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Success Amplification and Random sampling

o amplification of success probability by repeating runs on the same input
and random sampling

o amplification does not only increase the success probability, but directly
stamps the process of the algorithm design

o prefers to repeat only some computation parts or to repeat different parts
differently many times.

@ more attention to computation parts in which the probability of making
mistakes is greater

o designing efficient randomized algorithms solving problems for which no
deterministic polynomial-time algorithm has up to now been discovered
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Efficient Amplification by repeating Critical Computation Parts

Introducing the method of amplification of the success probability as a method
for the design of randomized algorithms.

MIN-CUT

o Input: A multigraph G = (V, E, c), where C: E -~ N -{0}
o Constraints: The set of all feasible solutions for G is the set
M(G) ={(V1, V2) viuVv2=V, V1N V2=0}

o Costs: For every cut (V1, V2)eM(G), cost((V1, V2),G) = > c(e)
{i.e., cost((V1, V2),G) is equal to the number of edges between V1 and
V2}

o Goal: minimum
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MIN-CUT
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MIN-CUT (deterministic algorothm)

o The best known deterministic algorithm for MIN-CUT runs in time

0V Igllog( )

o in the worst case, is in O(n®)forn = |V/|.
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Contraction

Contract(G, e)
G = (V,E) and an edge e = {x,y} € E

@ the vertices x and y are replaced by a new vertex ver(x, y),

@ the multi-edge e ={x, y} is removed (contracted).

@ each edge {r,s} with an re {x,y} and s € {x,y} is replaced by a new
edge {ver(x,y),s}

@ all remaining parts of G remain unchanged.
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MIN-CUT

ver(ey)
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®
ver(wy) : ver(z,y,v)
I —— i
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\| \/
ver(u,z) ver(u, z)

(c) (@)

@ the effect of contracting the edges in FC E does not depend on the order

of contractions.

@ the multigraph in Figure 5.1(d) with a cost of 4.
8 /64



MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Outline

g Efficient Amplification by repeating Critical Computation Parts

o Algorithm CONTRACTION

9/64



MIN-CUT
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Randomized Algorithm

One contracts randomly chosen edges until one gets a multigraph with exactly
two vertices ver(V1) and ver(V2).

Algorithm CONTRACTION

o Input: A connected multigraph G = (V, E, ¢)

o Step 1: Set label (v) :={ v } for every vertex v eV .
o Step 2: while G has more than two vertices do

begin

choose an edge e = {x, y} € E(G);

G := Contract(G, e);

Set label (z) := label (x) U label (y)

for the new vertex z = ver(x, y);

end
o Step 3: if G = ({u, v},E(G)) for a multiset E(G) then
o output (label (u) , label (v)) and cost = |E(G)|
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Algorithm CONTRACTION

The algorithm CONTRACTION is a randomized polynomial-time algorithm
that computes a minimal cut of a given multigraph G of n vertices with

2
n.(n-1)

probability at least
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Theorem 5.2.1

The algorithm consists of n-2 contractions.
o time complexity of CONTRACTION is in O(n?)
Let G = (V, E, ¢) be a multigraph,

and let (C — min) = (V1,V2) be a minimal cut of G with cost
(C - min) = k for a natural number k.

o Every vertex of G has a degree of at least k.
k . k
G has at least n? edges, i.e., |[E(G)|> n7

o Important observation is that

the algorithm CONTRACTION computes (Cp,) if and only if no edge
from E(Cpin) has been contracted.
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CONTRACTION

a b © d
14 edges to choose from
Pick b— f (probability 1/14)
f H
3 ¢ d
13 edges to choose from
o Pick g — h (probability 1/13)
H
3 T
12 edges to choose from
0 Pick d — gh (probability
e
] T
10 edges to choose from
of Pick a — ¢ (probahility 1/10)
e deh
T
" 9 edges to choose from
of Pick ab — e f (probability 4/9)
dgh
abefc 5 edges to choose from
Pick ¢ — dgh (probabil
deh
abef—— D cdgh Done: just two nodes remain
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Theorem 5.2.1

Probability

o Let Scon,6,G be the set of all possible computations of the algorithm
CONTRACTION on G.

o Event; = { all computations from Scon, ¢ in which no edge of E(Cpin) is
contracted in the i-th contraction step }

fori=1,2,... n2
o The event that (Cpin) is the output of the algorithm is exactly the event:
n-2

() Event;

i=1
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n—2
Prob ( ﬂ Event@> = Prob(Event, ) - Prob(Events | Event;)
i=1
-Prob(Events | Event; N Events) - ...
n—3
-Prob | Event,, o ‘ ﬂ Event;
j=1

To prove Theorem 5.2.1, we have to estimate lower bounds on

i—1

ﬂ Event;

j=1

Prob | Event;

fori=1,...,n—2.

. nk . .
o Since G has at least - edges and the algorithm makes a random choice
for edge contraction,

Prob(Eventy) = 1B = |E(Cu)| ‘é(‘Cmin)‘
—
2

k 2

zl-gp=1-
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MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

contraction

@ In general, the multigraph G/Fi created after i — 1 random contractions
has exactly n— i+ 1 vertices. If
i—1
Fin E(Crin) =0 (ie., ﬂ Event; happens)
=1

o Every vertex in G/Fi has still to have a degree of at least k, and so G/Fi
has at least
k.(n—i+1)

dges.
3 edges
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Contraction

@ Therefore

i—1
|E(G/Fi) — E(Cin)|
Prob | Event; Event,
QB | = =GRy
k
z1- k- (n—itl)
2
%
N (n—i+1)
o fori=2,... n-1.
n—2 n—2 2
Prob Event; | > —
ro ﬂ vent; | > ( nfz'Jrl)
Jj=1 i=1
B ﬁ 1—2
B l
l=n
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Theorem 5.2.1 assures that the probability of discovering a particular
minimal cut in one run is at least:

2

n.(n-1) T

One does not obtain a minimal cut with a probability of at most:

2.2 1

(1- ;)" G =

Hence, the complementary probability of computing a minimal cut by n2/2
runs of the algorithm is at least:

1
1-=
e

The complexity of the algorithm CONTRACTION, 2, is in Oo(n*) .
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@ The probability of contracting an edge from Cmin grows with the number
of contractions executed.
2 2 2 2 2
n"n-1"n-2"n-3"n-4""
o The created multigraph G/F, is small enough to be searched for a minimal
cut in a deterministic way.
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Algorithm DETRAN(I)

The size of G/F will still remain a free parameter of the algorithm.

Let L: N — N be a monotonic function such that 1 < /(n) < n for every n e N .

o Input: A multigraph G = (V, E, ¢) of n edges, n ne N, n> 3.
o Step 1: Perform the algorithm CONTRACTION on G in order to get a
multigraph G/F of I(n) vertices.

o Step 2: Apply the best known deterministic algorithm on G/F to compute
an optimal cut D of G/F.

o Output: D
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DETRAN())

@ Analyze the influence of the exchange of CONTRACTION for DETRAN(I)

on:
@ (i) the amplification of the success probability
@ (ii) the increase of the complexity.

o Consider | as a free parameter, i.e., the result of the analysis depends on |.

Lemma 5.2.3

Let L: N — N be a monotonic function such that 1 </(n) < n for every n € N .

o The algorithm DETRAN(I) works in time:
O(n + (I(n))*)

o and it finds an optimal solution with probability at least:
I(n)
2
n
2
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Lemma 5.2.3

Complexity of DETRAN(I)

o In step 1, (n—/)(n) contractions are performed, and each contraction can
be executed in time O(n).
Hence, step 1 can be executed in:

O((n~I(n)).n) = O(n?)
o Deterministic algorithm can compute an optimal cut of G/F in time:
(((n))*)
o Altogether, the complexity of DETRAN(]) is in:
O(n® + (I(n))*)
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Success probability of DETRAN(I)

o Let (Cmin) be a minimal cut of G.
o lower bound on the probability of having (Cpin) in the multigraph G/F
after executing step 1:

n—I(n)
m Event;
i=1

n—I(n

) n—I(n)
Prob m Event;
i=1

2
H (17727i+1)

i=1
H:'L:I 1- n—i+1)

-2
H?:n—l(n)ﬁ»l(l - 'n—i?ﬁ»l)

%

_ T
(H})) (g)
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Time complexity and Success probability of DETRAN(I)

o Since
2
)2 = (1)
2
° ﬁ independent runs of DETRAN(I) provide a randomized algorithm
n

that works in time:

o+ 1)) i ) = (g =010

o Computes a minimal cut of G with probability at least:

1-1
e

o The best possible choice of | with respect to the time complexity is:

I(n) = {712/3J
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DETRAN())

Theorem 5.2.4.

o The algorithm DETRAN([n2/3Jn2/l,,z/3J) works in time:
O(n8/3)
o Computes a minimal cut with probability at least:

1-e™?
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RepTree

n? runs
O(TLQ) length O(nZ) depth
nnnn ... nnnn
O(ng) leaves
2 2 2 2 2 2
n"n-1"n-2"n-3"n-4"""3
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Algorithm REPTREE(G)

o Input: A multigraph G = (V, E, ¢), [V|=n,ne N,n> 3.
Procedure:

o if n <6 then:
compute a minimal cut deterministically
else
begin

o hi=[1+ L21
Perform two independent runs of CONTRACTION in order to
get two multigraphs G/F1 and G/F2 of size h;
REPTREE(G/F1);
REPTREE(G/F2)
end

@ output the smaller of the two cuts computed by REPTREE(G/F1) and
REPTREE(G/F2)
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Algorithm REPTREE

Theorem 5.2.5.

The algorithm REPTREE works in time O(n?.logn) and finds a minimal
cut with a probability of at least:

1

Q(logy)
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Reptree

Time complexity

@ Depths = number of recursion
calls of Reptree.

MIN-CUT
Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

nnnn ... nnnn

The depths of the binary trees
correspond to the number of recursion
calls of REPTREE.
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Reptree

Time complexity

@ Depths = number of recursion
calls of Reptree.
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@ Size is reduced by: —
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@ Number of recursion calls:

log”5 € O(log})

@ Number of leaves:
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nnnn ... nnnn

The depths of the binary trees
correspond to the number of recursion
calls of REPTREE.
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Time Complexity Algorithm REPTREE

o TimeREPTREE(n) € O(1) for n<6

o TimeREPTREE(n) = 2 TimeREPTREE ([1+ —=

\/51)+0(n)

o TimeREPTREE(n) = ©(n’.log})
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Lower bound on the Success Probability

o Let p; be the probability that G/Fi (i = 1, 2) still contains Cpmin.

(M) el (4
0 e

=

o Probability that RepTree finds Gy for i=1,2.

oo )

o Probability that RepTree does not find Cpin.
G/F has contained Cpjp.

=)}
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Efficient Amplification by repeating Critical Computation Parts

Probability of RepTree

@ So the following recurrence for Prob(n) is obtained.

Prob(2) =1, and

Prob(l) > 1— (PPrPrC’hG”%D)z
=1 (1 g epron([1+ H))Q

o Prob satisfying the recurrence is in:

1
logs

o O(logy) repetitions of the algorithm REPTREE are sufficient in order to
compute a minimal cut with a constant probability.
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Algorithm REPTREE

Algorithm RepTree

Complexity

o O((logj)?) repetitions suffice to reduce the non-success probability to a
function tending to 0 with growing n and one can consider this algorithm

applicable.
o So, The complexity of REPTREE(,Ogg)z is in:

O(n’.(log,1)*)

3564



MIN-CUT
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Algorithm RepTree

complexity Comparison

o The complexity of REPTREE(,Ogg)z is in:

O(n’.(log; )*)
which is substantially better than the complexity
o(n’)
of the best deterministic algorithm and the complexity
o(n®?)

of the randomized algorithm DETRAN([n2/3Jn2/an/3J).
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Repeated Random Sampling and Satisfiability

Combination amplification and random sampling

o Combine amplification and random sampling with local search in order to
design:

o A randomized algorithm that can solve the 3-satisfiability problem (3SAT).
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

SCHONING

Algorithm SCHONING

o Input: A formula F in 3CNF over n Boolean variables.

o Step 1: NUMBER := 0; ATMOST :=X; FOUND := FALSE;

o Step 2: while NUMBER < ATMOST and FOUND = FALSE do
begin
NUMBER := NUMBER + 1; Generate at random an assignment
a€{0,1}";
if F is satisfied by then FOUND := TRUE;
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Repeated Random Sampling and Satisfiability Appendix
SCHONING
Algorithm SCHONING Cont
o M:=0;
o while M < 3.n and FOUND = FALSE do
begin

M := M + 1; Find a clause C that is not satisfied by .

Pick one of the literals of C at random, and flip the value of its variable.
if a satisfies F then

FOUND := TRUE;

end
end

o Step 3: if FOUND = TRUE then
output: F is satisfiable.

else  output: F is not satisfiable.

v
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Algorithm SCHONING

SCHONING is a 1MC algorithm for 3SAT

@ Let F be not satisfiable. Then, the algorithm SCHONING does not find
any assignment that satisfies F and outputs the correct answer:

F is not satisfiable with certainty.

@ Let F be satisfiable.

To prove a lower bound on the success probability of SCHONING; we
analyze the probability of finding a certain assighment o that satisfies F.
Let « and B be two assignments.

Dist(c, ) between a and (3 as the number of bits in which they differ.

Class(j) = {B €{0,1}"|Dist(a*, B) = j}.

|Class(j)| = (3’)
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SCHONING

Algorithm SCHONING

@ The probability of moving from vertex j to vertex j — 1 in one local search

step is at least 3
Class(j) = {8 € {0, 1}"|Dist(a*, 8) = j}.
Class(j)] = 7
ciass)| - ()

The probability g;,; that the algorithm SCHONING starting in the Class (j) (in
the vertex j) reaches o (the vertex 0) in exactly j + 2/ local steps.

v
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

SCHONING

Algorithm SCHONING

@ j +i steps toward a” and i steps in the opposite direction ( toward the
vertex n). Since:

j+2i<3.n

o The movement of the algorithm during the j+2i steps on the graph by a
word (string) in {+, - }J*?

@ The number of words over{+, —}of length j + 2i with exactly i symbols is

(j+2.i)
i 43)/ 64




Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

Only those words correspond to possible runs for which every suffix
contains at least as many + symbols as - symbols.

i J+2.0
j+2i\ i

Since the symbol + occurs with a probability of at least 1/3 and the
symbol occurs with a probability of at most 2/3,

Prob (Event (w)) > (%Y @)

R S A RANEAR AN
Bi= T i 3 3

q; be the probability of reaching o from an « € Class (j) in at most 3n
local steps.

So

i
TR
=0
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

o Stirling formula
n=vam (5)- (1+$+ o(i)) ~vamr- (1)

o Inserting the Stirling formula

1 (35 NN g
45 = = - il e |5
3 (2.4 \3 3
1 SR O
~3 o 2]~(%)2.j- 2] %] 3 3
_ LB s N 2y
T3 2.ymy 220 \3 3

45 / 64



Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

(J)/z 42 5 (3

o Probability of SCHONING finds o* by a random sample followed by a
local search of at most 3n steps > .7 p;.q;

S ORONEER0)]
s (7 E[0) 0]

S =HONGH)
2.3 \2 2
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Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

The probability that the algorithm does not find any assignment satisfying
F by one random sample followed by the considered local search is at most:

1-p
o The error probability after t independent attempts of the algorithm is at
most:
(1-p)<e?t
o Since : p= L (3)n
7 2./3mn \4

[+

Taking t = ATMOST =20./37n. (g) and inserting it into
(1-p)<ePt:
Errorscronme (F) < (1-p)f < e <5.107°

Thus, we have proved that the algorithm SCHONING is a one-sided-error
Monte Carlo algorithm for 3SAT.

y
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Algorithm SCHONING

Time Complexity

o The algorithm SCHONING is a 1IMC algorithm for the 3SAT-problem that
runs in time:

O(IFL.A.(5)")

for any instance F of n variables.

o Step 2= X = ATMOST =20./3mn. (%)

o Each local search consists of at most 3n steps.

o Each step can be performed in timeO(|F|).
So == Time Complexity of Algorithm SCHONING is:

O(IFL.i".(5)")
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Lemma A.3.69

o Word (i, j) denote the set of all strings (words) over the alphabet{+,-} of
length j + 2/ > 0,/ > 0, that have the following properties:

(i) The number of symbols 1 is exactly j +i (i.e., the number of Os is
exactly i)

(ii) every suffix of the string contains more 1s than Os.

.. Jj+2i J
Then: |W« = —
en: |Word(i,j)| ( ; ) e
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Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Lemma A.3.69

proof by induction

(i) We prove the claim for n < 3:

e Word (0, j):

o Word (1, 1) = {011}
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Repeated Random Sampling and Satisfiability Appendix

(i) Let n > 3.

o Word (i, j) beginning with the symbol 1 is exactly

. j-1+2i\ j-1
W _1)| = ,
|Word (i,j - 1)| ( ; )J._1+2i

o The number of words in Word (i, j) that start with 0 is:

o je1+2(i-1) j+l
Word(i - 1,j +1)| = —a
[Word(i-1,j+1)] ( i1 Jr1+2(-1)
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Repeated Random Sampling and Satisfiability Appendix

o Now, we distinguish two cases, namely j = 1 and j > 1.
(ii).1 Letj = 1.

|[Word (,1) | [Word (i —1.2) |

O e

)

(20)! - (22+1 21+1
(1) (20 +1)

i+ 2i 1
N i J+2

+1
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Repeated Random Sampling and Satisfiability Appendix

(ii).2 Let j> 1.

[Word (i, 7) | = [Word (i, — 1) |+ [Word (i — 1,5+ 1) |

i1+ -1
- i 2i+j—1

+j+1+2(z‘71)_ j+1
i—1 2i-1)+5i+1

Jo142\ -1
:(jfl+i)2i+j71
421\ 41
+( i—1 )'21'+j—1
i _(j-i—?i)
T 245 \j+i

(G -DGE ) (G+1)-i
(j-(2i+j—1)+j-(2i+j—1))

g _(j+2i)
2i+j \j+i

_(i+%d\
i j+2i
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Random Sampling and Generating Quadratic Nonresidues

Some Problem

@ One does not know any deterministic polynomial-time algorithm, and

@ There are no proofs presenting their NP-hardness.

Designing an efficient Las Vegas algorithm for a problem
with properties (1) and (2).
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Outline

@ Random Sampling and Generating Quadratic Nonresidues
@ Quadratic nonresidue
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quadratic nonresidue

o A quadratic residue in the field Z, is any element a € Z, such that:
a=xmod p
foran x e Z, .

@ A quadratic nonresidue is any number b € Z, such that:

d*# b mod p
for all d € Zj,.
modulus quaflmtic qua(ll'fltic

residues | non-residues

2 0,1 (none)

3 0.1 2

4 0.1 2.3

5 0.1.4 2.3

6 0,1.3.4 2.5

7 0124 356

8 0,14 2.3.5.6.7
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Generation of a quadratic nonresidue

o Input: A prime p > 2.

o Output: A quadratic nonresidue modulo p.
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Quadratic nonresidue

modulus | 11 flmtic qua (ll'%lﬁc
residues | non-residues
2 0.1 (none)
3 0,1 2
4 0,1 2.3
5 0,14 23
6 0,1.3.4 2,5
7 0,124 3.56
8 0,14 2.3,5.6,7

Theorem 5.4.14.Eulers Criterion

Let p, with p > 2, be a prime. For every ac {1,2,...,p -1},

o (i) if a is a quadratic residue modulo p, then
a2 =1 (mod p)
o (ii) if a is a quadratic nonresidue modulo p, then
P2 = p_1 (mod p)
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Theorem 5.4.15.

For every odd prime p, exactly half of the nonzero elements of Z, are
quadratic residues modulo p.
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Solve the problem by random sampling

o For every prime p and every a € Z,, one can efficiently decide (in a
deterministic way) whether a is a quadratic residue or a quadratic
nonresidue modulo p.

o For every prime p exactly half of the elements of Z, — {0} are quadratic
nonresidues, i.e., a random sample from {1,2,...,p—1} provides a
quadratic nonresidue with probability 1/2.
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Outline

@ Random Sampling and Generating Quadratic Nonresidues

o Algorithm NQUAD
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Random Sampling and Generating Quadratic Nonresidues

Algorithm NQUAD

o Input: A prime p.
o Step 1: Choose uniformly an a € {1,2,...,p—1} at random.

o Step 2: Compute:
A= a?V2 mod p
by the method of repeated squaring.
o Step 3:
if A= p—1 then
output a

else
output ?

The above proved claims (A) and (B) imply that
(i) NQUAD does not make any error, and
(ii) NQUAD finds a quadratic nonresidue with the probability 1/2.
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THE END
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