e,

Yazd Univ.

Randomized
Algorithms-
Fundamentals

Elementary
Probability Theory

Models of
Randomized
Algorithms

Las Vegas
Algorithms

Monte Carlo
Algorithms

One d-Error Monte




Models of Randomized Algorithms
The Second Model
Example: Randomized Quick Sort
@ Input: A set A of elements.
@ Step 1: If A contains one elements return it.
@ Step 2: If |A| > 2, choose a random elements a € A

@ Split A to two sets, elements bigger than a and
elemets less than a.

@ Recursively sort each subset and the result is the
first subset, a, the second subset.
Analysis
@ The error probability is 0.
@ Step 2: |A| — 1 comparisons

@ If the algorithm chooses first or last element, there is
n — 1 recursive calls, O(n?) comparisons.

@ If the algorithm chooses median at each step, the
time complexity is O(nlogn).
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Models of Randomized Algorithms
The Second Model
Example: Randomized Quick Sort
@ Input: A set A of elements.
@ Step 1: If A contains one elements return it.
@ Step 2: If |A| > 2, choose a random elements a € A

@ Split A to two sets, elements bigger than a and
elemets less than a.

@ Recursively sort each subset and the result is the
first subset, a, the second subset.

Analysis
@ Except median, there are several other good
choices: if algorithm chooses anth element, for some
constant a < 1, the recursion changes to
T(n) <T(an)+T((1 —a)n)+n — 1 which solves to
T(n) € O(nlogn).
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Models of Randomized Algorithms
The Second Model

Example: Randomized Quick Sort-Analysis

®© 6 6 6 o

The computation tree of RQS is large and irregular.

C:arunof RQS on A, X(C) = # comparisons in C.

Let s1,..., s, is output of RQS.

55O ={ o arawer

T(C) =311 >~ Xij(C)= # comparisons in C.
E[T] = Exp — Timeggs(A).

E[T] =370 25 Bl Xi5)-

pi; = probability that s; and s; are compared.
E[Xi;] = pij-
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@ p;; = probability that s; and s; are compared.
(] E[XU] = Pij-
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Models of Randomized Algorithms
The Second Model

Example: Randomized Quick Sort-Analysis
@ p;; = probability that s; and s; are compared.
o E[XU] = Dij-
@ p;; = probability that s; of s; is choosen as pivot
before any of Middle points.

S1...8i1| Si |Si+1Si+2 . Sj—1| Sj |Si1...8n
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Models of Randomized Algorithms
The Second Model

Example: Randomized Quick Sort-Analysis
@ p;; = probability that s; and s; are compared.
o E[XU] = Dij-
@ p;; = probability that s; of s; is choosen as pivot
before any of Middle points.

@ If an element from Left or right is choosen, it does
not influence the comparison of s; and s;.

S1...8i1| Si |Si+1Si+2 Sj—1| S5 |SfH1...8n

Left Middle Right
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Models of Randomized Algorithms
The Second Model

Example: Randomized Quick Sort-Analysis
@ p;; = probability that s; and s; are compared.
o E[XU] = Dij-
@ p;; = probability that s; of s; is choosen as pivot
before any of Middle points.

@ If an element from Left or right is choosen, it does
not influence the comparison of s; and s;.

(*]

= M}l 2

Y |Middle U {s;,s;}]  j—i+1
S1...8i1| Si |Sit1Si42 Sj—1| S5 |[SfH1...8n

Left Middle Right
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The Second Model

Models of Randomized Algorithms @

Example: Randomized Quick Sort-Analysis 7z,
o E[T] = E?:l Zj>l E[Xl]] Yazd Univ.
@ p;; = probability that s; and s; are compared. Randomized

Algorithms-
(*] E[XZ]] = Dij = ]7% Fundamentals

Elementary
Probability Theory

n
E[T] - Z Z ng Models of

1 A Randomized
=1 g Algorithms
Las Vegas
— E g Algorithms
i=1 i Monte Carlo
J> A\gomhms
n n— z+1
<Y
=1 k 1 Carlo Algol umgr

= 2nHar(n) =2nlogn + O(n).



Classification of Randomized Algorithms

LAS VEGAS Algorithms
@ Guarantee that output is correct (always).
@ Prob(A(z) =F(x)) =1
@ We investigate expected time complexity of the
algorithms.

@ Different run lengths on different inputs (otherwise
we can construct a deterministic algorithm).

@ Examples: Randomized Quick sort, Randomized
RSEL.

@ There a variation that can output "l do not know".
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Classification of Randomized Algorithms

LAS VEGAS Algorithms
@ Guarantee that output is correct (always).
@ Prob(A(z) =F(x)) =1
@ We investigate expected time complexity of the
algorithms.

@ Different run lengths on different inputs (otherwise
we can construct a deterministic algorithm).

@ Examples: Randomized Quick sort, Randomized
RSEL.

@ There a variation that can output "l do not know".

LAS VEGAS Algorithms (2nd def.)
Forsome 0 <e <1

@ Prob(A(x) = F(x)) > ¢

@ Prob(A(x)="7")<1-—e.
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Classification of Randomized Algorithms
LAS VEGAS Algorithms

Example: LV
@ We have two computers Ry and Ry
@ {x1,...,z10}in Rrand {y1,...,y10} ON Ry
@ Question: Is there anindex j s. t. z; = y;?
@ Complexity of protocol: # exchanged bits.
@ Any deterministic protocol needs 10n bits exchange.

@ Here we show a Las Vegas protocol with complexity
n+ O(logn).
@ Note that previous protocol is not Las Vegas.
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Classification of Randomized Algorithms
LAS VEGAS Algorithms

Example: LV;4: The ptorocol

(*]
(*]
(*]
(*]
(*]

p1,-..,p10: 10 primes chosen randomly in PRIM(n?).

Ry computes s; = x; mod p;,i =1,...,10.

Ry sends pq, ... ., 810 to Ryy.

Ry computes ¢; = y; mod p;,i =1,...,10.

If s; #¢q;,Vi=1,...,10, output NO.

Else let j be the smallest index s. t. s; = ¢;, and Ry
sends y; and j to R;.

Ry compare z; and y;, if z; = y; outputs Yes,
otherwise outputs "?".

, P10 and CI
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Classification of Randomized Algorithms
LAS VEGAS Algorithms

Example: LV;4: The ptorocol

(*]
(*]
(*]
(*]
(*]

p1,--.,p1o- 10 primes chosen randomly in PRIM(n?).

Ry computes s; = x; mod p;,i =1,...,10.

Ry sends pi,...,p10and sy, ..., s to Ryy.

Ry computes ¢; = y; mod p;,i =1,...,10.

If s; #¢q;,Vi=1,...,10, output NO.

Else let j be the smallest index s. t. s; = ¢;, and Ry
sends y; and j to R;.

Ry compare z; and y;, if z; = y; outputs Yes,
otherwise outputs "?".

Protocol Complexity:

Communications: p1, ..., pio, 51, .., 510, j, yj=
n + O(log n) bits.
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LAS VEGAS Algorithms

Classification of Randomized Algorithms @

Example: LV,y: The ptorocol is Las Vegas 7,
. g . Yazd Univ.
@ Obviously the output of the algorithm is always
CorreCt. Randomized
. . . Algorithms-
@ We shows that the probability condition is also holds. Fundamentals
@ Case (i): z; # y;, Vi:
o The probability that z; # y; > 1 — 217 Erabatiln, Theory
@ Since the primes are chosen independently: Models of
o1 1o | Aeoritms -
ogn
Prob((sl,...,slg) 7& (ql,.. .,qlo)) > <1 = n > k?gso\r/i?r?riz
Monte Carlo
e So, Prob(LVio((x1,...,10), (Y1, - .,%10)) = Np) 2eortnms

v

10
2logn
1- ,
n Carlo Algo um:Z -

(1 3 QOlogn) S 1
n -2




Classification of Randomized Algorithms
LAS VEGAS Algorithms

Example: LV,,: The ptorocol is Las Vegas
@ Case (ii): x; = y;, for some i:

Let j be the smallest index s.t. z; = y;.

If the protocol exchange some i < j then the answer
will be "?".

So, Vi € {1,...,5 — 1} we must have

x; mod Di 7& ylmod Di (Event Ej)

If = 1, the answer is always correct.

Ifj>1, Prob(E;) >

(1 3 210gn>j1
n

. (1_2(j1)1ogn)

n
The function takes its minimum at j = 10, so

PTOb(LVlo((Jil, oo 7y10)) = YSS) >1-

.,xlo),(yl,...
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@ Prob(A(x) = F(z)) — 1as |z| - oo

Carlo Algorithms

@ o
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@ A= a Las Vegas algorithm with output "?".
@ A’: Runs A as far as its output is "?".
@ The output of the algorithm is always correct.

W @ o
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@ A= a Las Vegas algorithm with output "?".
@ A’: Runs A as far as its output is "?".
@ The output of the algorithm is always correct.

/
T w

Monte Carlo

Algorithms
One-Sided-Error Monte
Carlo Algorithms
Bounded-Error Monte Carlo
Algorithms
Unbounded-Error Monte
Carlo Algorithms

@ o

TA,w

25/59



LAS VEGAS Algorithms

Classification of Randomized Algorithms @

Are two definitions equivalent? (with and without "?") %M’
@ A= alLas Vegas algorithm with output "?". e
@ A’: Runs A as far as its output is "?". e
@ The output of the algorithm is always correct. Fundamens
@ A’ can have infinite computations. Elementary
@ Time,(w)=the worst-case complexity of A. ;::::':: o
@ The probability that A’ stops in time Time 4 (w) is Algoriths -

2 1/2. Lo Ve
@ The probability that A’ stops in time 2 x Timea(w) is | 1100 con
> 3/4. S
@ The probability that A’ stops in time k x Time(w) is :
=l = L

@ Claim: Exp — Timea(n) € O(Timea(n)) .



LAS VEGAS Algorithms

Classification of Randomized Algorithms @

Are two definitions equivalent? (with and without "?") e,
. 3 . Yazd Univ.
@ Claim: Exp — Time (n) € O(Timea(n)) . :
e Set;= all computations that end exactly at ith run. Randomized
@ S =USet;, and Set; N Set; = 0. Fﬁ#gdoarrlwi’;r:gls
e ZC ends before k P’rOb({C}) > 1 Lk
° SO ZCESeti PTOb({C}) = g=11 Elementary
. Probability Theory
Exp — Timea (n) = Models of
= Z Timea (C) x Prob({C}) Algortoma
CES 1 4 Las Vegas
o0 Algorithms
= Z z Timea: (C) x Prob({C}) Monte Carlo
i=1 CeSet; A\gomhms
= Z Z i X Timey(w) x Prob({C})
i=1 CeSet;

ror M
Carlo Algorithms

= Zz x Time g (w Z Prob({C})
CeSet;

~A



Classification of Randomized Algorithms
LAS VEGAS Algorithms

Are two definitions equivalent? (with and without "?")
@ Claim: Exp — Timea(n) € O(Timea(n)) .
e Set;= all computations that end exactly at ith run.
@ Sur =USet;, and Set; N Set; = 0.
e ZC ends before k PT‘Ob({C}) >1- QLk
e So, ZC’ESeti Prob({C}) < 2%1

Exp — Timea (n) =

= Zz X szeA Z Prob( {C})

CeSet;

1
9i—1

IN

Zi X Time(w) X
i=1

< 6 x Timea(w).
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Classification of Randomized Algorithms
LAS VEGAS Algorithms

Are two definitions equivalent? (with and without "?")

@ Obviously any algorithm without "?" can be
considered as an algorithm with "?".
@ Reasons to convert a Las Vegas algorithm without
"?" into a Las Vegas algorithm with output "?".
e Consider algorithm A that mostly runs fast but
sometime runs slow.
@ When a run take more than the time for fast run, stop
it with output "?".
e Claim: 2 x Exp — Time(w) is a suitable upper
bound for stopping.
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LAS VEGAS Algorithms

Classification of Randomized Algorithms @

Are two definitions equivalent? (with and without "?") e,
q q Yazd Univ.
@ To show that the new algorithm is Las Vegas, we :
have to show that Prob(B(w) ="7") < 1/2. Randomized
g Algorithms-
@ Proof by contradiction: Fundamentals
Exp — Timea(w) = Z Times(C) x Prob({C})
CeSaw E‘rirgggit\i?;yTh eory
= Z Timea(C) x Prob({C}) Vodels of
CESamer) e
+ Z szeA(C) X PTOb({C}) Las Vegas
CeSAw(F(w)) Algorithms
> > Timea(C) x Prob({C}) Mo re
CESa,we?) nte
> > ,
CESAwe) Carlo Algo e

> (2Xx Exzp—Timea(w)+1) x 1/2
= FEuxp— Times(w) + 1/2 (Contradiction!)



Classification of Randomized Algorithms
Monte Carlo Algorithms

One-Sided-Error Monte Carlo Alg.
@ For decision problems.
@ Let (0, L) be a decision problem.
@ Output "0" is almost correct, output "1" had bounded

error.

@ Definition: A is an one-sided-error Monte Carlo
algorithm for L, 1MC algorithm for short, if

(i) Vx € L, Prob(A(z) =1) > 1/2, and
(i) Vo & L, Prob(A(z) =0) = 1.

1MC*
(I Yz € L, Prob(A(z) = 1) tends to 1 with growing |z|.

Similar to Las Vegas algorithms, one can decreases the
error probability exponentially by repitations.
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@ After k repitition of A, the error probability decreases
to 27%.
@ Notation: A: k independents runs of A.

W @ o

One-Sided-Error Monte
Carlo Algorithms
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Algorithms
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@ Definition: A is a bounded-error Monte Carlo
algorithm for F', 2MC algorithm for short, if

Je € (0,1/2] s.t. V z of F,

Prob(A(z) = F(z)) > 1/2 + e

@ If Ais aLas Vegas or 1MC algorithm then As is 2MC.

o B0

Las Vegas
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Algorithms
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Carlo Algorithms
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Classification of Randomized Algorithms
Monte Carlo Algorithms

For any 2MC algorithm A and any positive integer ¢, let A,
denote the following randomized algorithm:

2MC Algorithm A,
Input: z
@ Step 1: Perform ¢ independent runs of A on = and
save the ¢ computed results a;, .. ., a;.
@ Step 2: if there is an « that appears at least [¢/2]
times in the sequence oy, ..., a, then
output "a"
else
output "?"

Claim: The error probability of A, tends to 0 with
growing t.
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Claim: The error probability of A; tends to 0 with

growing t.

@ A; computes a wrong result or "?" only if #correct
results < [t/2].

@ pri(z)=the probability that A, computes the correct

@ result in exactly i runs.

pri(z) = (. )p'Q—-p)"

Las Vegas
Algorithms

1 1 i 1 t—21
(G+) o)) G=) M

One-Sided-Error Monte

. 9 t / 2—1 Carlo Algorithms
1 g 1 Bounded-Error Monte Carlo
2 Algorithms
7t e P Unbounded-Error Monte
4 2 Carlo Algorithms
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growing t.

@ A, computes a wrong result or "?" only if #correct

results < [t/2].
® pri(e) < (1) (4 -
Prob(A¢(z) = F(x))

62)t/2

Claim: The error probability of A; tends to 0 with

Vv

Lt/2]

1- Z pri(z)

i=0

VNN
11— -
> () (G-)
1t/2]

1L\ t

=G0 20

1 t/2
1-— <Z —62) x 2t

1— (1 —4€%)!? (Donel)
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One-Sided-Error Monte
Carlo Algorithms
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Carlo Algorithms
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Classification of Randomized Algorithms
Monte Carlo Algorithms

Claim: The error probability of A; tends to 0 with
growing t.
@ A, computes a wrong result or "?" only if #correct
results < [t/2].
@ Prob(Ay(z) = F(z)) > 1 — (1 — 4€2)!/?
@ Thus, if one looks for a k such that
Prob(Ag(z) = F(z)) > 1 -4,
for a chosen constant ¢, it is sufficient to take
2logd
> —
k= log(1 — 4 x €?)
@ So, Timea, (n) € O(Timea(n)).
@ So, if A is asymptotically faster than any
deterministic algorithm computing F, then A with an

error probability below a chosen ¢ is also more
efficient than any deterministic algorithm.
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Classification of Randomized Algorithms
Monte Carlo Algorithms

Unbounded-Error Monte Carlo Algorithms

@ Definition: A randomized algorithm A is a
(unbounded-error) Monte Carlo algorithm computing
F, an MC algorithm, for short, if, for every input = of
F, Prob(A(z) = F(x)) > 1/2.

@ Question: What is the difference between 2MC and
MC?

e 2MC algorithms: the error probability to have a fixed
distance from 1/2 for any input.

e MC algorithm: the distance between the error
probability and 1/2 may tends to 0 with growing input
size |x|.

@ Question: How many independent runs of A on =
are necessary in order to get

Prob(Ag(x) = F(z)) >1-90
for a fixed chosen constant §?
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Classification of Randomized Algorithms
Monte Carlo Algorithms
Unbounded-Error Monte Carlo Algorithms

@ Question: How many independent runs of A on z
are necessary in order to get
Prob(Ax(z) =F(x))>1-9¢
for a fixed chosen constant §?
@ Prob(As(z) = F(z)) > 1 — (1 — 4€2)t/?
@ Thus, if one looks for a k such that

Prob(Ai(z) = F(x)) > 1 -4,
for a chosen constant ¢, it is sufficient to take

2logé
k=k > =
(=) 2 log(1—4x€2) —

@ So, Timea, (r) > (—2log6).2%1 Time 4 (z).

> (—2log 8) x 222,
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Classification of Randomized Algorithms
Monte Carlo Algorithms

MC Algorithms: Example
Protocol UMC

@ Initial situation: R; has n bits z, R;; has n bits y. The
input (z,y) has to be accepted if and only if x # y.

@ Phase 1: R; uniformly chooses a number
j€{1,2,...,n} atrandom and sends j and the bit z;
to Ryy.

@ Rj; compares z; with y;. If ; # y; , Ry accepts the
input (x,y). If x; = y;, then Ry accepts (z,y) with
probability 1/2 — 1/2n, and rejects (z, y) with
probability 1/2 + 1/2n.
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Classification of Randomized Algorithms
Monte Carlo Algorithms

MC Algorithms: Example
Protocol UMC

@ Initial situation: R; has n bits z, R;; has n bits y. The
input (z,y) has to be accepted if and only if x # y.

@ Phase 1: R; uniformly chooses a number
j€{1,2,...,n} atrandom and sends j and the bit z;
to Ryy.

@ Rj; compares z; with y;. If ; # y; , Ry accepts the
input (x,y). If x; = y;, then Ry accepts (z,y) with
probability 1/2 — 1/2n, and rejects (x, y) with
probability 1/2 + 1/2n.

Protocol Complexity
[logo(n+1)] +1
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Classification of Randomized Algorithms
Monte Carlo Algorithms

Claim: UMC Protocol is a Monte Carlo Protocol.

Casel: z=y

C; = the computation in which R; chooses the number 4
at random in Phase 1 and R;; outputs /.

PT‘Ob(CZ‘Q) = % X (% =4k %)

Prob(Cﬂ) = % X (% — %)

Ap = {Cip|1 <i < n}: correct answer

Prob(Ag) =31 12 x(3+45)=nxix(i+5)>1.

=1n n
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Classification of Randomized Algorithms
Monte Carlo Algorithms

Claim: UMC Protocol is a Monte Carlo Protocol.

Casel: z=y

C; = the computation in which R; chooses the number 4
at random in Phase 1 and R;; outputs /.

PT‘Ob(CZ‘O) = % X (% =4k L)
Prob(Cﬂ) = % X (% — %)
Ap = {Cip|1 <i < n}: correct answer

Prob(Ag) =31 12 x(3+45)=nxix(i+5)>1.
Case2: x #y

Jje{1,2,...,n} st z; #y;

Worst case: Only one j exists with z; # y;.

Ay ={Cu{Call <i<n,i#j}

Prob(Ay) = Prob(C;) + Z Prob(Ci1)

i=1,i#j
_ 1 - Lo(l_ty_1, 1 1
o on n" \2 2n) 2 2n27 2

i=1,i#j
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Classification of Randomized Algorithms

for Optimization Problems

@ We gave a classification of randomized algorithms

for solving decision problems and for computing
functions.

@ For optimization problems, it is different. One can
execute k runs of a randomized algorithm for an
optimization problem and select the best one with
respect to the optimization goal.
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Classification of Randomized Algorithms

for Optimization Problems

@ We gave a classification of randomized algorithms
for solving decision problems and for computing
functions.

@ For optimization problems, it is different. One can
execute k runs of a randomized algorithm for an
optimization problem and select the best one with
respect to the optimization goal.

@ A: computes an optimal solution only for an input
with probability > ﬁ :

@ A, execute |z| independent runs of A on z and
then take the best output.

@ Probability that A,| does not find any optimal

lution < (1 s\l
sou’uon_(—m) S
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Classification of Randomized Algorithms

for Optimization Problems

@ We gave a classification of randomized algorithms

for solving decision problems and for computing
functions.

@ For optimization problems, it is different. One can
execute k runs of a randomized algorithm for an
optimization problem and select the best one with
respect to the optimization goal.

Time Complexity of A,

|z| x the time complexity of A.
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Classification of Randomized Algorithms

for Optimization Problems

For Optimization Problems

(*]

the task is not necessarily to find an optimal solution,
but one is usually satisfied with a feasible solution
whose cost (quality) does not differ too much from
the cost (quality) of an optimal solution.

In such a case one can be looking for the probability
of finding a relatively good situation, which leads to
another classification of randomized algorithms.

Solving an optimization problem cannot in general be
considered as computing a function.

Solving an optimization problem: computing a
relation R in the sense that, for a given z, it is
sufficient to find a y such that (z,y) € R.

There can exist many optimal solutions for an input
x, and we are satisfied with any one of them.

()

%,

Yazd Univ.

Randomized
Algorithms-
Fundamentals

Elementary
Probability Theory

Models of
Randomized
Algorithms

Las Vegas
Algorithms

Monte Carlo
Algorithms
One onte

Alga
Unbounded-Error Monte
Carlo Algorithms



@ L: problem instances.

@ M (z): feasible solutions for input = € L.
@ cost: cost function

@ goal: maximum/minimum

@ A feasible solution oo € M (z) is optimal for z if
cost(a, x) = goal{cost(B,z)|B € M(z)}.
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Classification of Randomized Algorithms

for Optimization Problems

Optimization Problem:
@ L: problem instances.
@ M(x): feasible solutions for input = € L.
@ cost: cost function
@ goal: maximum/minimum

@ A feasible solution oo € M (z) is optimal for x if
cost(a, x) = goal{cost(B,z)|f € M(x)}.

Solving optimization problems

@ Naive Algorithm: compute cost of all feasible
solutions from M (x), and pick the best one.

@ Problem: The cardinality of M (x) can be very large
that it is practically impossible to generate M (x).
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@ Input: An edge weighted complete graph (G, ¢)
@ M (G, c): the set of all Hamiltonian cycles (i.e.
Viys Vigy -« -5 Uiy y Uiy of vertices) of G.

@ COSt(Viy, Vigy- -y Uiy, Uiy ) = Zc({vij,vi(j modmy el S

@ goal: minimum

n

j=1

o B0
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Classification of Randomized Algorithms

for Optimization Problems

Example: minimum vertex cover problem (MIN-VCP)
@ Input: A graph G(V, E)
@ M(G): the set of all vertex covers of G.

U C V is a vertex cover of G = (V, E), if every
edge from FE is incident to at least one vertex from U.

@ cost = # vertices in a vertex cover.

@ goal: minimum if every edge from FE is incident to at
least one vertex from U.

v1

Vs v2

V4 v3
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@ Input: A boolean formula ¢ = F4y A Fs A--- A Fy, in
conjunctive normal form (CNF) .

@ M(¢)={0,1}".
@ cost(a) = # clauses of ¢ satisfied by a.
@ goal: maximum

¢ = (1’1 \/1’2) VAN (i‘l \/i‘g\/i‘g) AV WA (.’EQ \/{E3) Nx3 A (i’1 \/i‘g). Las Vegas

Algorithms
x1 T2 T3 T1 VT2 T1 VX2 Va3 T2 x2 V x3 T3 1 V T3 # of satisfied clauses Monte Carlo
000 0 1 1 0 0 1 3 Algorithms
001 0 [ 5 e
010 1 1 0 1 0 1 4 Bounded-Error Monte Carlo
Algorithms
0 11 1 1 0 1 1 1 5 Unbounded-Error Monte
1 00 1 1 1 0 0 1 4 Carlo Algorithms.
1o1 1 1 1 1 1 0 5 -
110 1 1 0 1 0 1 4 =
111 1 0 0 1 1 0 3 =
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@ Input: An m x n matrix A = [a;j]i=1,...m,j=1,...» and
two vectors b and ¢ (integers entries).

@ M(A,b,c)={X|AX = b}.
@ cost(X) =cX.
@ goal: minimum

W @ o
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Classification of Randomized Algorithms

for Optimization Problems

Definitions:
@ Ais a consistent algorithm for U if, for every zinL,
the output A(x) is a feasible solution for = (i.e.,
A(z) € M(x)).
@ Let A be a consistent algorithm for U. For every
x € L, we define the approximation ratio of A on z
as

Batitonl(e) = mass { cost(A(z)) Opty(x) }

Opty(z)  cost(A(x))

@ Ais a é-approximation algorithm for U if
Ratios(x) < §,Vx € L.
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Classification of Randomized Algorithms

for Optimization Problems

Example: Approximation algorithm for vertex cover
problem

Algorithm 4.1: VCA

Input: A graph G(V, E).
Output: A vertex cover of G = (V, E).

C=0;A:=0PF =F;
while £’ £ () do
take an arbitrary edge (u,v) € E;
C:=CU{u,v}; A:=AU{u,v};
E':= E' — { all edges incident to u or v};
end
return C;
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Classification of Randomized Algorithms

for Optimization Problems

Example: Approximation algorithm for vertex cover e,
problem Yazd Univ.

Claim: TimeVCA(G) € O(|E|) Obvious. Randomized
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Classification of Randomized Algorithms

for Optimization Problems

Example: Approximation algorithm for vertex cover
problem
Claim: Timey c4(q) € O(|E|): Obvious.
Claim: the algorithm VCA is a 2-approximation algorithm
for MIN-VCP.
Proof.
@ VCA is a consistent algorithm for MIN-VCP: Since
E’ = () at the end of any computation, VCA computes
a vertex cover in G.
@ |C| =2A|Al
@ Ais a matching in G.
@ Optyrn—ver(G) > |A| (one needs |A| vertives to
cover matching A).

Hence, ¢l = 24|

= < 2.
Optuin-ver(G)  Optuin—ver(G)
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@ Improve the approximation ratio.

@ produce feasible solutions whose cost (quality) is not

very far from oprimal cost.

o to estimate the expected value E(Ratio), or
e to guarantee that an approximation ratio ¢ is
achieved with probability at least 1/2.

o B0
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Classification of Randomized Algorithms

for Optimization Problems

Classes of Ramdomized Algorithms:

@ A randomized algorithm A is called a randomized
E[é]-approximation algorithm for U if Vz € L
(i) Prob(A(z) € M(x)) =1, and
(i) E[Ratioa(x)] < 6.

@ For any positive real § > 1, a randomized algorithm A
is called a randomized /-approximation algorithm
forUifvVe € L
(i) Prob(A(z) € M(z)) =1, and
(i) Prob(Ratioa(x) < ) > 1/2.

Claim:

These two classes are different in the strongly formal
sense. i.e. a randomized E[d]-approximation algorithm for
U is not necessarily a randomized §- approximation
algorithm for U, and vice versa.
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Classification of Randomized Algorithms

for Optimization Problems

Claim:

These two classes are different in the strongly formal
sense. i.e. a randomized E[d]-approximation algorithm for
U is not necessarily a randomized §- approximation
algorithm for U, and vice versa.

Proof.
Consider a randomized algorithm A that has exactly 12
runs, Cq,Cs, ..., Cq2, 0n an input x, and all runs have the
same probability and Ratios ,(C;) =2fori=1,2,...,10
and Ratioa (C;) = 50 for j € {11, 12}.
Wer have

@ E[Ratioss) = 75A(10 x 2+ 2 x 50) = 10

® Prob(Ratiop, <2)=10x 5 =2 > 1.
So, A is a randomized 2- approximation algorithm for U,
but not a randomized E[21-anoroximation alaorithm.
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Classification of Randomized Algorithms

for Optimization Problems

Claim:

These two classes are different in the strongly formal
sense. i.e. a randomized E[d]-approximation algorithm for
U is not necessarily a randomized §- approximation
algorithm for U, and vice versa.

Proof. (Cont.)

Consider a randomized algorithm B that has exactly 1999
runs, on any input x, and all runs have the same
probability. Assume that 1000 of these runs lead to
results with approximation ratio 11 and that the remaining
999 runs compute an optimal solution. Wer have

@ E[Ratiog| ~ 6
@ B is not a randomized §-approximation algorithm for
any ¢ < 11.

()

%,

Yazd Univ.

Randomized
Algorithms-
Fundamentals

Elementary
Probability Theory

Models of
Randomized
Algorithms

Las Vegas
Algorithms

Monte Carlo
Algorithms
One onte

Alga
Unbounded-Error Monte
Carlo Algorithms



Let 5 > 0 be a real number, and let U be an optimization
problem. For any randomized algorithm B, if B is a
randomized E[d]- approximation algorithm for U, then B
is a randomized ~-approximation algorithm for U for

v =2 x E[d].
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Classification of Randomized Algorithms

for Optimization Problems

Claim:

These two classes are different in the strongly formal
sense. i.e. a randomized E[d]-approximation algorithm for
U is not necessarily a randomized §- approximation
algorithm for U, and vice versa.

Proof. (Cont.)

Consider a randomized algorithm B that has exactly 1999
runs, on any input x, and all runs have the same
probability. Assume that 1000 of these runs lead to
results with approximation ratio 11 and that the remaining
999 runs compute an optimal solution. Wer have

@ E[Ratiog| ~ 6
@ B is not a randomized §-approximation algorithm for
any ¢ < 11.
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FOILING THE ADVERSARY
ABUNDANCE OF WITNESSES
FINGERPRINTING

RANDOM SAMPLING
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