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Success Amplification and Random sampling

amplification of success probability by repeating runs on the same input
and random sampling

amplification does not only increase the success probability, but directly
stamps the process of the algorithm design

prefers to repeat only some computation parts or to repeat different parts
differently many times.

more attention to computation parts in which the probability of making
mistakes is greater

designing efficient randomized algorithms solving problems for which no
deterministic polynomial-time algorithm has up to now been discovered
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MIN-CUT
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Algorithm REPTREE

Efficient Amplification by repeating Critical Computation Parts

Introducing the method of amplification of the success probability as a method
for the design of randomized algorithms.

MIN-CUT

Input: A multigraph G = (V, E, c), where C: E→ N -{0}
Constraints: The set of all feasible solutions for G is the set
M(G) ={(V1, V2) ∣V1⋃V2=V, V1⋂V2=0}
Costs: For every cut (V1, V2)∈M(G), cost((V1, V2),G) = ∑ c(e)
{i.e., cost((V1, V2),G) is equal to the number of edges between V1 and
V2}
Goal: minimum
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MIN-CUT (deterministic algorothm)

The best known deterministic algorithm for MIN-CUT runs in time

O(∣V ∣.∣E ∣.log( ∣V ∣
2

∣E ∣
))

in the worst case, is in O(n3)forn = ∣V ∣.
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Contraction

Contract(G, e)

G = (V,E) and an edge e = {x , y} ∈ E
1 the vertices x and y are replaced by a new vertex ver(x, y),

2 the multi-edge e ={x , y} is removed (contracted).

3 each edge {r , s} with an r ∈ {x , y} and s ∈ {x , y} is replaced by a new
edge {ver(x , y), s}

4 all remaining parts of G remain unchanged.
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MIN-CUT

1 the effect of contracting the edges in F⊆ E does not depend on the order
of contractions.

2 the multigraph in Figure 5.1(d) with a cost of 4.
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Randomized Algorithm

One contracts randomly chosen edges until one gets a multigraph with exactly
two vertices ver(V1) and ver(V2).

Algorithm CONTRACTION

Input: A connected multigraph G = (V, E, c)

Step 1: Set label (v) :={ v } for every vertex v ∈ V .

Step 2: while G has more than two vertices do

begin

choose an edge e = {x, y} ∈ E(G);
G := Contract(G, e);

Set label (z) := label (x) ⋃ label (y)

for the new vertex z = ver(x, y);

end

Step 3: if G = ({u, v},E(G)) for a multiset E(G) then

output (label (u) , label (v)) and cost = ∣E(G)∣
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Algorithm CONTRACTION

Theorem 5.2.1

The algorithm CONTRACTION is a randomized polynomial-time algorithm
that computes a minimal cut of a given multigraph G of n vertices with

probability at least
2

n.(n − 1)
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Theorem 5.2.1

The algorithm consists of n-2 contractions.

time complexity of CONTRACTION is in O(n2)
Let G = (V, E, c) be a multigraph,

and let (C −min) = (V 1,V 2) be a minimal cut of G with cost
(C −min) = k for a natural number k.

Every vertex of G has a degree of at least k.

G has at least
nk

2
edges, i.e., ∣E(G)∣ ≥ nk

2
Important observation is that

the algorithm CONTRACTION computes (Cmin) if and only if no edge
from E(Cmin) has been contracted.
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CONTRACTION
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Theorem 5.2.1

Probability

Let SCon,G ,G be the set of all possible computations of the algorithm
CONTRACTION on G.

Eventi = { all computations from SCon,G in which no edge of E(Cmin) is
contracted in the i-th contraction step }
for i = 1, 2, . . ., n-2.

The event that (Cmin) is the output of the algorithm is exactly the event:

n−2
⋂
i=1

Eventi
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Since G has at least
nk

2
edges and the algorithm makes a random choice

for edge contraction,
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contraction

In general, the multigraph G/Fi created after i − 1 random contractions
has exactly n − i + 1 vertices. If

Every vertex in G/Fi has still to have a degree of at least k, and so G/Fi
has at least

k.(n − i + 1)
2

edges.
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Contraction

Therefore

for i = 2, . . ., n − 1.
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Theorem 5.2.1 assures that the probability of discovering a particular
minimal cut in one run is at least:

2

n.(n − 1)
≻ 2

n2

One does not obtain a minimal cut with a probability of at most:

(1 − 2

n2
)n

2/2 ≺ 1

e

Hence, the complementary probability of computing a minimal cut by n2/2
runs of the algorithm is at least:

1 − 1

e

The complexity of the algorithmCONTRACTIONn2/2 is in O(n4) .

18 / 64



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Objective
Efficient Amplification by repeating Critical Computation Parts

Repeated Random Sampling and Satisfiability
Random Sampling and Generating Quadratic Nonresidues

MIN-CUT
Algorithm CONTRACTION
Algorithm DETRAN(l)
Algorithm REPTREE

The probability of contracting an edge from Cmin grows with the number
of contractions executed.

2

n
,

2

n − 1
,

2

n − 2
,

2

n − 3
,

2

n − 4
, ...

The created multigraph G/F, is small enough to be searched for a minimal
cut in a deterministic way.
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Algorithm DETRAN(l)

The size of G/F will still remain a free parameter of the algorithm.

Let L ∶ N → N be a monotonic function such that 1 ≺ l(n) ≺ n for every n ∈ N .

Input: A multigraph G = (V, E, c) of n edges, n n ∈ N, n ⪰ 3.
Step 1: Perform the algorithm CONTRACTION on G in order to get a
multigraph G/F of l(n) vertices.

Step 2: Apply the best known deterministic algorithm on G/F to compute
an optimal cut D of G/F.

Output: D
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DETRAN(l)

Analyze the influence of the exchange of CONTRACTION for DETRAN(l)
on:

1 (i) the amplification of the success probability
2 (ii) the increase of the complexity.

Consider l as a free parameter, i.e., the result of the analysis depends on l.

Lemma 5.2.3

Let L ∶ N → N be a monotonic function such that 1 ≺ l(n) ≺ n for every n ∈ N .

The algorithm DETRAN(l) works in time:

O(n2 + (l(n))3)
and it finds an optimal solution with probability at least:

(l(n)
2
)

(n
2
)
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Lemma 5.2.3

Complexity of DETRAN(l)

In step 1, (n − l)(n) contractions are performed, and each contraction can
be executed in time O(n).
Hence, step 1 can be executed in:

O((n − l(n)).n) = O(n2)
Deterministic algorithm can compute an optimal cut of G/F in time:

((l(n))3)
Altogether, the complexity of DETRAN(l) is in:

O(n2 + (l(n))3)
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Success probability of DETRAN(l)

Let (Cmin) be a minimal cut of G.

lower bound on the probability of having (Cmin) in the multigraph G/F
after executing step 1:
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Time complexity and Success probability of DETRAN(l)

Since

n2

(l(n))2
independent runs of DETRAN(l) provide a randomized algorithm

that works in time:

Computes a minimal cut of G with probability at least:

1 − 1

e
The best possible choice of l with respect to the time complexity is:
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DETRAN(l)

Theorem 5.2.4.

The algorithm DETRAN(⌊n2/3⌋n2/⌊n2/3⌋) works in time:

O(n8/3)
Computes a minimal cut with probability at least:

1 − e−1
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1 Objective
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MIN-CUT
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Algorithm DETRAN(l)
Algorithm REPTREE

3 Repeated Random Sampling and Satisfiability
Algorithm SCHONING
Appendix

4 Random Sampling and Generating Quadratic Nonresidues
Quadratic nonresidue
Algorithm NQUAD
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Algorithm REPTREE(G)

Input: A multigraph G = (V, E, c), ∣V ∣ = n,n ∈ N,n ≥ 3.
Procedure:

if n ≤ 6 then:
compute a minimal cut deterministically
else
begin

h:= ⌈1 + n√
2
⌉

Perform two independent runs of CONTRACTION in order to
get two multigraphs G/F1 and G/F2 of size h;
REPTREE(G/F1);
REPTREE(G/F2)
end

output the smaller of the two cuts computed by REPTREE(G/F1) and
REPTREE(G/F2)
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Algorithm REPTREE

Theorem 5.2.5.

The algorithm REPTREE works in time O(n2.logn) and finds a minimal
cut with a probability of at least:

1

Ω(logn2)
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Reptree

Time complexity

1 Depths = number of recursion
calls of Reptree.

2 Size is reduced by:
1√
2

3 Number of recursion calls:

logn√2 ∈ O(log
n
2)

4 Number of leaves:

2(log(n−2)√
2
) ∈ O(n2) The depths of the binary trees

correspond to the number of recursion
calls of REPTREE.
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Algorithm REPTREE

Time Complexity Algorithm REPTREE

TimeREPTREE(n) ∈ O(1) for n ≤ 6

TimeREPTREE(n) = 2 TimeREPTREE (⌈1 + n√
2
⌉) +O(n2)

TimeREPTREE(n) = Θ(n2. logn2)
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Algorithm REPTREE

Lower bound on the Success Probability

Let pl be the probability that G/Fi (i = 1, 2) still contains Cmin.

Probability that RepTree finds Cmin for i=1,2.

Probability that RepTree does not find Cmin.
G/F has contained Cmin.
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Probability of RepTree

So the following recurrence for Prob(n) is obtained.

Prob satisfying the recurrence is in:

Θ
1

logn2

O(logn2) repetitions of the algorithm REPTREE are sufficient in order to
compute a minimal cut with a constant probability.
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Algorithm RepTree

Complexity

O((logn2)
2) repetitions suffice to reduce the non-success probability to a

function tending to 0 with growing n and one can consider this algorithm
applicable.

So, The complexity of REPTREE(logn
2
)2 is in:

O(n2.(log2 n)3)
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Algorithm RepTree

complexity Comparison

The complexity of REPTREE(logn
2
)2 is in:

O(n2.(log2 n)3)

which is substantially better than the complexity

O(n3)

of the best deterministic algorithm and the complexity

O(n8/3)

of the randomized algorithm DETRAN(⌊n2/3⌋n2/⌊n2/3⌋).
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Repeated Random Sampling and Satisfiability

Combination amplification and random sampling

Combine amplification and random sampling with local search in order to
design:

A randomized algorithm that can solve the 3-satisfiability problem (3SAT).

37 / 64



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Objective
Efficient Amplification by repeating Critical Computation Parts

Repeated Random Sampling and Satisfiability
Random Sampling and Generating Quadratic Nonresidues

Algorithm SCHONING
Appendix

Outline

1 Objective
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Appendix

4 Random Sampling and Generating Quadratic Nonresidues
Quadratic nonresidue
Algorithm NQUAD
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SCHONING

Algorithm SCHONING

Input: A formula F in 3CNF over n Boolean variables.

Step 1: NUMBER := 0; ATMOST :=X; FOUND := FALSE;

Step 2: while NUMBER ≺ ATMOST and FOUND = FALSE do

begin

NUMBER := NUMBER + 1; Generate at random an assignment
α ∈ {0,1}n;
if F is satisfied by then FOUND := TRUE;
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SCHONING

Algorithm SCHONING Cont

M := 0;

while M ≺ 3.n and FOUND = FALSE do

begin

M := M + 1; Find a clause C that is not satisfied by α.

Pick one of the literals of C at random, and flip the value of its variable.

if α satisfies F then

FOUND := TRUE;

end

end

Step 3: if FOUND = TRUE then

output: F is satisfiable.

else output: F is not satisfiable.
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Algorithm SCHONING

SCHONING is a 1MC algorithm for 3SAT

1 Let F be not satisfiable. Then, the algorithm SCHONING does not find
any assignment that satisfies F and outputs the correct answer:

F is not satisfiable with certainty.

2 Let F be satisfiable.

To prove a lower bound on the success probability of SCHONING; we
analyze the probability of finding a certain assignment α∗ that satisfies F.
Let α and β be two assignments.

Dist(α,β) between α and β as the number of bits in which they differ.

Class(j) = {β ∈ {0,1}n∣Dist(α∗, β) = j}.

∣Class(j)∣ = (n
j
)
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SCHONING

Algorithm SCHONING

The probability of moving from vertex j to vertex j − 1 in one local search

step is at least
1

3

Class(j) = {β ∈ {0,1}n∣Dist(α∗, β) = j}.

∣Class(j)∣ = (n
j
)

The probability qj,i that the algorithm SCHONING starting in the Class (j) (in
the vertex j) reaches α∗(the vertex 0) in exactly j + 2i local steps.

42 / 64



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Objective
Efficient Amplification by repeating Critical Computation Parts

Repeated Random Sampling and Satisfiability
Random Sampling and Generating Quadratic Nonresidues

Algorithm SCHONING
Appendix

SCHONING

Algorithm SCHONING

j +i steps toward α∗ and i steps in the opposite direction ( toward the
vertex n). Since:

j + 2i ⩽ 3.n

The movement of the algorithm during the j+2i steps on the graph by a
word (string) in {+,−}j+2i .

The number of words over{+,−}of length j + 2i with exactly i symbols is

(j + 2.i
i
)
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Only those words correspond to possible runs for which every suffix
contains at least as many + symbols as - symbols.

j

j + 2i
.(j + 2.i

i
)

Since the symbol + occurs with a probability of at least 1/3 and the
symbol occurs with a probability of at most 2/3,

So

qj be the probability of reaching α∗ from an α ∈ Class (j) in at most 3n
local steps.
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Stirling formula

Inserting the Stirling formula
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pj = (
n

j
)/2n , qj ≥

1

2.
√
3πj

.(1
2
)j

Probability of SCHONING finds α∗ by a random sample followed by a
local search of at most 3n steps ⩾ ∑n

j=0 pj .qj

= 1

2.
√
3πn

.(3
4
)
n

= p̃
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The probability that the algorithm does not find any assignment satisfying
F by one random sample followed by the considered local search is at most:

1 − p̃
The error probability after t independent attempts of the algorithm is at
most:

(1 − p̃)t ≤ e−p̃.t

Since : p̃ = 1

2.
√
3πn

.(3
4
)
n

Taking t = ATMOST =20.
√
3πn.(4

3
)
n

and inserting it into

(1 − p̃)t ≤ e−p̃.t :
ErrorSCHONING(F) ≤ (1 − p̃)t ≤ e−10 ≺ 5.10−5

Thus, we have proved that the algorithm SCHONING is a one-sided-error
Monte Carlo algorithm for 3SAT.
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Algorithm SCHONING

Time Complexity

The algorithm SCHONING is a 1MC algorithm for the 3SAT-problem that
runs in time:

O(∣F ∣.n3/2.(4
3
)n)

for any instance F of n variables.

Proof

Step 2⇒ X = ATMOST = 20.
√
3πn.(4

3
)
n

Each local search consists of at most 3n steps.

Each step can be performed in timeO(∣F ∣).
So Ô⇒ Time Complexity of Algorithm SCHONING is:

O(∣F ∣.n3/2.(4
3
)n)
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Appendix

Lemma A.3.69

Word (i, j) denote the set of all strings (words) over the alphabet{+,−} of
length j + 2i ≻ 0, j ≻ 0, that have the following properties:

(i) The number of symbols 1 is exactly j +i (i.e., the number of 0s is
exactly i)

(ii) every suffix of the string contains more 1s than 0s.

Then: ∣Word(i , j)∣ = (j + 2i
i
). j

j + 2i
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Lemma A.3.69

proof by induction

(i) We prove the claim for n ≤ 3:

Word (0, j):

(j
0
). j
j
= 1

Word (1, 1) = {011}

(3
1
).1
3
= 1
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(ii) Let n ≻ 3.

Word (i, j) beginning with the symbol 1 is exactly

∣Word(i , j − 1)∣ = (j − 1 + 2i
i

). j − 1
j − 1 + 2i

The number of words in Word (i, j) that start with 0 is:

∣Word(i − 1, j + 1)∣ = (j + 1 + 2(i − 1)
i − 1

). j + 1
j + 1 + 2(i − 1)
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Now, we distinguish two cases, namely j = 1 and j ≻ 1.

(ii).1 Let j = 1.
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(ii).2 Let j≻ 1.
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Random Sampling and Generating Quadratic Nonresidues

Some Problem

1 One does not know any deterministic polynomial-time algorithm, and

2 There are no proofs presenting their NP-hardness.

Designing an efficient Las Vegas algorithm for a problem
with properties (1) and (2).
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quadratic nonresidue

A quadratic residue in the field Zp is any element a ∈ Zp such that:

a ≡ x2mod p

for an x ∈ Zp .

A quadratic nonresidue is any number b ∈ Zp such that:

d2 /≡ b mod p

for all d ∈ Zp.
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Generation of a quadratic nonresidue

Input: A prime p ≻ 2.
Output: A quadratic nonresidue modulo p.
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Quadratic nonresidue

Theorem 5.4.14.Eulers Criterion

Let p, with p ≻ 2, be a prime. For every a∈ {1,2, ...,p − 1},

(i) if a is a quadratic residue modulo p, then

a(p−1)/2 ≡ 1 (mod p)

(ii) if a is a quadratic nonresidue modulo p, then

a(p−1)/2 ≡ p − 1 (mod p)
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Theorem 5.4.15.

For every odd prime p, exactly half of the nonzero elements of Zp are
quadratic residues modulo p.
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Solve the problem by random sampling

(A)

For every prime p and every a ∈ Zp, one can efficiently decide (in a
deterministic way) whether a is a quadratic residue or a quadratic
nonresidue modulo p.

(B)

For every prime p exactly half of the elements of Zp − {0} are quadratic
nonresidues, i.e., a random sample from {1,2, ...,p − 1} provides a
quadratic nonresidue with probability 1/2.
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Algorithm NQUAD

Input: A prime p.

Step 1: Choose uniformly an a ∈ {1,2, ...,p − 1} at random.

Step 2: Compute:

A := a(p−1)/2 mod p

by the method of repeated squaring.

Step 3:
if A = p − 1 then
output a
else
output ?

The above proved claims (A) and (B) imply that
(i) NQUAD does not make any error, and
(ii) NQUAD finds a quadratic nonresidue with the probability 1/2.
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THE END
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