Success Amplification and Random Sampling

Faranak Tohidi

Department of Computer Science
Yazd University

April 25, 2016

1/64

Outline

© Objective

g Efficient Amplification by repeating Critical Computation Parts
o MIN-CUT
o Algorithm CONTRACTION
o Algorithm DETRAN(I)
o Algorithm REPTREE

Q Repeated Random Sampling and Satisfiability
o Algorithm SCHONING
o Appendix

@ Random Sampling and Generating Quadratic Nonresidues

@ Quadratic nonresidue
o Algorithm NQUAD

2/64

Success Amplification and Random sampling

o amplification of success probability by repeating runs on the same input
and random sampling

3/64

Success Amplification and Random sampling

o amplification of success probability by repeating runs on the same input
and random sampling

o amplification does not only increase the success probability, but directly
stamps the process of the algorithm design

3/64

Success Amplification and Random sampling

o amplification of success probability by repeating runs on the same input
and random sampling

o amplification does not only increase the success probability, but directly
stamps the process of the algorithm design

o prefers to repeat only some computation parts or to repeat different parts
differently many times.

3/64

Success Amplification and Random sampling

o amplification of success probability by repeating runs on the same input
and random sampling

o amplification does not only increase the success probability, but directly
stamps the process of the algorithm design

o prefers to repeat only some computation parts or to repeat different parts
differently many times.

@ more attention to computation parts in which the probability of making
mistakes is greater

o designing efficient randomized algorithms solving problems for which no
deterministic polynomial-time algorithm has up to now been discovered

3/64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Outline

g Efficient Amplification by repeating Critical Computation Parts
o MIN-CUT

4/64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

Efficient Amplification by repeating Critical Computation Parts

Introducing the method of amplification of the success probability as a method
for the design of randomized algorithms.

MIN-CUT

o Input: A multigraph G = (V, E, c), where C: E -~ N -{0}
o Constraints: The set of all feasible solutions for G is the set
M(G) ={(V1, V2) viuVv2=V, V1N V2=0}

o Costs: For every cut (V1, V2)eM(G), cost((V1, V2),G) = > c(e)
{i.e., cost((V1, V2),G) is equal to the number of edges between V1 and
V2}

o Goal: minimum

5/64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

MIN-CUT (deterministic algorothm)

o The best known deterministic algorithm for MIN-CUT runs in time

0V Igllog()

o in the worst case, is in O(n®)forn = |V/|.

B e
R
L4 \
.f /h} | cut=s
1 */ I
#
@ 2 N (2

6/64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Contraction

Contract(G, e)
G = (V,E) and an edge e = {x,y} € E

@ the vertices x and y are replaced by a new vertex ver(x, y),

@ the multi-edge e ={x, y} is removed (contracted).

@ each edge {r,s} with an re {x,y} and s € {x,y} is replaced by a new
edge {ver(x,y),s}

@ all remaining parts of G remain unchanged.

7/64

MIN-CUT
Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

MIN-CUT

ver(ey)
Y

®
ver(wy) : ver(z,y,v)
I —— i
I [
[M1
I |
|
\| \/
ver(u,z) ver(u, z)

(c) (@)

@ the effect of contracting the edges in FC E does not depend on the order

of contractions.

@ the multigraph in Figure 5.1(d) with a cost of 4.
8 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Outline

g Efficient Amplification by repeating Critical Computation Parts

o Algorithm CONTRACTION

9/64

MIN-CUT
Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION

Algorithm DETRAN(I)
Algorithm REPTREE

Randomized Algorithm

One contracts randomly chosen edges until one gets a multigraph with exactly
two vertices ver(V1) and ver(V2).

Algorithm CONTRACTION

o Input: A connected multigraph G = (V, E, ¢)

o Step 1: Set label (v) :={ v } for every vertex v eV .
o Step 2: while G has more than two vertices do

begin

choose an edge e = {x, y} € E(G);

G := Contract(G, e);

Set label (z) := label (x) U label (y)

for the new vertex z = ver(x, y);

end
o Step 3: if G = ({u, v},E(G)) for a multiset E(G) then
o output (label (u) , label (v)) and cost = |E(G)|

10/ 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Algorithm CONTRACTION

The algorithm CONTRACTION is a randomized polynomial-time algorithm
that computes a minimal cut of a given multigraph G of n vertices with

2
n.(n-1)

probability at least

11/ 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

Theorem 5.2.1

The algorithm consists of n-2 contractions.
o time complexity of CONTRACTION is in O(n?)
Let G = (V, E, ¢) be a multigraph,

and let (C — min) = (V1,V2) be a minimal cut of G with cost
(C - min) = k for a natural number k.

o Every vertex of G has a degree of at least k.
k . k
G has at least n? edges, i.e., |[E(G)|> n7

o Important observation is that

the algorithm CONTRACTION computes (Cp,) if and only if no edge
from E(Cpin) has been contracted.

12 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

CONTRACTION

a b © d
14 edges to choose from
Pick b— f (probability 1/14)
f H
3 ¢ d
13 edges to choose from
o Pick g — h (probability 1/13)
H
3 T
12 edges to choose from
0 Pick d — gh (probability
e
] T
10 edges to choose from
of Pick a — ¢ (probahility 1/10)
e deh
T
" 9 edges to choose from
of Pick ab — e f (probability 4/9)
dgh
abefc 5 edges to choose from
Pick ¢ — dgh (probabil
deh
abef—— D cdgh Done: just two nodes remain

13 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Theorem 5.2.1

Probability

o Let Scon,6,G be the set of all possible computations of the algorithm
CONTRACTION on G.

o Event; = { all computations from Scon, ¢ in which no edge of E(Cpin) is
contracted in the i-th contraction step }

fori=1,2,... n2
o The event that (Cpin) is the output of the algorithm is exactly the event:
n-2

() Event;

i=1

14/ 64

MIN-CUT
Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION

Algorithm DETRAN(I)
Algorithm REPTREE

n—2
Prob (ﬂ Event@> = Prob(Event,) - Prob(Events | Event;)
i=1
-Prob(Events | Event; N Events) - ...
n—3
-Prob | Event,, o ‘ ﬂ Event;
j=1

To prove Theorem 5.2.1, we have to estimate lower bounds on

i—1

ﬂ Event;

j=1

Prob | Event;

fori=1,...,n—2.

. nk . .
o Since G has at least - edges and the algorithm makes a random choice
for edge contraction,

Prob(Eventy) = 1B = |E(Cu)| ‘é(‘Cmin)‘
—
2

k 2

zl-gp=1-

2 ” 15/ 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

contraction

@ In general, the multigraph G/Fi created after i — 1 random contractions
has exactly n— i+ 1 vertices. If
i—1
Fin E(Crin) =0 (ie., ﬂ Event; happens)
=1

o Every vertex in G/Fi has still to have a degree of at least k, and so G/Fi
has at least
k.(n—i+1)

dges.
3 edges

16 / 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Contraction

@ Therefore

i—1
|E(G/Fi) — E(Cin)|
Prob | Event; Event,
QB | = =GRy
k
z1- k- (n—itl)
2
%
N (n—i+1)
o fori=2,... n-1.
n—2 n—2 2
Prob Event; | > —
ro ﬂ vent; | > (nfz'Jrl)
Jj=1 i=1
B ﬁ 1—2
B l
l=n

17 /64

©

©

MIN-CUT
Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION

Algorithm DETRAN(I)
Algorithm REPTREE

Theorem 5.2.1 assures that the probability of discovering a particular
minimal cut in one run is at least:

2

n.(n-1) T

One does not obtain a minimal cut with a probability of at most:

2.2 1

(1- ;)" G =

Hence, the complementary probability of computing a minimal cut by n2/2
runs of the algorithm is at least:

1
1-=
e

The complexity of the algorithm CONTRACTION, 2, is in Oo(n*) .

18/ 64

MIN-CUT
Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION

Algorithm DETRAN(I)
Algorithm REPTREE

@ The probability of contracting an edge from Cmin grows with the number
of contractions executed.
2 2 2 2 2
n"n-1"n-2"n-3"n-4""
o The created multigraph G/F, is small enough to be searched for a minimal
cut in a deterministic way.

19/ 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Outline

g Efficient Amplification by repeating Critical Computation Parts

o Algorithm DETRAN(I)

20 / 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Algorithm DETRAN(I)

The size of G/F will still remain a free parameter of the algorithm.

Let L: N — N be a monotonic function such that 1 < /(n) < n for every n e N .

o Input: A multigraph G = (V, E, ¢) of n edges, n ne N, n> 3.
o Step 1: Perform the algorithm CONTRACTION on G in order to get a
multigraph G/F of I(n) vertices.

o Step 2: Apply the best known deterministic algorithm on G/F to compute
an optimal cut D of G/F.

o Output: D

21 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

DETRAN())

@ Analyze the influence of the exchange of CONTRACTION for DETRAN(I)

on:
@ (i) the amplification of the success probability
@ (ii) the increase of the complexity.

o Consider | as a free parameter, i.e., the result of the analysis depends on |.

Lemma 5.2.3

Let L: N — N be a monotonic function such that 1 </(n) < n for every n € N .

o The algorithm DETRAN(I) works in time:
O(n + (I(n))*)

o and it finds an optimal solution with probability at least:
I(n)
2
n
2

22 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Lemma 5.2.3

Complexity of DETRAN(I)

o In step 1, (n—/)(n) contractions are performed, and each contraction can
be executed in time O(n).
Hence, step 1 can be executed in:

O((n~I(n)).n) = O(n?)
o Deterministic algorithm can compute an optimal cut of G/F in time:
(((n))*)
o Altogether, the complexity of DETRAN(]) is in:
O(n® + (I(n))*)

23 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Success probability of DETRAN(I)

o Let (Cmin) be a minimal cut of G.
o lower bound on the probability of having (Cpin) in the multigraph G/F
after executing step 1:

n—I(n)
m Event;
i=1

n—I(n

) n—I(n)
Prob m Event;
i=1

2
H (17727i+1)

i=1
H:'L:I 1- n—i+1)

-2
H?:n—l(n)ﬁ»l(l - 'n—i?ﬁ»l)

%

_ T
(H})) (g)

24 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Time complexity and Success probability of DETRAN(I)

o Since
2
)2 = (1)
2
° ﬁ independent runs of DETRAN(I) provide a randomized algorithm
n

that works in time:

o+ 1)) i) = (g =010

o Computes a minimal cut of G with probability at least:

1-1
e

o The best possible choice of | with respect to the time complexity is:

I(n) = {712/3J

25 / 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

DETRAN())

Theorem 5.2.4.

o The algorithm DETRAN([n2/3Jn2/l,,z/3J) works in time:
O(n8/3)
o Computes a minimal cut with probability at least:

1-e™?

26 / 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Outline

g Efficient Amplification by repeating Critical Computation Parts

o Algorithm REPTREE

27 /64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

RepTree

n? runs
O(TLQ) length O(nZ) depth
nnnn ... nnnn
O(ng) leaves
2 2 2 2 2 2
n"n-1"n-2"n-3"n-4"""3

28 / 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

RepTree

n? runs
O(TLQ) length O(nZ) depth
nnnn ... 0nnn
O(ng) leaves

2 2 2 2 2 2 J
n"n-1"n-2"n-3"n-4"""3

28 / 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

RepTree

n? runs
O(TLQ) length O(nZ) depth
nnnn ... 0nnn
O(ng) leaves

2 2 2 2 2 2)
n"n-1"n-2"n-3"n-4"""3

28 / 64

MIN-CUT
Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION

Algorithm DETRAN(I)
Algorithm REPTREE

Algorithm REPTREE(G)

o Input: A multigraph G = (V, E, ¢), [V|=n,ne N,n> 3.
Procedure:

o if n <6 then:
compute a minimal cut deterministically
else
begin

o hi=[1+ L21
Perform two independent runs of CONTRACTION in order to
get two multigraphs G/F1 and G/F2 of size h;
REPTREE(G/F1);
REPTREE(G/F2)
end

@ output the smaller of the two cuts computed by REPTREE(G/F1) and
REPTREE(G/F2)

29 / 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Algorithm REPTREE

Theorem 5.2.5.

The algorithm REPTREE works in time O(n?.logn) and finds a minimal
cut with a probability of at least:

1

Q(logy)

30/ 64

Efficient Amplification by repeating Critical Computation Parts

Reptree

Time complexity

@ Depths = number of recursion
calls of Reptree.

MIN-CUT
Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

nnnn ... nnnn

The depths of the binary trees
correspond to the number of recursion
calls of REPTREE.

31,64

Efficient Amplification by repeating Critical Computation Parts

Reptree

Time complexity

@ Depths = number of recursion
calls of Reptree.

1
@ Size is reduced by: —
y \/5

MIN-CUT

Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

nnnn ... nnnn

The depths of the binary trees
correspond to the number of recursion
calls of REPTREE.

31,64

Efficient Amplification by repeating Critical Computation Parts

Reptree

Time complexity

@ Depths = number of recursion
calls of Reptree.

1
@ Size is reduced by: —
y \/5

@ Number of recursion calls:

log”5 € O(log})

MIN-CUT

Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

nnnn ... nnnn

The depths of the binary trees
correspond to the number of recursion
calls of REPTREE.

31,64

Efficient Amplification by repeating Critical Computation Parts

Reptree

Time complexity

@ Depths = number of recursion
calls of Reptree.

1
@ Size is reduced by: —
y \/5

@ Number of recursion calls:

log”5 € O(log})

@ Number of leaves:

2(Iog5"/2_2)) € 0(n%)

MIN-CUT

Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

nnnn ... nnnn

The depths of the binary trees
correspond to the number of recursion
calls of REPTREE.

31,64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

Time Complexity Algorithm REPTREE

o TimeREPTREE(n) € O(1) for n<6

o TimeREPTREE(n) = 2 TimeREPTREE ([1+ —=

\/51)+0(n)

o TimeREPTREE(n) = ©(n’.log})

32/ 64

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)
Algorithm REPTREE

Lower bound on the Success Probability

o Let p; be the probability that G/Fi (i = 1, 2) still contains Cpmin.

(M) el (4
0 e

=

o Probability that RepTree finds Gy for i=1,2.

oo)

o Probability that RepTree does not find Cpin.
G/F has contained Cpjp.

=)}

33,64

MIN-CUT

Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

Efficient Amplification by repeating Critical Computation Parts

Probability of RepTree

@ So the following recurrence for Prob(n) is obtained.

Prob(2) =1, and

Prob(l) > 1— (PPrPrC’hG”%D)z
=1 (1 g epron([1+ H))Q

o Prob satisfying the recurrence is in:

1
logs

o O(logy) repetitions of the algorithm REPTREE are sufficient in order to
compute a minimal cut with a constant probability.

34 /64

MIN-CUT
Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(1)

Algorithm REPTREE

Algorithm RepTree

Complexity

o O((logj)?) repetitions suffice to reduce the non-success probability to a
function tending to 0 with growing n and one can consider this algorithm

applicable.
o So, The complexity of REPTREE(,Ogg)z is in:

O(n’.(log,1)*)

3564

MIN-CUT

Efficient Amplification by repeating Critical Computation Parts Algorithm CONTRACTION
Algorithm DETRAN(I)
Algorithm REPTREE

Algorithm RepTree

complexity Comparison

o The complexity of REPTREE(,Ogg)z is in:

O(n’.(log;)*)
which is substantially better than the complexity
o(n’)
of the best deterministic algorithm and the complexity
o(n®?)

of the randomized algorithm DETRAN([n2/3Jn2/an/3J).

36/ 64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Repeated Random Sampling and Satisfiability

Combination amplification and random sampling

o Combine amplification and random sampling with local search in order to
design:

o A randomized algorithm that can solve the 3-satisfiability problem (3SAT).

37/64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Outline

Q Repeated Random Sampling and Satisfiability
o Algorithm SCHONING

3864

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

SCHONING

Algorithm SCHONING

o Input: A formula F in 3CNF over n Boolean variables.

o Step 1: NUMBER := 0; ATMOST :=X; FOUND := FALSE;

o Step 2: while NUMBER < ATMOST and FOUND = FALSE do
begin
NUMBER := NUMBER + 1; Generate at random an assignment
a€{0,1}";
if F is satisfied by then FOUND := TRUE;

39 /64

Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix
SCHONING
Algorithm SCHONING Cont
o M:=0;
o while M < 3.n and FOUND = FALSE do
begin

M := M + 1; Find a clause C that is not satisfied by .

Pick one of the literals of C at random, and flip the value of its variable.
if a satisfies F then

FOUND := TRUE;

end
end

o Step 3: if FOUND = TRUE then
output: F is satisfiable.

else output: F is not satisfiable.

v
40 / 64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Algorithm SCHONING

SCHONING is a 1MC algorithm for 3SAT

@ Let F be not satisfiable. Then, the algorithm SCHONING does not find
any assignment that satisfies F and outputs the correct answer:

F is not satisfiable with certainty.

@ Let F be satisfiable.

To prove a lower bound on the success probability of SCHONING; we
analyze the probability of finding a certain assighment o that satisfies F.
Let « and B be two assignments.

Dist(c,) between a and (3 as the number of bits in which they differ.

Class(j) = {B €{0,1}"|Dist(a*, B) = j}.

|Class(j)| = (3’)

41 /64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

SCHONING

Algorithm SCHONING

@ The probability of moving from vertex j to vertex j — 1 in one local search

step is at least 3
Class(j) = {8 € {0, 1}"|Dist(a*, 8) = j}.
Class(j)] = 7
ciass)| - ()

The probability g;,; that the algorithm SCHONING starting in the Class (j) (in
the vertex j) reaches o (the vertex 0) in exactly j + 2/ local steps.

v

42 /64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

SCHONING

Algorithm SCHONING

@ j +i steps toward a” and i steps in the opposite direction (toward the
vertex n). Since:

j+2i<3.n

o The movement of the algorithm during the j+2i steps on the graph by a
word (string) in {+, - }J*?

@ The number of words over{+, —}of length j + 2i with exactly i symbols is

(j+2.i)
i 43)/ 64

Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

Only those words correspond to possible runs for which every suffix
contains at least as many + symbols as - symbols.

i J+2.0
j+2i\ i

Since the symbol + occurs with a probability of at least 1/3 and the
symbol occurs with a probability of at most 2/3,

Prob (Event (w)) > (%Y @)

R S A RANEAR AN
Bi= T i 3 3

q; be the probability of reaching o from an « € Class (j) in at most 3n
local steps.

So

i
TR
=0

44 / 64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

o Stirling formula
n=vam (5)- (1+$+ o(i)) ~vamr- (1)

o Inserting the Stirling formula

1 (35 NN g
45 = = - il e |5
3 (2.4 \3 3
1 SR O
~3 o 2]~(%)2.j- 2] %] 3 3
_ LB s N 2y
T3 2.ymy 220 \3 3

45 / 64

Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

(J)/z 42 5 (3

o Probability of SCHONING finds o* by a random sample followed by a
local search of at most 3n steps > .7 p;.q;

S ORONEER0)]
s (7 E[0) 0]

S =HONGH)
2.3 \2 2

46 / 64

Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

The probability that the algorithm does not find any assignment satisfying
F by one random sample followed by the considered local search is at most:

1-p
o The error probability after t independent attempts of the algorithm is at
most:
(1-p)<e?t
o Since : p= L (3)n
7 2./3mn \4

[+

Taking t = ATMOST =20./37n. (g) and inserting it into
(1-p)<ePt:
Errorscronme (F) < (1-p)f < e <5.107°

Thus, we have proved that the algorithm SCHONING is a one-sided-error
Monte Carlo algorithm for 3SAT.

y

47 / 64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Algorithm SCHONING

Time Complexity

o The algorithm SCHONING is a 1IMC algorithm for the 3SAT-problem that
runs in time:

O(IFL.A.(5)")

for any instance F of n variables.

o Step 2= X = ATMOST =20./3mn. (%)

o Each local search consists of at most 3n steps.

o Each step can be performed in timeO(|F|).
So == Time Complexity of Algorithm SCHONING is:

O(IFL.i".(5)")

48 / 64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Outline

Q Repeated Random Sampling and Satisfiability

o Appendix

49 / 64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Lemma A.3.69

o Word (i, j) denote the set of all strings (words) over the alphabet{+,-} of
length j + 2/ > 0,/ > 0, that have the following properties:

(i) The number of symbols 1 is exactly j +i (i.e., the number of Os is
exactly i)

(ii) every suffix of the string contains more 1s than Os.

.. Jj+2i J
Then: |W« = —
en: |Word(i,j)| (;) e

50 / 64

Algorithm SCHONING
Repeated Random Sampling and Satisfiability Appendix

Lemma A.3.69

proof by induction

(i) We prove the claim for n < 3:

e Word (0, j):

o Word (1, 1) = {011}

51 /64

Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

(i) Let n > 3.

o Word (i, j) beginning with the symbol 1 is exactly

. j-1+2i\ j-1
W _1)| = ,
|Word (i,j - 1)| (;)J._1+2i

o The number of words in Word (i, j) that start with 0 is:

o je1+2(i-1) j+l
Word(i - 1,j +1)| = —a
[Word(i-1,j+1)] (i1 Jr1+2(-1)

52 /64

Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

o Now, we distinguish two cases, namely j = 1 and j > 1.
(ii).1 Letj = 1.

|[Word (,1) | [Word (i —1.2) |

O e

)

(20)! - (22+1 21+1
(1) (20 +1)

i+ 2i 1
N i J+2

+1

53 /64

Algorithm SCHONING

Repeated Random Sampling and Satisfiability Appendix

(ii).2 Let j> 1.

[Word (i, 7) | = [Word (i, — 1) |+ [Word (i — 1,5+ 1) |

i1+ -1
- i 2i+j—1

+j+1+2(z‘71)_ j+1
i—1 2i-1)+5i+1

Jo142\ -1
:(jfl+i)2i+j71
421\ 41
+(i—1)'21'+j—1
i _(j-i—?i)
T 245 \j+i

(G -DGE) (G+1)-i
(j-(2i+j—1)+j-(2i+j—1))

g _(j+2i)
2i+j \j+i

_(i+%d\
i j+2i

54 /64

Quadratic nonresidue
Algorithm NQUAD
Random Sampling and Generating Quadratic Nonresidues

Random Sampling and Generating Quadratic Nonresidues

Some Problem

@ One does not know any deterministic polynomial-time algorithm, and

@ There are no proofs presenting their NP-hardness.

Designing an efficient Las Vegas algorithm for a problem
with properties (1) and (2).

55 / 64

Quadratic nonresidue
Algorithm NQUAD
Random Sampling and Generating Quadratic Nonresidues

Outline

@ Random Sampling and Generating Quadratic Nonresidues
@ Quadratic nonresidue

56 / 64

Quadratic nonresidue
Algorithm NQUAD
Random Sampling and Generating Quadratic Nonresidues

quadratic nonresidue

o A quadratic residue in the field Z, is any element a € Z, such that:
a=xmod p
foran x e Z, .

@ A quadratic nonresidue is any number b € Z, such that:

d*# b mod p
for all d € Zj,.
modulus quaflmtic qua(ll'fltic

residues | non-residues

2 0,1 (none)

3 0.1 2

4 0.1 2.3

5 0.1.4 2.3

6 0,1.3.4 2.5

7 0124 356

8 0,14 2.3.5.6.7

57 /64

Quadratic nonresidue
Algorithm NQUAD

Random Sampling and Generating Quadratic Nonresidues

Generation of a quadratic nonresidue

o Input: A prime p > 2.

o Output: A quadratic nonresidue modulo p.

58 / 64

Quadratic nonresidue
Algorithm NQUAD
Random Sampling and Generating Quadratic Nonresidues

Quadratic nonresidue

modulus | 11 flmtic qua (ll'%lﬁc
residues | non-residues
2 0.1 (none)
3 0,1 2
4 0,1 2.3
5 0,14 23
6 0,1.3.4 2,5
7 0,124 3.56
8 0,14 2.3,5.6,7

Theorem 5.4.14.Eulers Criterion

Let p, with p > 2, be a prime. For every ac {1,2,...,p -1},

o (i) if a is a quadratic residue modulo p, then
a2 =1 (mod p)
o (ii) if a is a quadratic nonresidue modulo p, then
P2 = p_1 (mod p)

59 / 64

Quadratic nonresidue

Algorithm NQUAD

Random Sampling and Generating Quadratic Nonresidues

Theorem 5.4.15.

For every odd prime p, exactly half of the nonzero elements of Z, are
quadratic residues modulo p.

60 / 64

Quadratic nonresidue
Algorithm NQUAD
Random Sampling and Generating Quadratic Nonresidues

Solve the problem by random sampling

o For every prime p and every a € Z,, one can efficiently decide (in a
deterministic way) whether a is a quadratic residue or a quadratic
nonresidue modulo p.

o For every prime p exactly half of the elements of Z, — {0} are quadratic
nonresidues, i.e., a random sample from {1,2,...,p—1} provides a
quadratic nonresidue with probability 1/2.

61/ 64

Quadratic nonresidue
Algorithm NQUAD
Random Sampling and Generating Quadratic Nonresidues

Outline

@ Random Sampling and Generating Quadratic Nonresidues

o Algorithm NQUAD

62/ 64

Quadratic nonresidue
Algorithm NQUAD

Random Sampling and Generating Quadratic Nonresidues

Algorithm NQUAD

o Input: A prime p.
o Step 1: Choose uniformly an a € {1,2,...,p—1} at random.

o Step 2: Compute:
A= a?V2 mod p
by the method of repeated squaring.
o Step 3:
if A= p—1 then
output a

else
output ?

The above proved claims (A) and (B) imply that
(i) NQUAD does not make any error, and
(ii) NQUAD finds a quadratic nonresidue with the probability 1/2.

63/ 64

Quadratic nonresidue

Algorithm NQUAD

Random Sampling and Generating Quadratic Nonresidues

THE END

64 /64

	Objective
	Efficient Amplification by repeating Critical Computation Parts
	MIN-CUT
	Algorithm CONTRACTION
	Algorithm DETRAN(l)
	Algorithm REPTREE

	Repeated Random Sampling and Satisfiability
	 Algorithm SCHONING
	Appendix

	Random Sampling and Generating Quadratic Nonresidues
	Quadratic nonresidue
	Algorithm NQUAD

