Tail Inequalities

Mohsen Alambardar Meibodi

Department of Computer Science Yazd University

November 17, 2014

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality

Bernoulli Distribution

Definition

independent Bernoulli tails: random variables X_1, X_2, \dots, X_n such that

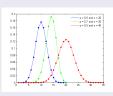
$$Pr[X_i = 1] = p$$

$$Pr[X_i=0]=1-p$$

n = # trials X = total # success

Binomial distribution: sum of i.i.d. Bernoulli trials, i.e. $\mathbb{X} = \sum_{i=1}^{n} X_i$

$$Pr[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$$



Bernoulli Distribution

Definition

independent Bernoulli tails: random variables X_1, X_2, \ldots, X_n such that

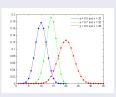
$$Pr[X_i = 1] = p$$

$$Pr[X_i=0]=1-p$$

n = # trials X = total # success

Binomial distribution: sum of i.i.d. Bernoulli trials, i.e. $\mathbb{X} = \sum_{i=1}^{n} X_i$

$$Pr[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$$



Poisson trial: random variables X_1, X_2, \dots, X_n such that

$$Pr[X_i = 1] = p_i$$

$$Pr[X_i = 0] = 1 - p_i$$

n = # trials X = total # success

Sum of Poisson trial: $\mathbb{X} = X_1 + X_2 + \dots + X_n$ such that X_1, X_2, \dots, X_n be a sequence of independent Poisson trials, then $E[\mathbb{X}] = E[X_1 + X_2 + \dots + X_n] = p_1 + p_2 + \dots + p_n$

Poisson trial

Definition

Poisson trial: random variables X_1, X_2, \dots, X_n such that

$$Pr[X_i = 1] = p_i$$

$$Pr[X_i = 0] = 1 - p_i$$

n = # trials X = total # success

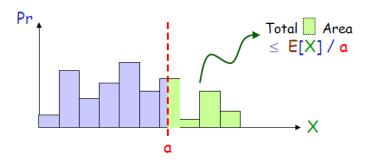
Sum of Poisson trial: $\mathbb{X} = X_1 + X_2 + \cdots + X_n$ such that X_1, X_2, \dots, X_n be a sequence of independent Poisson trials, then $E[\mathbb{X}] = E[X_1 + X_2 + \cdots + X_n] = p_1 + p_2 + \cdots + p_n$

Markov Inequality

Theorem

Let X be a random variable that takes on non-negative values only. Then, for any positive number a,

$$Pr(X \ge a) \le \frac{E[X]}{a}$$

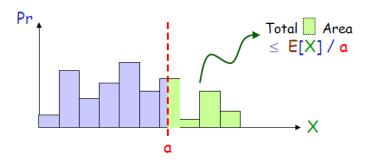


Markov Inequality

Theorem

Let X be a random variable that takes on non-negative values only. Then, for any positive number a,

$$Pr(X \ge a) \le \frac{E[X]}{a}$$

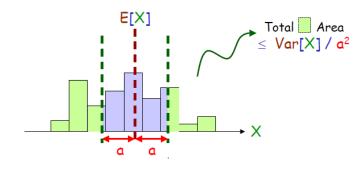


Chebyshev Inequality

Theorem

Let X be a random variable that takes on non-negative values only. Then, for any positive number a,

$$Pr(|X - E[X]| \ge a) \le \frac{Var[X]}{a^2}$$



Question1: For a real number δ , what is the probability that $\mathbb X$ exceeds $(1+\delta)\mu$?

Question2: How large must δ be in order that the tail probability is less than a prescribed value ϵ ?

Question1: For a real number δ , what is the probability that $\mathbb X$ exceeds

 $(1+\delta)\mu$?

Question2: How large must δ be in order that the tail probability is less

than a prescribed value ϵ ?

Question1: For a real number δ , what is the probability that $\mathbb X$ exceeds

 $(1+\delta)\mu$?

Question2: How large must δ be in order that the tail probability is less

than a prescribed value ϵ ?

Question1: For a real number δ , what is the probability that $\mathbb X$ exceeds

 $(1+\delta)\mu$?

Question2: How large must δ be in order that the tail probability is less

than a prescribed value ϵ ?

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality

Chernoff Bound

Moment Generating Function

The moment generating function of X is

$$M(t) = E(e^{tX})$$

Taylor expanation:

$$E(e^{tX}) = E(\sum_{k=0}^{\infty} \frac{t^k}{k!} X^k) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E(X^k)$$

Theorem

Let $X_1, X_2, ..., X_n$ be independent Poisson trials such that $Pr[X_i = 1] = p_i$. Let $X = X_1 + X_2 + ... + X_n$ and $\mu = E[X]$. Then, for all $\delta > 0$,

$$Pr[X > (1+\delta)\mu] \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

in other words

$$Pr[X - \mu > \delta \mu] \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

$$Pr[X > (1+\delta)\mu] \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

Proof strategy:

- Markovs inequality + moment generating function.
- Bound the moment generating function.
- Parameterization + optimization.

Proof.

For any positive real number t,

$$\begin{split} Pr\big[\mathbb{X} > (1+\delta)\mu\big] &= Pr\big[e^{t\mathbb{X}} > e^{t(1+\delta)\mu}\big] \\ &\leq \frac{E\big(e^{t\mathbb{X}}\big)}{e^{t(1+\delta)\mu}} \text{ (Markov inequality)} \end{split}$$

$$\mathsf{E}[\mathrm{e}^{t\mathbb{X}}] = E[\mathrm{e}^{(t\sum_{i=1}^n X_i)}] = E(\prod_{i=1}^n \mathrm{e}^{tX_i}) = \prod_{i=1}^n E(\mathrm{e}^{tX_i})$$

$$Pr[X > (1+\delta)\mu] \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

Proof (Contd.).

$$e^{tX_{i}} = \begin{cases} e^{t} & X_{i} = 1 \text{ (prob } p_{i}). \\ 1 & X_{i} = 0 \text{ (prob } 1 - p_{i}). \end{cases} \Rightarrow E[e^{tX_{i}}] = p_{i}e^{t} + 1 - p_{i}$$

$$Pr[\mathbb{X} > (1 + \delta)\mu] = Pr[e^{t\mathbb{X}} > e^{t(1 + \delta)\mu}]$$

$$\leq \frac{\prod_{i=1}^{n} E[e^{tX_{i}}]}{e^{t(1 + \delta)\mu}}$$

$$\leq \frac{\prod_{i=1}^{n} [p_{i}e^{t} + 1 - p_{i}]}{e^{t(1 + \delta)\mu}}$$

$$= \frac{\prod_{i=1}^{n} [1 + p_{i}(e^{t} - 1)]}{e^{t(1 + \delta)\mu}}$$

$$Pr[X > (1+\delta)\mu] \le \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

Proof (Contd.).

We use the fact $1 + x \le e^x$ with $x = p_i(e^t - 1)$

$$\begin{split} Pr\big[\mathbb{X} > \big(1+\delta\big)\mu\big] &\leq \frac{\prod_{i=1}^n e^{p_i(e^t-1)}}{e^{t(1+\delta)\mu}} \\ &= \frac{e^{\sum_{i=1}^n p_i(e_t-1)}}{e^{t(1+\delta)\mu}} \\ &= \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}} \end{split}$$

For
$$t = \ln(1 + \delta)$$

$$\big[\frac{e^\delta}{(1+\delta)^{(1+\delta)}}\big]^\mu$$

$$F^+(\mu,\delta) = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

- Player win each game with probability $\frac{1}{3}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is greater than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n > \frac{n}{2}) < F^+(\frac{n}{3}, \frac{1}{2}) < (0.965)^n$

$$F^+(\mu,\delta) = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

- Player win each game with probability $\frac{1}{3}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is greater than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n > \frac{n}{2}) < F^+(\frac{n}{3}, \frac{1}{2}) < (0.965)^n$

$$F^+(\mu,\delta) = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

- Player win each game with probability $\frac{1}{3}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is greater than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n > \frac{n}{2}) < F^+(\frac{n}{3}, \frac{1}{2}) < (0.965)^n$

$$F^+(\mu,\delta) = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

- Player win each game with probability $\frac{1}{3}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is greater than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n > \frac{n}{2}) < F^+(\frac{n}{3}, \frac{1}{2}) < (0.965)^n$

$$F^+(\mu,\delta) = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

- Player win each game with probability $\frac{1}{3}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is greater than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n > \frac{n}{2}) < F^+(\frac{n}{3}, \frac{1}{2}) < (0.965)^n$

$$F^+(\mu,\delta) = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$$

- Player win each game with probability $\frac{1}{3}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is greater than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n > \frac{n}{2}) < F^+(\frac{n}{3}, \frac{1}{2}) < (0.965)^n$

Chernoff Bound

Theorem

Let $X_1, X_2, ..., X_n$ be independent Poisson trials such that $Pr(X_i = 1) = p_i$. Let $\mathbb{X} = X_1 + X_2 + \cdots + X_n$ and $\mu = E[\mathbb{X}]$. Then, for all $\delta > 0$,

$$Pr[X < (1-\delta)\mu] \le e^{(-\frac{\mu\delta^2}{2})}.$$

In other words,

$$Pr[X - \mu < -\delta\mu] \le e^{(-\frac{\mu\delta^2}{2})}.$$

Definition

$$F^-(\mu,\delta) = e^{\left(-\frac{\mu\delta^2}{2}\right)}$$
.

$$Pr[X < (1-\delta)\mu] \le e^{\left(-\frac{\mu\delta^2}{2}\right)}$$

$$\begin{split} Pr\big[\mathbb{X} \leq (1-\delta)\mu\big] &= Pr\big[-\mathbb{X} > -(1-\delta)\mu\big] \\ &= Pr\big[e^{(-t\mathbb{X})} \geq e^{(-t(1-\delta)\mu)}\big] \\ &\leq \frac{\prod_{i=1}^{n} E\big[e^{(-t\mathbb{X})}\big]}{e^{(-t(1-\delta)\mu)}} \\ &\leq \frac{e^{(\mu(e^{-t}-1))}}{e^{(-t(1-\delta)\mu)}} \end{split}$$

Let $t = \ln(\frac{1}{1-\delta}) \Rightarrow Pr[\mathbb{X} \le (1-\delta)\mu] \le \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}$.

$$(1-\delta)^{(1-\delta)} > e^{(-\delta + \frac{\delta^2}{2})}$$

$$Pr[X < (1-\delta)\mu] \le e^{\left(-\frac{\mu\delta^2}{2}\right)}$$

$$\begin{split} Pr\big[\mathbb{X} \leq (1-\delta)\mu\big] &= Pr\big[-\mathbb{X} > -(1-\delta)\mu\big] \\ &= Pr\big[e^{(-t\mathbb{X})} \geq e^{(-t(1-\delta)\mu)}\big] \\ &\leq \frac{\prod_{i=1}^{n} E\big[e^{(-t\mathbb{X})}\big]}{e^{(-t(1-\delta)\mu)}} \\ &\leq \frac{e^{(\mu(e^{-t}-1))}}{e^{(-t(1-\delta)\mu)}} \end{split}$$

Let $t = \ln(\frac{1}{1-\delta}) \Rightarrow Pr[\mathbb{X} \le (1-\delta)\mu] \le \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}$.

$$(1-\delta)^{(1-\delta)} > e^{(-\delta + \frac{\delta^2}{2})}$$

$$Pr[X < (1-\delta)\mu] \le e^{\left(-\frac{\mu\delta^2}{2}\right)}$$

$$\begin{split} Pr\big[\mathbb{X} \leq (1-\delta)\mu\big] &= Pr\big[-\mathbb{X} > -(1-\delta)\mu\big] \\ &= Pr\big[e^{(-t\mathbb{X})} \geq e^{(-t(1-\delta)\mu)}\big] \\ &\leq \frac{\prod_{i=1}^{n} E\big[e^{(-t\mathbb{X})}\big]}{e^{(-t(1-\delta)\mu)}} \\ &\leq \frac{e^{(\mu(e^{-t}-1))}}{e^{(-t(1-\delta)\mu)}} \end{split}$$

Let $t = \ln(\frac{1}{1-\delta}) \Rightarrow Pr[\mathbb{X} \le (1-\delta)\mu] \le \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}$.

$$(1-\delta)^{(1-\delta)} > e^{(-\delta + \frac{\delta^2}{2})}$$

$$Pr[X < (1-\delta)\mu] \le e^{\left(-\frac{\mu\delta^2}{2}\right)}$$

$$\begin{split} Pr\big[\mathbb{X} \leq (1-\delta)\mu\big] &= Pr\big[-\mathbb{X} > -(1-\delta)\mu\big] \\ &= Pr\big[e^{(-t\mathbb{X})} \geq e^{(-t(1-\delta)\mu)}\big] \\ &\leq \frac{\prod_{i=1}^n E\big[e^{(-t\mathbb{X})}\big]}{e^{(-t(1-\delta)\mu)}} \\ &\leq \frac{e^{(\mu(e^{-t}-1))}}{e^{(-t(1-\delta)\mu)}} \end{split}$$

Let $t = \ln(\frac{1}{1-\delta}) \Rightarrow Pr[\mathbb{X} \le (1-\delta)\mu] \le \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}$.

$$(1-\delta)^{(1-\delta)} > e^{(-\delta + \frac{\delta^2}{2})}$$

- Player win each game with probability $\frac{3}{4}$.
- Outcomes of each games are independent
- Find an upper bound for the probability that the number of games he wins is less than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet \ Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n < \frac{n}{2}) < F^-(\frac{3}{4}n, \frac{1}{3}) < (0.9592)^n$

- Player win each game with probability $\frac{3}{4}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is less than n/2.
- X_i is 1 if he wins the ith game and 0 otherwise.
- $\bullet Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n < \frac{n}{2}) < F^-(\frac{3}{4}n, \frac{1}{3}) < (0.9592)^n$

- Player win each game with probability $\frac{3}{4}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is less than n/2.
- X_i is 1 if he wins the ith game and 0 otherwise.
- $\bullet \ Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n < \frac{n}{2}) < F^-(\frac{3}{4}n, \frac{1}{3}) < (0.9592)^n$

- Player win each game with probability $\frac{3}{4}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is less than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet \ Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n < \frac{n}{2}) < F^-(\frac{3}{4}n, \frac{1}{3}) < (0.9592)^n$

- Player win each game with probability $\frac{3}{4}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is less than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n < \frac{n}{2}) < F^-(\frac{3}{4}n, \frac{1}{3}) < (0.9592)^n$

Example

- Player win each game with probability $\frac{3}{4}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is less than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n < \frac{n}{2}) < F^-(\frac{3}{4}n, \frac{1}{3}) < (0.9592)^n$

Example

- Player win each game with probability $\frac{3}{4}$.
- Outcomes of each games are independent.
- Find an upper bound for the probability that the number of games he wins is less than n/2.
- X_i is 1 if he wins the *i*th game and 0 otherwise.
- $\bullet Y_n = \sum_{i=1}^n X_i$
- $Pr(Y_n < \frac{n}{2}) < F^-(\frac{3}{4}n, \frac{1}{3}) < (0.9592)^n$

Second Question

How large must δ be in order that the tail probability is less than a prescribed value ϵ ?

Definition

For any positive μ and ϵ , $\Delta^+(\mu,\epsilon)$ is the value of δ that satisfies

$$F^+(\mu, \Delta^+(\mu, \epsilon)) = \epsilon$$

Similarly, $\Delta^-(\mu,\epsilon)$ is the value of δ that satisfies

$$F^{-}(\mu, \Delta^{-}(\mu, \epsilon)) = \epsilon$$

Deriving $\Delta^-(\mu, \epsilon)$ is easy

$$\Delta^{-}(\mu, \epsilon) = \sqrt{\frac{2\ln(\frac{1}{\epsilon})}{\mu}}$$

Second Question

How large must δ be in order that the tail probability is less than a prescribed value ϵ ?

Definition

For any positive μ and ϵ , $\Delta^+(\mu,\epsilon)$ is the value of δ that satisfies

$$F^+(\mu, \Delta^+(\mu, \epsilon)) = \epsilon$$

Similarly, $\Delta^-(\mu,\epsilon)$ is the value of δ that satisfies

$$F^{-}(\mu, \Delta^{-}(\mu, \epsilon)) = \epsilon$$

Deriving $\Delta^-(\mu,\epsilon)$ is easy:

$$\Delta^{-}(\mu,\epsilon) = \sqrt{\frac{2\ln(\frac{1}{\epsilon})}{\mu}}$$

Example

Suppose $p_i = 0.75$. How large must δ be so that $\Pr[X < (1 - \delta)\mu]$ is less than n^{-5} ?

$$\Delta^{-}(0.75n, n^{-5}) = \sqrt{\frac{10 \ln n}{0.75n}}$$

What if we wanted that $Pr[X < (1 - \delta)\mu]$ be less than $e^{-1.5n}$?

$$\Delta^{-}(0.75n, e^{-1.5n}) = \sqrt{\frac{3n}{0.75n}} = 2$$

Exercise

Prove that

$$F^+(\mu,\delta) \leq \left[\frac{e}{(1+\delta)}\right]^{(1+\delta)\mu}$$

Hence infer that if $\delta > 2e - 1$

$$F^{+}(\mu, \delta) \le 2^{-(1+\delta)\mu}$$

Theorem

Let X be defined as in Chernoff theorem. Then

$$P\big[\mathbb{X} \geq \big(1+\delta\big)\mu\big] \leq \begin{cases} e^{-\mu\delta^2/4} & 0 < \delta \leq 1 \\ e^{\frac{-\mu\delta\ln n}{2}} & \delta > 1. \end{cases}$$

Proof.

For the interval $0 < \delta \le 1$, we prove the weaker inequality

$$\big(\frac{e^\delta}{(1+\delta)^{(1+\delta)}}\big)^\mu \le e^{\mu\delta^2/4}$$

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality

Definition

• Suppose we have a group of *m* students

- Suppose we have a group of *m* students
- We try to classify them by checking whether they have a particular feature or not

- Suppose we have a group of *m* students
- We try to classify them by checking whether they have a particular feature or not
- Let *n* be the number of features

Definition

- Suppose we have a group of *m* students
- We try to classify them by checking whether they have a particular feature or not
- Let n be the number of features
- Can you try to divide the m students into two groups G1 and G2, such that for each k,

no. of students with feature k in G1 = no. of students with feature k in G2.

	subject	subject 2	subject 3	subject 4
gender	boy	girl	boy	girl
age	≥3	≥3	<3	<3
teeth	un- healthy	un- healthy	healthy	un- healthy
odyfat	normal	over- weight	normal	normal
allergy	no	no	yes	yes

It is desirable to find a partition such that minimizes $\max_k \{ \text{difference in no. of students with feature k in } G1 \text{ and } G2. \}.$

	subject 1	subject 2	subject 3	subject 4
gender	boy	girl	boy	girl
age	≥3	≥3	<3	<3
teeth	un- healthy	un- healthy	healthy	un- healthy
bodyfat	normal	over- weight	normal	normal
allergy	no	no	yes	yes

$subject_1 subject_2 subject_3 subject_4 \\$						
$feature_1$	1	0	1	0		
$feature_2$	1	1	0	0		
$feature_3$	0	0	1	0		
$feature_4$	1	0	1	1		
feature ₅	0	1	0	1		

Q: Given an $n \times n$ matrix A all of whose entries are 0 or 1, find a column vector $b \in \{-1,1\}^n$ minimizing $\|Ab\|_{\infty}$.

Q: Given an $n \times n$ matrix A all of whose entries are 0 or 1, find a column vector $b \in \{-1,1\}^n$ minimizing $\|Ab\|_{\infty}$.

Theorem

Suppose that $X_i, 1 \le i \le n$, be n independent and identically distributed $\{-1, +1\}$ valued random variables such that $Pr[X_i = +1] = P[X_i = -1] = 1/2$. Let the random variable X be defined by $X = \sum_{i=1}^{n} X_i$. Then for any $\delta > 0$

$$Pr[X \ge \delta] = Pr[X \le -\delta] \le e^{-\delta^2/2n}$$

Olivious Routing

Consider the *i*th row of *A*. By previous theorem

$$Pr[(Ab)_i \ge \sqrt{4n \ln n}] \le n^{-2}$$

and

$$Pr[(Ab)_i \le -\sqrt{4n\ln n}] \le n^{-2}$$

So

$$Pr[|(Ab)_i| \ge \sqrt{4n \ln n}] \le 2n^{-2}$$

There are n rows, so

$$Pr[\|(Ab)\|_{\infty} \ge \sqrt{4n\ln n}] \le 2/n$$

In other words,

With probability at least 1-2/n, we find a vector b for witch $||Ab||_{\infty} \le \sqrt{4n \ln n}$.

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality

Routing

Definition

 N processors are connected by a network.

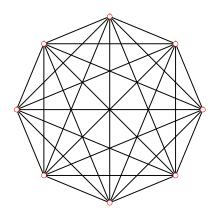
- N processors are connected by a network.
- Each processor may send packets to others.

- N processors are connected by a network.
- Each processor may send packets to others.
- Each link can carry a unit packet in a step.

- N processors are connected by a network.
- Each processor may send packets to others.
- Seach link can carry a unit packet in a step.
- During a step, a processor can send at most one packet to each of its neighbors.

Definition

- N processors are connected by a network.
- Each processor may send packets to others.
- Each link can carry a unit packet in a step.
- During a step, a processor can send at most one packet to each of its neighbors.
- Each processor has a unique identifying number between 1 and N.



nodes: processors edges: links

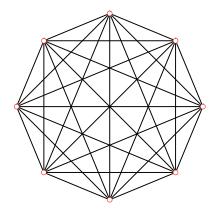
Definition

1 N nodes: [*N*].

- N nodes: [N].
- Each node sends one packet to a distinct destination.

- N nodes: [N].
- Each node sends one packet to a distinct destination.
- Oestinations: specified by a permutation of [N].

- N nodes: [N].
- Each node sends one packet to a distinct destination.
- Oestinations: specified by a permutation of [N].
- origin: *i*, dest.: *d(i)*.



Complete graph: one step to route all *N* packets without congestion.

Olivious Routing

Definition

An oblivious algorithm for the permutation routing problem satisfies the following property:

The route followed by v_i depends on d(i) alone, and not on d(j) for any $j \neq i$.

Olivious Routing

Definition

An oblivious algorithm for the permutation routing problem satisfies the following property:

The route followed by v_i depends on d(i) alone, and not on d(j) for any $j \neq i$.

Theorem

For any deterministic oblivious permutation routing algorithm on a network of N nodes of out-degree d, there is an instance of permutation routing $\Omega(\sqrt{N}/d)$ steps.

Proof.

Cf. (Kaklamanis, Krizanc, Tsantilas, 1991) based on (Borodin, Hopcroft, 1985)

Definition

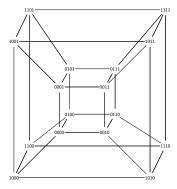
n dimension hypercube

- n dimension hypercube
- ② Nodes: $\{0,1\}^n$ $N = 2^n$

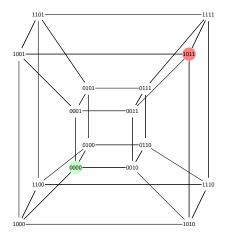
- n dimension hypercube
- 2 Nodes: $\{0,1\}^n$ $N = 2^n$
- **3** Edges: $\forall u, v \in \{0, 1\}^n \ u \sim v \text{ if } H(u, v) = 1$

- n dimension hypercube
- 2 Nodes: $\{0,1\}^n$ $N = 2^n$
- **3** Edges: $\forall u, v \in \{0, 1\}^n \ u \sim v \text{ if } H(u, v) = 1$
- Oegree: n

- n dimension hypercube
- 2 Nodes: $\{0,1\}^n$ $N = 2^n$
- **3** Edges: $\forall u, v \in \{0, 1\}^n \ u \sim v \text{ if } H(u, v) = 1$
- Oegree: n
- Number of edges: $N \times n$ (for a directed hypercube).

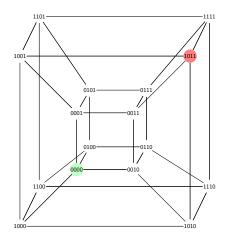


bit-fixing strategy



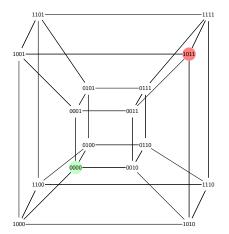
bit-fixing strategy

• 0000



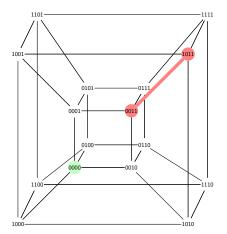
bit-fixing strategy

- 0000
- 1011



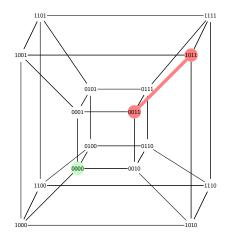
• 0000

0011



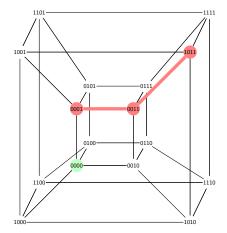
• 0000

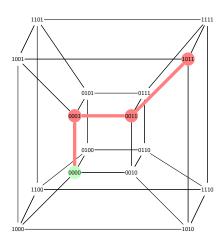
0011



• 0000

• 0001





• 0000

Randomized Oblivious Routing Algorithm

Algorithm

Phase1: Pick a random intermediate destination $\sigma(i)$ from $\{1, 2, ..., N\}$. Packet v_i travels to node $\sigma(i)$.

Phase2: Packet v_i travels from node $\sigma(i)$ on to its destination d(i).

Randomized Oblivious Routing Algorithm

Algorithm

Phase1: Pick a random intermediate destination $\sigma(i)$ from $\{1, 2, ..., N\}$. Packet v_i travels to node $\sigma(i)$.

Phase2: Packet v_i travels from node $\sigma(i)$ on to its destination d(i).

How many steps does elapse before packet v_i reaches its destination?

Randomized Oblivious Routing Algorithm

Algorithm

Phase1: Pick a random intermediate destination $\sigma(i)$ from $\{1, 2, ..., N\}$. Packet v_i travels to node $\sigma(i)$.

Phase2: Packet v_i travels from node $\sigma(i)$ on to its destination d(i).

How many steps does elapse before packet v_i reaches its destination? First Consider Phase1 For every $u \in \{0,1\}^n$ destination is a uniform and independent $v \in \{0,1\}^n$

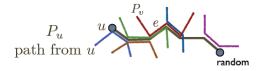
Exercise

view each route in phase1 as a directed path in the hypercube from the source to the intermediate destination. Prove that once two routes separate, they do not rejoin.

$$P_u$$
 path from u random

Lemma

Let the route of v_i follow the sequence of edges $\rho_i = (e_1, e_2, \ldots, e_k)$ and S be the set of packets (other than v_i) whose route pass through at least one of $\{e_1, e_2, \ldots, e_k\}$. Then, the delay incurred by v_i is at most |S|.



•
$$H_{ij} = \begin{cases} 1 & \rho_i \text{ and } \rho_j \text{ share at least one edge.} \\ 0 & \text{otherwise.} \end{cases}$$

- $H_{ij} = \begin{cases} 1 & \rho_i \text{ and } \rho_j \text{ share at least one edge.} \\ 0 & \text{otherwise.} \end{cases}$
- Total delay incurred by v_i is at most $\sum_{i=1}^{N} H_{ij}$

- $H_{ij} = \begin{cases} 1 & \rho_i \text{ and } \rho_j \text{ share at least one edge.} \\ 0 & \text{otherwise.} \end{cases}$
- \bullet Total delay incurred by v_i is at most $\sum_{i=1}^N H_{ij}$
- H_{ij} 's are independent Poisson trials for $i \neq j$

- $H_{ij} = \begin{cases} 1 & \rho_i \text{ and } \rho_j \text{ share at least one edge.} \\ 0 & \text{otherwise.} \end{cases}$
- Total delay incurred by v_i is at most $\sum_{i=1}^{N} H_{ij}$
- H_{ij} 's are independent Poisson trials for $i \neq j$ (Why?)

- $H_{ij} = \begin{cases} 1 & \rho_i \text{ and } \rho_j \text{ share at least one edge.} \\ 0 & \text{otherwise.} \end{cases}$
- Total delay incurred by v_i is at most $\sum_{i=1}^{N} H_{ij}$
- H_{ij} 's are independent Poisson trials for $i \neq j$ (Why?)
- To bound the delay of packet v_i with Chernoff's bound, it suffices to obtain an upper bound on $\sum_{i=1}^{N} H_{ij}$.

- $H_{ij} = \begin{cases} 1 & \rho_i \text{ and } \rho_j \text{ share at least one edge.} \\ 0 & \text{otherwise.} \end{cases}$
- Total delay incurred by v_i is at most $\sum_{i=1}^{N} H_{ij}$
- H_{ij} 's are independent Poisson trials for $i \neq j$ (Why?)
- To bound the delay of packet v_i with Chernoff's bound, it suffices to obtain an upper bound on $\sum_{i=1}^{N} H_{ij}$.
- For an edge e, T(e) denotes the number of routes that through e.

- $H_{ij} = \begin{cases} 1 & \rho_i \text{ and } \rho_j \text{ share at least one edge.} \\ 0 & \text{otherwise.} \end{cases}$
- Total delay incurred by v_i is at most $\sum_{i=1}^{N} H_{ij}$
- H_{ij} 's are independent Poisson trials for $i \neq j$ (Why?)
- To bound the delay of packet v_i with Chernoff's bound, it suffices to obtain an upper bound on $\sum_{i=1}^{N} H_{ij}$.
- For an edge e, T(e) denotes the number of routes that through e.

$$\sum_{j=1}^N H_{ij} \leq \sum_{l=1}^k T(e_l).$$

Given
$$\sum_{j=1}^{N} H_{ij} \leq \sum_{l=1}^{k} T(e_l)$$
, then

$$E\left[\sum_{j=1}^{N}H_{ij}\right]\leq E\left[\sum_{l=1}^{k}T(e_{l})\right].$$

Given $\sum_{j=1}^{N} H_{ij} \leq \sum_{l=1}^{k} T(e_l)$, then

$$E\left[\sum_{j=1}^{N}H_{ij}\right]\leq E\left[\sum_{l=1}^{k}T(e_{l})\right].$$

 $E(I_{\rho_j})$ is $\frac{n}{2}$ for all j, so the total route length is Nn/2.

$$E[T(e)] = \frac{Nn/2}{Nn} = 1/2.$$

Given $\sum_{j=1}^{N} H_{ij} \leq \sum_{l=1}^{k} T(e_l)$, then

$$E\left[\sum_{j=1}^{N}H_{ij}\right]\leq E\left[\sum_{l=1}^{k}T(e_{l})\right].$$

 $E(I_{\rho_j})$ is $\frac{n}{2}$ for all j, so the total route length is Nn/2.

$$E[T(e)] = \frac{Nn/2}{Nn} = 1/2.$$

$$E\left[\sum_{j=1}^{N} H_{ij}\right] \leq E\left[\sum_{l=1}^{k} T(e_l)\right] = \frac{k}{2} \leq \frac{n}{2}.$$

By Chernoff Bound $Pr[X > (1 + \delta)\mu] \le 2^{-(1+\delta)\mu}$, we have

$$Pr\left[\sum_{i=1}^{N} H_{ij} > 6n\right] \le 2^{-6n}.$$

As the number of packets is $N = 2^n$, then the probability that at least one packet has delay more than 6n is less than $2^n \times 2^{-6n} = 2^{-5n}$.

Delay and length of path for each packet are at most 6n and n, respectively. Then, the number of steps for phase1 is at most 7n.

Theorem

With probability at least $1 - 2^{-5n}$, every packet reaches its intermediate destination in phase1 in 7n or fewer steps.

The situation for phase2 ia similar to phase1.

Therefore, the probability that a packet cannot reach its destination is

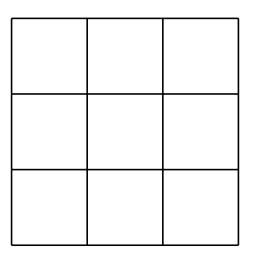
$$2 \times 2^{-5n} \le 2^{-n} = \frac{1}{N}$$

Theorem

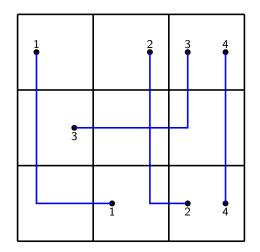
With probability at least 1-1/N, every packet reaches its destination in 14n or fewer steps.

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality



1	2	3 4
•3		
	• 1	• • • • • • • • • • • • • • • • • • •

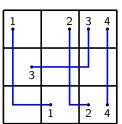


Definition

$$x_{i0} =$$

1 net i goes horizantally first from the left end-point.

0 otherwise.

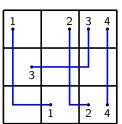


Definition

$$x_{i0} =$$

1 net i goes horizantally first from the left end-point.

0 otherwise.

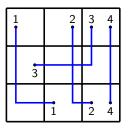


Definition

$$x_{i0} = \begin{cases} first \end{cases}$$

net i goes horizantally $\mathbf{o} \quad x_{i0} = \begin{cases} 1 & \text{first from the left end-point.} \\ 0 & \text{otherwise.} \end{cases}$

$$x_{i1} = \begin{cases} 1 & \text{net i goes vertically} \\ & \text{from the left end-point.} \\ 0 & \text{otherwise.} \end{cases}$$



Example

$$x_{11} = 0$$
 And $x_{31} = 1$

Wiring Problem

Integer program

For each boundary b,

$$T_{b0} = \{i | \text{net i passes through b if } x_{i0} = 1\}$$
 and

$$T_{b1} = \{i | \text{net i passes through b if } x_{i1} = 1\}$$

Integer program

For each boundary b,

$$T_{b0} = \{i | \text{net i passes through b if } x_{i0} = 1\}$$
 and

$$T_{b1} = \{i | \text{net i passes through b if } x_{i1} = 1\}$$

Definition

min w

$$\sum_{i \in \mathcal{T}_{b0}} x_{i0} + \sum_{i \in \mathcal{T}_{b1}} x_{i1} \le w(\forall \text{ boundaries } b),$$

$$x_{i0} + x_{i1} = 1(\forall \text{ net } i),$$

$$x_{i0}, x_{i1} \in \{0, 1\}(\forall \text{ net } i)$$

Integer program

For each boundary b,

$$T_{b0} = \{i | \text{net i passes through b if } x_{i0} = 1\}$$
 and

$$T_{b1} = \{i | \text{net i passes through b if } x_{i1} = 1\}$$

Definition

min w

s.t.

$$\sum_{i \in T_{b0}} x_{i0} + \sum_{i \in T_{b1}} x_{i1} \le w(\forall \text{ boundaries } b),$$

$$x_{i0} + x_{i1} = 1(\forall \text{ net } i),$$

$$x_{i0}, x_{i1} \in \{0, 1\} (\forall \text{ net } i)$$

Zero-One Linear Programming is \mathcal{NP} -hard.

Relaxed L.P. Model

Definition

min w

s.t.

$$\sum_{i \in \mathcal{T}_{b0}} x_{i0} + \sum_{i \in \mathcal{T}_{b1}} x_{i1} \le w(\forall \text{ boundaries } b),$$

$$x_{i0} + x_{i1} = 1(\forall \text{ net } i),$$

$$x_{i0}, x_{i1} \in \{0, 1\} (\forall \text{ net } i)$$

min w

s.t.

$$\sum_{i \in T_{b0}} x_{i0} + \sum_{i \in T_{b1}} x_{i1} \le w(\forall \text{ boundaries } b),$$

$$x_{i0} + x_{i1} = 1(\forall \text{ net } i),$$

$$x_{i0}, x_{i1} \in \{0, 1\} (\forall \text{ net } i)$$

Definition

min w

$$\sum_{i \in T_{b0}} x_{i0} + \sum_{i \in T_{b1}} x_{i1} \le w(\forall \text{ boundaries } b),$$

$$x_{i0} + x_{i1} = 1(\forall \text{ net } i),$$

$$x_{i0}, x_{i1} \in [0, 1](\forall \text{ net } i)$$

Relaxed L.P. Model

- In order to find an optimal solution to the above 0-1 linear programming, we need to solve an \mathcal{NP} hard problem!
- Therefore, we seek for a near optimal solution by the following approach:
 - Relax the 0 1 constraint to $x_{i0}, x_{i1} \in [0, 1]$ for each i,
 - The obtained model is a linear programming model which can be easily solved using Simplex method, for example.
 - Let \(\hat{x}_{i0}\) and \(\hat{x}_{i1}\) be the solutions to the relaxed model obtained in the previous step and \(\hat{w}\) be the value of the objective function for these solutions,

...

- ..
- \$\hat{\chi_0}\$ and \$\hat{\chi_1}\$ might be fractional numbers, then they cannot be appropriate answers for our 0 1 model. Hence we round them to 0 or 1 in a probabilistic fashion, called *randomized rounding*, as follow

$$Pr\big[\overline{x_{i0}}=1\big]=\hat{x_{i0}}$$

$$Pr\big[\overline{x_{i1}}=1\big]=\hat{x_{i1}}$$

where $\overline{x_{i1}}$ and $\overline{x_{i1}}$ denote the rounded value of $\hat{x_{i1}}$ and $\hat{x_{i1}}$, respectively.

Theorem

Let ϵ be a real number such that $0 < \epsilon < 1$. Then with probability $1 - \epsilon$, the global wiring S produced by randomized rounding satisfies

$$w_S \leq \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n)) \leq w_o(1 + \Delta^+(w_o, \epsilon/2n)))$$

•
$$\sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \le \hat{w}$$

Theorem

Let ϵ be a real number such that $0 < \epsilon < 1$. Then with probability $1 - \epsilon$, the global wiring S produced by randomized rounding satisfies

$$w_S \leq \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n)) \leq w_o(1 + \Delta^+(w_o, \epsilon/2n)))$$

- $\sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \leq \hat{w}$
- $w_S(b) = \sum_{i \in T_{b0}} \overline{x}_{i0} + \sum_{i \in T_{b1}} \overline{x}_{i1}$

Theorem

Let ϵ be a real number such that $0 < \epsilon < 1$. Then with probability $1 - \epsilon$, the global wiring S produced by randomized rounding satisfies

$$w_S \leq \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n)) \leq w_o(1 + \Delta^+(w_o, \epsilon/2n)))$$

- $\sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \leq \hat{w}$
- $w_S(b) = \sum_{i \in T_{b0}} \overline{x}_{i0} + \sum_{i \in T_{b1}} \overline{x}_{i1}$
- $E[w_S(b)] = \sum_{i \in T_{b0}} E[\overline{x}_{i0}] + \sum_{i \in T_{b1}} E[\overline{x}_{i1}] = \sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \le \hat{w}$.

Theorem

Let ϵ be a real number such that $0 < \epsilon < 1$. Then with probability $1 - \epsilon$, the global wiring S produced by randomized rounding satisfies

$$w_S \leq \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n)) \leq w_o(1 + \Delta^+(w_o, \epsilon/2n)))$$

- $\sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \le \hat{w}$
- $\bullet \ w_S(b) = \sum_{i \in T_{b0}} \overline{x}_{i0} + \sum_{i \in T_{b1}} \overline{x}_{i1}$
- $E[w_S(b)] = \sum_{i \in T_{b0}} E[\overline{x}_{i0}] + \sum_{i \in T_{b1}} E[\overline{x}_{i1}] = \sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \le \hat{w}$.
- $Pr[w_S(b) > \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n))] \le \epsilon/2n$.

Theorem

Let ϵ be a real number such that $0 < \epsilon < 1$. Then with probability $1 - \epsilon$, the global wiring S produced by randomized rounding satisfies

$$w_S \leq \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n)) \leq w_o(1 + \Delta^+(w_o, \epsilon/2n)))$$

- $\sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \le \hat{w}$
- $w_S(b) = \sum_{i \in T_{b0}} \overline{x}_{i0} + \sum_{i \in T_{b1}} \overline{x}_{i1}$
- $E[w_S(b)] = \sum_{i \in T_{b0}} E[\overline{x}_{i0}] + \sum_{i \in T_{b1}} E[\overline{x}_{i1}] = \sum_{i \in T_{b0}} \hat{x}_{i0} + \sum_{i \in T_{b1}} \hat{x}_{i1} \le \hat{w}.$
- $Pr[w_S(b) > \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n))] \le \epsilon/2n$.
- since the number of boundaries is less than 2n

$$Pr[w_S > \hat{w}(1 + \Delta^+(\hat{w}, \epsilon/2n))] \leq \epsilon.$$

Consider
$$w_0 = n^{\gamma}$$

$$w_S \le n^{\gamma} \big(1 + \sqrt{\frac{4 \ln 2n/\epsilon}{n^{\gamma}}}\big)$$

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality

Outline

- The Chernoff Bound
 - Preliminaries
 - Chernoff Bound
- 2 Application
 - Set Balancing
 - Routing in a Parallel Computer
 - Wiring Problem
- Martingales
 - General Definition
 - Martingales Tail Inequality