Algebraic Techniques

Maryam Babaei

□introduction
☐ Fingerprinting and Freivalds' Technique
Verifying polynomial identities
☐ Perfect matching in graphs
Verifying equality of strings
☐ A Comparison of Fingerprinting Techniques
☐ Pattern Matching
Verifying Graph Non-Isomorphism

introduction

- ☐ The problem:
 - □ given a large Universe U and elements a , b ∈ U
 - ☐ decide a = b has a deterministic complexity at least log |U|
 - in some cases this may be very slow
- ☐ The idea:
 - \square pick a random mapping $M: U \rightarrow V$ such that w.h.p.:

$$a = b \Leftrightarrow M(a) = M(b)$$

- \square M(a) = M(b) can be evaluated faster than a = b
- \square we call M(x) the fingerprint of x

Fingerprinting and Freivalds' Technique

Problem 1:

Let A, B, C be n \times n matrices, We want to verify that AB = C

A randomized algorithm

- \square Pick a random vector $r \in \{0,1\}^n$
- \square Compute x = Br, y = Ax = ABr and z = Cr
- ☐ If y = z then

 "yes" AB = C
- **□** Else

"no" AB≠ C

Time complexity: $O(n^2)$

- \Box if AB=C \Rightarrow y=z
- \Box if AB \neq C \Rightarrow y \neq z
- □ algorithm errs only if AB≠C but y=z
- this is a One-sided error Monte-Carlo algorithm

Theorem 7.1: Let A, B, and C be n x n matrices over F such that AB \neq C Then for r chosen uniformly at random from $\{0,1\}^n$, $pr[ABr = Cr] < \frac{1}{2}$

- \square Let D = AB C. We know that $D \neq 0$
- \square Pr[y=z]=pr[Dr=0]
- Let **d** be the vector consisting of the entries in the first row of **D** that has a non zero entry.

$$pr[Dr = 0] \le pr[d^Tr = 0]$$

$$\mathbf{d}^{\mathrm{T}}r = 0 \iff r_1d_1 = -\sum_{i=2}^k d_ir_i \implies r_1 = \frac{-\sum_{i=2}^k d_ir_i}{d_1}$$

In for each choice of the values $r_2, ..., r_n$ there is only one value for r_1 that could have caused $d^T r = 0$

$$pr[r_1 = v] \le \frac{1}{2}$$

principle of deferred decisions

- we first fixed the choices for $r_2, ..., r_n$ and then considered the effect of the random choice of r_1 given those choices.
- \square After k iterations the probability of error is $\frac{1}{2^k}$
- ☐ This can be generalized for verifying any matrix identity. However it only makes sense if at least one of the matrices is not explicitly provided.

Verifying polynomial identities

☐ Comparing polynomials is trivial if they are explicitly given in the same form

$$x^{2} - 2x - 3 = x^{2} - 2x - 3$$
$$(x - 1)(x + 3) = x^{2} - 2x - 3$$

Problem: Given polynomials $p_1(x)$, $p_2(x)$, $p_3(x)$ verify that $p_1(x) * p_2(x) = p_3(x)$

- \square $p_1(x)$ and $p_2(x)$ are of degree at most n.
- \square $p_3(x)$ is of degree at most 2n.
- mult in O(n log n) using FFT(fast fourier transform).
- \square evaluation at fixed point in O(n) time.

A randomized algorithm

- \square Choose a value $r \in s \subseteq F$ with $|s| \ge 2n + 1$
- □ Evaluate $Q(r) = p_1(r) * p_2(r) p_3(r)$

Theorem: if Q(x)=0 then Q(r)=0. Otherwise

$$pr(Q(r) = 0 | Q(x) \neq 0) \leq \frac{2n}{|s|}$$

Proof:

Q(x) is not all zero. Due to the fundamental theorem of algebra we also know that Q(x) has at most 2n distinct roots.

$$pr(Q(r) = 0 | Q(x) \neq 0) \le \frac{2n}{|s|}$$

$$\det M = \sum_{\pi \in S_n} sgn(\pi) \prod_{i=1}^n M_{i \pi(i)}$$

Definition 7.1:

The Vandermonde matrix $M(x_1, x_2, ..., x_n)$ is defined in terms of the indeterminates $x_1, x_2, ..., x_n$ such that $M_{ij} = x_i^{j-1}$ that is

$$M = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

$$\det M = \prod_{i \le i} (x_i - x_j)$$

- ☐ Computing the determinant of this symbolic matrix is prohibitively expensive since it has n! terms
- we will formulate this as the problem of verifying that the polynomial

$$Q(x_1, x_2, ..., x_n) = \det M - \prod_{j < i} (x_i - x_j)$$

- \square substitute random values for each x_i and check whether Q = 0.
- \Box the determinant can be computed in polynomial time for specified values of the variables $x_1, x_2, ..., x_n$

- \square Multivariate polynomial $Q(x_1, x_2, ..., x_n)$
- degree of term: sum of variable degree
- ☐ total degree Q: max degree of term

Theorem 7.2(Schwartz-Zippel Theorem):

Let $Q(x_1, x_2, ..., x_n) \in F[x_1, ..., x_n]$ be a multivariate polynomial of total degree d. Fix any set $S \subseteq F$, and let $r_1, ..., r_n$ be chosen independently and uniformly at random from S. Then

$$pr[Q(r_1, ..., r_n) = 0 | Q(x_1, ..., x_n) \not\equiv 0] \le \frac{d}{|S|}$$

Proof:

by induction on the number of variables n.

base case: n = 1 (univariate polynomial)

$$pr[Q(r) = 0 | Q(x) \not\equiv 0] \le \frac{d}{|S|}$$

induction hypothesis:

$$pr[Q(r_1, ..., r_{n-1}) = 0 | Q(x_1, ..., x_{n-1}) \not\equiv 0] \le \frac{d}{|S|}$$

Consider the polynomial $Q(x_1, x_2, ..., x_n)$ and factor out the variable x_1 :

$$Q(x_1, ..., x_n) = \sum_{i=0}^{\kappa} x_1^i Q_i(x_2, ..., x_n)$$

Where k<=d is the largest exponent of x_1 in Q.

- We know that $Q_k(x_2, ..., x_n) \neq 0$, otherwise k would not be the largest exponent of x_1 in Q.
- \square The total degree of $Q(x_2,...,x_n)$ is at most d-k.
- ☐ With induction hypothesis:

$$pr[Q_k(r_2, \dots, r_n) = 0] \le \frac{d - k}{|s|}$$

- \square We assume the $Q_k(r_2,...,r_n) \neq 0$
- ☐ Consider the following polynomial:

$$q(x_1) = Q(x_1, r_2, \dots, r_n) = \sum_{i=0}^k x_1^i Q_i(r_2, \dots, r_n)$$

- univariate polynomial q has degree k and, by our assumption, is not identically zero.
- ☐ Our base case now implies that:

$$pr[q(r_1) = Q(r_1, r_2, ..., r_n) = 0 | Q_k(r_2, ..., n_n) \neq 0] \le \frac{k}{|s|}$$

we have:

$$pr[Q_k(r_2, ..., r_n) = 0] \le \frac{d - k}{|s|}$$

$$pr[q(r_1) = Q(r_1, r_2, ..., r_n) = 0 | Q_k(r_2, ..., n_n) \ne 0] \le \frac{k}{|s|}$$

Note: $pr(E_1) \le pr(E_1|\bar{E}_2) + pr(E_2)$

Therefore:

$$pr[Q(r_1,...,r_n)=0|Q(x_1,...,x_n)\neq 0] \leq \frac{k}{|s|} + \frac{d-k}{|s|} = \frac{d}{|s|}$$

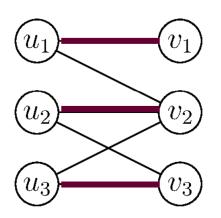
Perfect matching in graphs

□ Consider a bipartite Graph G(U, V,E) with the independent sets of vertices $U = \{u_1, u_2, ..., u_n\}$ and

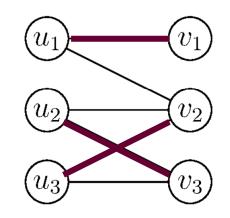
$$V = \{v_1, v_2, ..., v_n\}$$

- □ A matching M⊆ E is a set of edges such that each vertex occurs at most once in M.
- ☐ A perfect matching is a matching of size n.
- ☐ A perfect matching can be viewed as a permutation from U into V.

$$\pi \in S_n \Rightarrow (u_i, v_{\pi(i)}) \qquad 1 \le i \le n$$



$$\pi_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$



$$\pi_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$\det M = \sum_{\pi \in S_n} sgn(\pi) \prod_{i=1}^n M_{i \pi(i)}$$

Theorem 7.3 (Edmonds' Theorem):

Let A be the n x n matrix obtained from G(U, V,E) as follows: $(x, y, y, y) \in F$

$$A_{ij} = \begin{cases} x_{ij} & (u_i, v_j) \in E \\ 0 & (u_i, v_j) \notin E \end{cases}$$

Define the multivariate polynomial $Q(x_{11}, x_{12},, x_{nn})$ as being equal to det(A). Then, G has a perfect matching if and only if $Q \neq 0$.

$$u_1$$
 v_1 v_2 v_2 v_3

$$A = \begin{pmatrix} x_{11} & x_{12} & 0 \\ 0 & x_{22} & x_{23} \\ 0 & x_{32} & x_{33} \end{pmatrix}$$

$$\det A = x_{11}x_{22}x_{33} - x_{11}x_{23}x_{32}$$

Proof:

The determinant of A is given by:

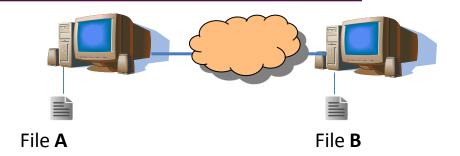
$$\sum_{\pi \in S_n} sgn(\pi) A_{1,\pi(1)} A_{2,\pi(2)} \dots A_{n,\pi(n)}$$

The determinant is non-zero iff there is a permutation for wich $all A_{ij}$ are not zero. This is a perfect matching.

□ Note that the determinant can be computed in O(n3) time by Gaussian elimination.

☐ The determinant is a multivariate polynomial with variables of degree n.
☐ run the Schwartz-Zippel on det(A).
\square We simply have to fill in random values for the x_{ij} and evaluate it.
☐ Construction a perfect matching deterministically takes $m\sqrt{n}$ where m = E .
☐ This method can be used for a parallel algorithm.

Verifying equality of strings



- □ Aim: To determine if file A identical to file B by communicating fewest bits ?
- ☐ Given two strings represented by the bit sequences

$$(a_1, a_2, ..., a_n)$$
 and $(b_1, b_2, ..., b_n)$

- we want to check them for equality without comparing all the bits.
- □ define: $a = \sum_{i=1}^{n} a_i 2^{i-1}$, $b = \sum_{i=1}^{n} b_i 2^{i-1}$

A randomized algorithm

- \square A chooses a prime $p \in [2... T]$ uniformly at random
- ☐ A sends (p, a mod p) to B
- B computes b mod p
- ☐ B returns the result of checking a mod p=b mod p
- ☐ Now we only need to compare log p bits.

Theorem: for any number k let $\pi(k)$ be the number of distinct primes less than k is $\frac{k}{\ln k}$

Lema: The number of distinct prime divisors of any number less than 2^n is at most n.

Proof:

Each prime number is greater than 1. If N has more n distinct prime divisors, then $N > 2^n$

- Let c = |a-b| Fingerprint fails only when $c \neq 0$ and p divides c.
- \square Since $a, b < 2^n$ we know that $c < 2^n$
- ☐ Choose a threshold T larger than n.
- \square Number of prime smaller T is $\frac{T}{\ln T}$

- ☐ At most n can be divisors of c and cause fingerprint strategy to fail.
- ☐ Pick a random prime p smaller than T.
- ☐ The number of bits needed for tranmission is o(log T)
- ☐ Choose T=tn log tn.

Theorem 7-5:
$$pr[F_p(a) = F_p(b) | a \neq b] \leq \frac{n}{\pi(T)} = o(\frac{1}{t})$$

Proof:

$$\frac{n}{\pi(T)} = \frac{n \ln T}{t n \log t n} = \frac{\ln T}{t \log t n} = \frac{(\ln t n + \ln \log t n)}{t \log t n}$$
$$= \frac{1}{t} + \frac{\ln \log t n}{t \log t n} = o(\frac{1}{t})$$

A Comparison of Fingerprinting Techniques

- verify the equality of two strings $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_n)$ with same alphabet.
- □ encode the alphabet symbols using the set of numbers $r = \{0, 1, ..., k-1\}$, where $k = |\Sigma|$

Define:

$$A(z) = \sum_{i=0}^{n-1} a_i z^i \qquad B(z) = \sum_{i=0}^{n-1} b_i z^i$$

☐ two strings are polynomials with integer coefficients and degree at most n.

$$(a_1, ..., a_n) = (b_1, ..., b_n) \Leftrightarrow A(z) = B(z)$$

fingerprinting technique1:

Fix some prime p > 2n,k. A(z),B(z) are polynomials over field Z_p and evaluate A(z), B(z) at a random point $r \in Z_p$

fingerprinting technique2:

- \square Fix z = 2 and choose a random prime p. Evaluate A(2),B(2) using arithmetic modulo p.
- □ both techniques reduce the problem of comparing n bits to that of comparing log n bits

Pattern Matching

- \square Given a string of text $X = x_1 x_2 \dots x_n$ and a pattern,
 - $Y = y_1 y_2 ... y_m$ where $m \le n$, determine whether or not the pattern appears in the text.
- ☐ The pattern occurs in the text if there is a

$$j \in \{1,2,\ldots,n-m+1\}$$
 such that $for 1 \leq i \leq m$, $x_{j+i-1} = y_i$

- **□** Deterministic algorithm
 - ☐ Trivial algorithm O(mn)
 - ☐ Knuth-morris-pratt algorithm O(m+n)
- ☐ Randomized monte carlo algorithm
 - \square O(m+n) time and error probability $<\frac{1}{n}$

- Define the string $X(j) = x_j x_{j+1} \dots x_{j+m+1}$ as the substring of length m in X that starts at position j.
- A match occurs if there is a choice of j $1 \le j \le n - m + 1$ that Y = X(j)
- □ randomized algorithm will choose a fingerprint function F and compare F(Y) with each of the fingerprints F(X(j)).
- \square An error occurs if F(Y) = F(X(j)) but $Y \neq X(j)$
- \square for any string $Z \in \{0,1\}^m$, interpret Z as an m-bit integer and define $F_p(Z) = Z \mod p$

A randomized algorithm

- \square pick a random prime p \in [2, ..., T]
- \square compute $F_p(Y) = Y \mod p$
- \square for j = 1; j <= n m + 1; j = j + 1 do
- \square Compute $F_p(X(j))$
- ☐ then output "match?" and halt
- □ output "no match!"

☐ By Theorem 7.5, the probability of such a false match is:

$$pr[F_p(Y) = F_p(X(j))| \ Y \neq X(j)] \le \frac{m}{\pi(T)} = O(\frac{m \log T}{T})$$

- ☐ the probability that a false match occurs for any of the at most n values of j is O((nmlogT)/T).

$$pr[\ a\ false\ match\ occurs] = O\left(\frac{nmlog(n^2m\log(n^2m))}{n^2m\log(n^2m)}\right)$$
$$= O\left(\frac{1}{n} + \frac{\log\log(n^2m)}{n\log(n^2m)}\right) + O\left(\frac{1}{n}\right)$$

$$X(j+1) = 2[X(j) - 2^{m-1}x_j] + x_{j+m}$$

- $\Box \text{ then } F_p\big(X(j+1)\big) = 2\big[F_p\big(X(j)\big) 2^{m-1}x_j\big] + x_{j+m} mod \ p$
- \Box given the fingerprint of X(j), the incremental cost of computing the fingerprint of X(j + 1) is O(1)
- \Box the total time is O(n + m)
- □ Theorem 7.6: The Monte Carlo algorithm for pattern matching requires O(n + m) time and has a probability of error O (1/n).

Las Vegas algorithm

■ When a false match occurs, we detect it and abandon the whole process and then use the O(nm) running time deterministic algorithm to find match.

☐ The new algorithm does not make any errors and has expected running time:

$$T(n) = (1 - \frac{1}{n})O(m+n) + \frac{1}{n}O(nm) = O(m+n)$$

Verifying Graph Non-Isomorphism

☐ Definition 7.2:

Let $G_1(V, E_1)$ and $G_2(V, E_2)$ be two graphs on the same set of labeled vertices $V = \{1, ..., n\}$. The two graphs are said to be isomorphic if there exists a permutation $\pi \in S_n$ such that an edge (i,i) $\in E_1$ if and only if the edge $(\pi(i), \pi(j)) \in E_2$; the permutation π is referred to isomorphism from G_1 to G_2 . Two graphs are non-isomorphic there does not exist any isomorphism from one graph to the other.

Verifier V:

- picks index i \in {1,2} and permutation $\sigma \in s_n$, both uniformly at random;
- computes $H = \sigma(G_i)$;
- specifies H to the prover P and asks for an index j such that H is isomorphic to G_i ;

Prover P: responds with an index j;

Verifier V: if j = i then it accepts that G_1 and G_2 are non-isomorphic, else it rejects.

Theorem 7.7:

If G_1 and G_2 are non-isomorphic, an honest prover P can ensure that V will accept; otherwise, for any (possibly maliciously dishonest) prover P', the probability that V accepts is 1/2.