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introduction

(JThe problem:

dgiven a large Universe U and elementsa, b€ U

(ddecide a = b has a deterministic complexity at least log
|U]

(Jin some cases this may be very slow

JThe idea:
dpick a random mapping M:U - vV such that w.h.p.:
a=b © M(a) = M(b)
AM(a) = M(b) can be evaluated faster thana="b
Jwe call M(x) the fingerprint of x
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Fingerprinting and Freivalds' Technique

Problem 1;

Let A, B, C be n xn matrices, We want to verify that
AB =C
A randomized algorithm

J Pick a random vector r € {0,1}"
JdCompute x =Br,y =Ax=ABrand z=Cr
Jd If y=zthen
“yes” AB=C
JElse
“no” ABz C Time complexity: 0(n?)
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Jdif AB=C= y=z
Jdif AB2C % y#z
Jdalgorithm errs only if AB2C but y=z

[ this is a One-sided error Monte-Carlo algorithm

Theorem 7.1: Let A, B, and C be n x n matrices over F
such that AB #C Then for r chosen uniformly at

1
random from {0,1}",pr[ABr = Cr] < >
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JLet D=AB-C. We know that p # 0
A Pr[y=z]=pr[Dr=0]

d Let d be the vector consisting of the entries in the
first row of D that has a non zero entry.

pr[Dr = 0] < pr[d'r = 0]

k
i—p d;1;
dy

k
=2

dfor each choice of the values n,, ..., 7, there is only
one value forn that could have caused d’r =0
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A Sincen is uniformly distributed over a set of size 2

1
prirp, =v] < 5

principle of deferred decisions

Jwe first fixed the choices for 72, ..., and then
considered the effect of the random choice ofn,

given those choices.

L After k iterations the probability of error is >

zk
A This can be generalized for verifying any matrix
identity. However it only makes sense if at least

one of the matrices is not explicitly provided.
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Verifying polynomial identities

J Comparing polynomials is trivial if they are explicitly
given in the same form

x4 —2x—3=x%—2x—3
(x—1)(x+3)=x%—2x—23

Problem: Given polynomials p; (x), p,(x), p3(x) verify
that P1(x) * p2(x) = p3(x)

 p1(x) and p,(x) are of degree at most n.
[ p3(x) is of degree at most 2n.
A mult in O(n log n) using FFT(fast fourier transform).

Jevaluation at fixed point in O(n) time.
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A randomized algorithm

JdChoose avaluer €s C Fwith|s|=2n+1
J Evaluate Q(r) = p,(r) * po(r) — p3(1)

Theorem: if Q(x)=0 then Q(r)= 0. Otherwise
2
prQ() = 01Q(x) # 0) < —

s

Proof:

Q(x) is not all zero.Due to the fundamental theorem of
algebra we also know that Q(x) has at most 2n
distinct roots.

2
pr(Q(r) = 01Q(x) % 0) < —

N
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n
detM = Z Sgn(n)nMi ()
i=1

T € Sy

Definition 7.1;

(JThe Vandermonde matrix M(x,, x, ..., x,,) is defined

in terms of the indeterminates *1,%2, -, Xn such

1 x; xf - x71
1 x, x5 - x371
M=|1 ¥ X 2
1 x, xZ -« xt71
detM = ‘ ‘(x,; —X;)

j<i
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(J Computing the determinant of this symbolic
matrix is prohibitively expensive since it has n!
terms

Jwe will formulate this as the problem of verifying
that the polynomial

Q(xlerI '--rxﬂ) — dEtM — ﬂ(xl — xj)
j<i
Jsubstitute random values for each *i and check
whether Q = 0.

Jthe determinant can be computed in polynomial
time for specified values of the variables x,x,, ..., x,
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J Multivariate polynomial @ (x4, x2, -, x,)
Jdegree of term: sum of variable degree
Jtotal degree Q: max degree of term

Theorem 7.2( Schwartz-Zippel Theorem) :

Let Q(xy, %, ...,x,) € F[xq, ..., x,,] be a multivariate
polynomial of total degree d. Fix any set S ¢ F, and
let r, ...,n,, be chosen independently and uniformly
at random from S. Then

d
pr[Q(ry, ..., 7,) = 0|Q(xy, ..., x,) £ 0] < ]
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Proof:
by induction on the number of variables n.
base case: n =1 (univariate polynomial)
pr(Q(r) =0|Qkx) £ 0] <
induction hypothe5|s
pr Q(ry, ... Th—1) = 0|Q(xy, ..., Xp—1) £ 0] = —

Consider the polynomial Q(xy, x5, ..., x,,) and factor out

the variablex; :
k

Q(xlr '"rxn) = Z xliQi(er "':xn)

i1=0

= 1sl

Where k<=d is the largest exponent of x;in Q.
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JdWe know that ¢, (x, ...,x,,) # 0, otherwise k would
not be the largest exponent of x: in Q.

A The total degree of Q@ (x3, -, x,) is at most d-k.
A With induction hypothesis:
d—k

s

pr[Qy (1, ..., 1) = 0] <

JWe assume the Qi (ry, ...,1,) # 0

J Consider the following polynomial:

k

q(x) = Q(xy,75, ..., 7)) = Z xtQ; (13, ..., 1)

=0
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Junivariate polynomial g has degree k and, by our
assumption, is not identically zero.

 Our base case now implies that:

k
pria(n) = Q7o ) = 010k (7 ey m) # 0] S 7
we have :

pT[QR(TZI '"rrn) — 0] =

d—k

N

k
pria(n) = Q(, T, e i) = 010k (7 oy m) # 0] < 1

Note:pr(E,) < pr(E |E,) + pr(E,)
Therefore: L od—k d

priQQ, s 1) = 01QCer, ey ) # 0] = T e = o

15/ 35



Perfect matching in graphs

J Consider a bipartite Graph G(U, V,E) with the
independent sets of vertices U={uy, u,, ..., u,,} and

V ={0, 0, e, )

J A matching ME E is a set of edges such that each
vertex occurs at most once in M.

1 A perfect matching is a matching of size n.

J A perfect matching can be viewed as a permutation
from U into V.

nesn:(ui,vﬂm) 1<i<n
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Theorem 7.3 (Edmonds' Theorem):
Let A be the n x n matrix obtained from G(U, V,E) as
follows: s {xij (u,v;) € E
J 0 (u,v) ¢E
Define the multivariate polynomial Q (%11, X12, -+, Xpny) as

being equal to det(A). Then, G has a perfect matching
if and only if Q # 0.

@ @ X11  X12 0
A= 0  xp X3

@v@ 0 X3 X33

(u3) (vy) detA = xy1X55X33 — X11X23X3)
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Proof:
The determinant of A is given by:

Z Sgn(n)Al,n(l}AZ,n(Z} An,n(n}

T € Sp

The determinant is non-zero iff there is a permutation
for wich all 4;; are not zero. This is a perfect

matching.
O

( Note that the determinant can be computed in
O(n3) time by Gaussian elimination.
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A The determinant is a multivariate polynomial with n?
variables of degree n.

J run the Schwartz-Zippel on det(A).

JdWe simply have to fill in random values for the x;;
and evaluate it.

J Construction a perfect matching deterministically
takes mvn where m = |E].

JThis method can be used for a parallel algorithm.
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Verifying equality of strings

— T

112

File A File B

J Aim: To determine if file A identical to file B by
communicating fewest bits ?

J Given two strings represented by the bit sequences
(as,a,, ...,a,) and (by, by, ..., by,)

Jdwe want to check them for equality without
comparing all the bits.

3 define: =~
a=Zai2"1 ., b=
i=1

D

bizi—l

-

I
=

L
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" A randomized algorithm

] A chooses a prime p € [2... T] uniformly at random

1 Asends (p,amodp)toB
1 B computes b mod p
. B returns the result of checking a mod p=b mod p

A Now we only need to compare log p bits.

Theorem: for any number k let = (k) be the number of

distinct primes less than kis _*_

Ink
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Lema: The number of distinct prime divisors of any
number less than 2" is at most n.

Proof:
Each prime number is greater than 1. If N has
more n distinct prime divisors, then N > 27

dLet c = |a-b| Fingerprint fails only when ¢ %= 0
and p divides c.
ASince a,b < 2™ we know that ¢ < 2"

(JChoose a threshold T larger than n.

(ANumber of prime smaller T is T

InT
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At most n can be divisors of ¢ and cause fingerprint
strategy to fail.

J Pick a random prime p smaller than T.

(1 The number of bits needed for tranmission is
o(log T)

1 Choose T=tn log tn.

n 1
Theorem 7-5: pr|E,(a) = F,(b)|a # b] < ot 0()
Proof:
n ninT InT (Intn 4+ Inlog tn
n(T) tnlogtn tlogtn tlogtn
1 Inlogtn 1

= — 4 = —
t tlogtn O(t)

24/ 35



A Comparison of Fingerprinting Techniques

dverify the equality of two stringsa = (a, ..., a,,)
and b = (bq, ..., b,)) With same alphabet.

Jencode the alphabet symbols using the set of
numbersr={0, 1, ... ,k-1}, where k =3

Define :

n—1

A(z) = z a;zt  B(z) = Tibiz’:
i=0

=0

Jtwo strings are polynomials with integer coefficients
and degree at most n.

(aq,...,a,) = (by,..,b,) © A(z) = B(z)
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fingerprinting techniquel:

J Fix some prime p > 2n,k. A(z),B(z) are
polynomials over field z,and evaluate A(z),
B(z) at a random point r € Z,

fingerprinting technique2:

JFix z =2 and choose a random prime p.
Evaluate A(2),B(2) using arithmetic modulo p.

J both techniques reduce the problem of
comparing n bits to that of comparing log n bits
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Pattern Matching

J Given a string of text X = x;x, ...x, and a pattern,

Y =y, ...¥m Where m <n, determine whether or
not the pattern appears in the text.
JThe pattern occurs in the text if there is a
j€ {1,2,..,n—m+ 1} such that for1 <i<m  Xjpio1 = Vi
(J Deterministic algorithm
dTrivial algorithm O(mn)
JKnuth-morris-pratt algorithm O(m+n)
(JRandomized monte carlo algorithm 1

[ O(m+n) time and error probability < —
n
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( Define the string X(j) = x;x;11 - Xj+m+1 @S the sub-
string of length m in X that starts at position j.

A match occurs if there is a choice of |
1<j<n-m+1 that Y =X()

Jrandomized algorithm will choose a fingerprint

function F and compare F(Y) with each of the
fingerprints F(X(j)).

. An error occurs if F(Y) = F(X(j)) but Y # X(j)

A for any string Z € {0,1}™, interpret Z as an m-bit
integer and define E,(2) = Zmod p
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A randomized algorithm

dpick a random primepe [2, ..., T]
Jdcompute E,(Y) =Y modp
dforj=1;j<=n-m+1;j=j+1do
dCompute E,X())

dIf E) =EXy)

dthen output “match?” and halt
Joutput “no match!”
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By Theorem 7.5,the probability of such a false
match is:
mlog T

priE, (V) = RGN Y % X()] S = = 0(——)
Jthe probability that a false match occurs for any
of the at most n values of j is O((nmlogT)/T).

OWith T =n*mlog(n®m)

nmlog(n?mlog(n?m)
n?mlog(n?m)

1 loglog(n? 1
oL loslostrim) |, 1y
n  nlog(n?m) n

pr| a false match occurs] = 0 (
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dFor 1<= j<= n-m+1

XG+1D=2[X(G) — 2™ ;] + xj1m,
dthen g (x( + 1)) = 2[E,(X()) — 2™ x| + x;,,ymod p

dgiven the fingerprint of X(j), the incremental cost of
computing the fingerprint of X(j + 1) is 0(1)

dthe total time is O(n + m)

A Theorem 7.6: The Monte Carlo algorithm for
pattern matching requires O(n + m) time and has a
probability of error 0 (1/ n) .
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Las Vegas algorithm

(JWhen a false match occurs, we detect it and
abandon the whole process and then use the
O(nm) running time deterministic algorithm to
find match.

JThe new algorithm does not make any errors and
has expected running time:

T(n)=(1- %)O(m +n) +% O(nm) =0(m +n)
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Verifying Graph Non-Isomorphism

] Definition 7.2:

Let G, (V,E,) and G,(V, E,) be two graphs on the
same set of labeled vertices V ={1, ... ,n}. The two
graphs are said to be isomorphic if there exists a
permutation 7 € s,, such that an edge (i,j) € E; if
and only if the edge (7 (i) ,#(j)) € E, ; the
permutation ris referred to isomorphism from G,
to G, . Two graphs are non-isomorphic there does

not exist any isomorphism from one graph to the
other.
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Verifier V:

e picks index i€ {1,2} and permutation o € s, , both
uniformly at random;

e computes H =0 (G,);

e specifies H to the prover P and asks for an index j
such that H is isomorphic to G;;

Prover P: responds with an index j;

Verifier V: if j =i then it accepts that ¢; and G, are
non-isomorphic, else it rejects.
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Theorem 7.7:

If G;and G, are non-isomorphic, an honest prover
P can ensure that V will accept; otherwise, for any
(possibly maliciously dishonest) prover P’,

the probability that V accepts is 1/2.
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