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B-trees

Introduction

We want search trees of large degree because of using all the
information we get when reading a block to guide the search

B-trees are a generalization of balanced binary search trees to
balanced trees of degree Θ(B)

N: the size of the key set and B: the number of keys or pointers that
fit in one block

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 4 / 50



B-trees

Introduction(continue)

In a B-tree all leaves have the same distance to the root

Level of a node: its distance to its descendant leaves

Weight of node v: the number of leaves subtree of node v,is shown by
w(v)

level : 0
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B-trees

Definition

T is a weight-balanced B-tree with branching parameter b and leaf
parameter k,(b ≥ 4 and k〉 0 )if:

All leaves of T have the same depth and weight between k and 2k − 1

An internal node on level l has weight less than 2blk

An internal node on level l except for the root has weight greater than
1
2b

lk

The root has more than one child

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 6 / 50



B-trees

Limitation on weight results Limitation on degree of each node

Degree of each node is between b
4 and 4b

The degree of any non-root node is Θ(b)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 / 50



B-trees

Limitation on weight results Limitation on degree of each node

Degree of each node is between b
4 and 4b

The degree of any non-root node is Θ(b)

k < w(f) < 2k − 1

f
level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 / 50



B-trees

Limitation on weight results Limitation on degree of each node

Degree of each node is between b
4 and 4b

The degree of any non-root node is Θ(b)

k < w(f) < 2k − 1

f

v

1
2b

lk < w(v) < 2blk

level : 0

level : l

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 / 50



B-trees

Limitation on weight results Limitation on degree of each node

Degree of each node is between b
4 and 4b

The degree of any non-root node is Θ(b)

k < w(f) < 2k − 1

f

v

1
2b

lk < w(v) < 2blk

level : 0

level : l

level : l + 1
u

1
2b

l+1k < w(v) < 2bl+1k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 / 50



B-trees

Limitation on weight results Limitation on degree of each node

Degree of each node is between b
4 and 4b

The degree of any non-root node is Θ(b)

k < w(f) < 2k − 1

f

v

1
2b

lk < w(v) < 2blk

level : 0

level : l

Θ(b)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 / 50



B-trees

The New B-tree is introduced by our book

The Result

The result branching parameter is: b = B
8

And we assume leaf parameter: k = 2
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B-trees

The New B-tree is introduced by our book (continue)

An internal node on level i has weight less than 4(B8 )i

An internal node on level i except for the root has weight greater than
(B8 )i

Any node has less than B/2 children

Any non-root node has greater than B/32 children
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B-trees

Searching a B-tree

In a node v stores sorting keys k1, ..., kdv−1

The ith subtree of v stores keys k with ki−1 ≤k< ki (defining
k0 = −∞ and kdv =∞).

the information in a node suffices to determine in which subtree to
continue a search

The worst-case number of I/Os needed for searching a B-tree equals
the worst-case height of a B-tree, at most 1 + dlogN

b e
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B-trees

”report all keys in the range [a,b]”

Search for the key a, which will lead to the smallest key x ≥ a

Traverse the linked list starting with x and report all keys smaller than
b

of I/Os of Rang queries(output sensitivity):O(logN
b + Z/B)

x ≥ a
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B-trees

”report all keys in the range [a,b]”

Search for the key a, which will lead to the smallest key x ≥ a

Traverse the linked list starting with x and report all keys smaller than
b

of I/Os of Rang queries(output sensitivity):O(logN
b + Z/B)

x ≥ a

O(logNb )

by ≤

Z:The number of elements in [a,b]

O(Z/B)
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B-trees

Range Reporting(continue)

Two Notes

1 Optimal solution is based on hashing data structures that performs in
O(1 + Z/B)

2 Optimal output sensitivity fails when query changes to ”report the
first Z keys in the range [a,b]”
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B-trees

Inserting and Deleting Keys in a B-tree

Inserting Key x

Search for the key x, find node v
that is parent of x

Insert the key x to node v

If at level i, w(v)=2blk
(overweight), we rebalance it by
”split”

We split a node v to two new
nodes u,u’

starting from the bottom and
going up

2blk

1
2b

l+1k...2bl+1k
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B-trees

Inserting key x(continue)

blk − 2bl−1k〈 w(u),w(u’) 〈blk + 2bl−1k

Since b ≥ 4
1
2b

lk〈 w(u),w(u’) 〈3
2b

lk

The weight of each of these new nodes(u,u’) is Ω(bl)
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B-trees

Inserting and Deleting Keys in a B-tree(continue)

Deleting Key x (fuse)

Search for the key x to find the internal node v that is parent x

Delete the key x from node v

If at level l, w(v)= 1
2b

lk (underweight), we will rebalance it by ”fuse”
or ”share” operations

starting from the bottom and going up

Node w:one of its nearest sibling of node v

If w(w)≤ 5
4b

ik we do ”fuse” operation
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B-trees

Deleting Keys in a B-tree (fuse)

1
2b

l+1k...2bl+1k

1
2
blk
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B-trees

Deleting Keys in a B-tree (fuse)

1
2b

l+1k...2bl+1k

1
2
blk

An underweight node

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 16 / 50



B-trees

Deleting Keys in a B-tree (fuse)

1
2b

l+1k...2bl+1k

1
2
blk 1

2
blk...5

4
blk
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B-trees

Deleting Keys in a B-tree (fuse)

blk...74b
lk

1
2b

l+1k...2bl+1k

Fuse two nodes
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B-trees

Deleting Keys in a B-tree (share)

if 5
4b

lk〈 w(w) 〈2blk we do
”share” operation

We have two new nodes u,u’
result of ”share”

w(u)= 7
8b

lk − 2bl−1k
w(u’)= 5

4b
lk + 2bl−1k

The weight of each of
them(u,u’) is Ω(bl)

1
2b

l+1k...2bl+1k

1
2
blk

An underweight node
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B-trees
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B-trees
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B-trees
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B-trees

Analysis of inserting and deleting in B-tree

The cost of rebalancing a node: O(1) I/Os

The total cost of B-tree rebalancing:O(logN
b ) I/Os

We have in fact shown something stronger

The weight of node v at level i, W = Θ(bi )

To assume S : an auxiliary data structure used when searching in the
v’s subtree

When v is rebalanced we spend f(W) I/Os to compute S
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B-trees

Analysis(continue)

The rebalancing operation have Ω(W ) insertions and deletions in v’s
subtree and also in S

The amortized cost of maintaining S :O(f (W )/W ) I/Os per node on
the search path of an update

or O(
f (W )

W
logN

b ) I/Os per update

As an example,if f(W)=O(W/B) I/Os

The amortized cost per update is O( 1
B log

N
b ) I/Os

that this is negligible
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B-trees

B-tree Variants

1.Parent Pointers and Level Links

Maintain a pointer to the parent of each node

Maintain all nodes at each level with a doubly linked list

One application of these pointers is a ”finger search”

Given a leaf v in the B-tree, search for another leaf w

Q: the number of leaves between v and w

The number of I/Os: O(logQ
b )

2.String B-trees

We have assumed that the B-tree’s keys have fixed length

In some applications the keys are strings of unbounded length

all the usual B-tree operations,can be efficiently supported in this
setting
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B-trees

B-tree Variants

3.Divide and Merge Operations

We have two useful applications

Divide a B-tree into two parts

Merge two B-trees ”glue”

These operations can be supported in O(logN
b ) I/Os
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B-trees

Batched Dynamic Problems

B-trees answer queries in an on-line fashion

In batched dynamic problems a batch of updates and queries is
provided to the data structure

Only at the end of the batch, the data structure delivers the answers

The batched range searching

Given a sequence of insertions and deletions of integers

Each query of integers is compared with the sequense and reported
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B-trees

Buffer trees

The buffer tree technique has been used for I/O optimal algorithms

Each internal node has an buffer with size Θ(M)

A buffer tree has degree Θ(M/B)

Leaves contain Θ(B) keys

Root buffer reside entirely on main memory

Non-root buffers reside entirely on external memory

Θ(B)

Θ(M/B)
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B-trees

How does a buffer tree work?

Θ(B)

Θ(M/B)

root

main memory
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B-trees

How does a buffer tree work?

Θ(B)

Θ(M/B)

main memory

The buffer gets full

It is flushed
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B-trees

How does a buffer tree work?

Θ(B)

Θ(M/B)

main memory

If there are too few or too many children
rebalancing operations are performed
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B-trees

I/O Analysis for Buffer tree

The cost of flushing a buffer

O(M/B) I/Os for reading the buffer

O(M/B) I/Os for writing the operations to the buffers of the children

The cost of all of flushes O( 1
B log

N
B
M
B

) I/Os per operation

A flushing costs O(1/B) I/Os per operation in the buffer

The total cost of rebalancing during N updates is O(N/B) I/Os

The cost of a rebalancing operation on a node is O(M/B) I/Os

Number of nodes that need to rebalancing operations during N
updates is O(N/M)
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B-trees

Priority Queues

The basic operations insertion of a key, finding the smallest key, and
deleting the smallest key

Sometimes additional operations are supported, such as deleting an
arbitrary key and decreasing the value of a key

we use buffering technique for priority queue

The entire buffer of the root node and the O(M/B) leftmost leaves
are always kept in internal memory
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B-trees

How does priority queue using buffer tree work?

All buffers on the path from the root to the leftmost leaf must be
empty

For this,Whenever the root is flushed we also flush all buffers down
the leftmost path

Θ(B)

Θ(M/B)

main memory
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B-trees

I/O Analysis for Priority Queues

All buffers on the leftmost path are flushed with O(MB log
N
B
M
B

) I/Os

We have O(M) operations with each flush of the root buffer

The amortized cost of these extra flushes is O( 1
B log

N
B
M
B

) I/Os per

operation

Results

Find-minimum queries can be answered on-line without using any
I/Os

It can shown that is impossible to perform insertion and delete

minimums in o( 1
B log

N
B
M
B

) I/Os

Open problems
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Hashing Based Dictionaries
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Hashing Based Dictionaries

Lookup with Good Expected Performance

We will consider linear probing and chaining with separate lists

These schemes need only a single hash function h in internal memory

We assume that any hash function value h(x) is uniformly random

Load factor α

M is the number of different addresses are produced by hash function
and N is the number of keys

α = N
M
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Hashing Based Dictionaries

1.Linear Probing

Operations

Insertion

Deletion

Lookup

The Number of I/Os for a Lookup

The expected average number of I/Os for a lookup is
1 + (1− α)−22−Ω(B)

α 6 1− ε and B is not too small =⇒ the expected average is very
close to 1

The probability of using k (more than one) I/Os for a lookup is
2−Ω(B(k−1))
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Hashing Based Dictionaries

2.Chaining with Separate Lists

Chaining works faster than Linear Probing

Each block in the hash table is the start of a linked list of keys
hashing to that block

When the pseudo random function works truly, all lists will consist of
just a single block

The probability that more than kB keys hash to a certain block is at
most e−αB(k/α−1)2/3 (Chernoff bounds)

The probabilities decrease faster with k than in linear probing

If B is large and the load factor is not too high, overflows will be very
rare
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Hashing Based Dictionaries

Lookup Using One External Memory Access

1-Making Use of Internal Memory

If sufficient internal memory is available, searching in a dictionary can be
done in a single I/O with two approaches:

1 Overflow area

2 Perfect hashing and extendible hashing

2-Using a Predecessor Dictionary

If we increase internal computation, both internal and external space usage
can be made better than of extendible hashing
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Hashing Based Dictionaries

Overflow area

First Idea

Internal memory for 2−Ω(B)N keys and associated information is
available

Store the keys that can not be accommodated externally in an
internal memory dictionary

The probability that be more than 2−c(α)Ω(B)N such keys is so small

If it happens we rehash, choose a new hash function to replace h
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Hashing Based Dictionaries

Overflow area (continue)

Second Idea

The overflow area can reside in external memory
For single I/O lookups, internal memory data structures must:

1 Identify blocks that have overflown

2 Facilitate single I/O lookup of the elements hashing to these blocks

First Task

It be solved by maintaining a dictionary of overflowing blocks

This requires O(2−c(α)BNlogN) bits of internal space

Second Task

It be solved recursively by a dictionary supporting single I/O lookups

Store a set that with high probability has size O(2−c(α)BN)
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Hashing Based Dictionaries

Perfect hashing

Mairson introduced a B-perfect hash function

Hash function p : K −→ {1, ..., dN/Be}
It maps at most B keys to each block

A function uses O(Nlog(B)/B) bits of internal memory

If the number of blocks is dN/Be, this is the best possible

Disadvantages

1 The time and space needed to evaluate this hash functions is
extremely high

2 It seems very difficult to obtain a dynamic version
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Hashing Based Dictionaries

Extendible Hashing

Use an internal structure called a directory

Directory is an array of 2d pointers to external blocks

Random hash function h : K −→ {0, 1}r for r > d

Lookup of a key k is performed by using h(k)d

h(k)d is d least significant bits of h(k) for determine an entry in the
directory

The parameter d is the smallest number that with it at most B
dictionary keys map to the same value under h(k)d

If r > 3logN, such a d exists with high probability, else we rehash it
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Hashing Based Dictionaries

Extendible Hashing(continue)

The Main Results

Lookups uses a single I/O and constant internal processing time

The expected number of directory’s entries is 4N
BN

1/B

If we have N/B blocks ⇒ we require 1
2Nlog(B)/B + Θ(N/B) bits of

internal space (it is close to optimal)

It can be shown that about 69 percent of the space is utilized
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Hashing Based Dictionaries

Extendible Hashing(continue)

Extendible Hashing adapts to changes of the key set

The level of a block is the largest d
′
6 d for which all its keys map to

the same value under hd ′

Whenever a block at level d
′

has run full,it is split into two blocks at
level d

′
+ 1 using hd ′+1

In case d
′

= d we first need to double the size of the directory

If two blocks at level d
′

with keys having the same function value
under hd ′−1 contain less than B keys in total, these blocks are merged

If no blocks are left at level d, the size of the directory is halved
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Hashing Based Dictionaries

Lookup Using Two Parallel External Memory Accesses

Two-Way Chaining Scheme

It can be thought of as two chained hashing data structures

We have two pseudo random hash functions h1 and h2

Key x reside in either block h1(x) of hash table one or block h2(x) of
hash table two

New keys are inserted in the block with the smallest number of keys,
with ties broken such that keys go to table one

Analysis

The probability of an insertion causing an overflow is N/22Ω(1−α)B

The effect of deletions does not appear to have been analyzed
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Hashing Based Dictionaries

Resizing Hash Tables

Keep α in a certain interval to have a good external memory utilization

The challenge

Rehash to the new table without an expensive reorganization of the old
hash table

The Solution

Choosing a new convenient hash function

This requires a especial random permutation of the keys

For this task we require Θ(NB log
N
B
M
B

) I/Os

N = (M/B)o(B) =⇒ O(N)I/Os

Θ(N) updates between two rehashes
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Hashing Based Dictionaries

Resizing Hash Tables Example
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Hashing Based Dictionaries

Resizing Hash Tables (continue)

Linear Hashing

The Basic Idea for Hashing to a Range of Size r

Extract b = dloge bits from a mother hash function

If b bits encode an integer k less than r, this is used as the hash value

Otherwise the hash function value k − 2b−1 is returned

Expand the size of the hash table by one block (increasing r by one)

All keys that hash to the new block r+1 previously hashed to block
r + 1− 2b−1

Decreasing the size of the hash table is done in a symmetric manner

The Main Problem

When r is not a power of 2, the keys are not mapped uniformly to the
range
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Dynamization Techniques

The Logarithmic Method

The Problem Must Be Decomposable

Split the set S of elements into disjoint subsets S1, ...,Sk

Create a (static) data structure for each of them

Queries on the whole set can be answered by querying each of these
data structures

Examples of Decomposable Problems

Dictionaries and Priority Queues
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Dynamization Techniques

The Logarithmic Method (continue)

Obtain data structures with insertion and query operations

The Basic Idea

Maintain a collection of data structures of different sizes

Merge periodically a number data structures into one

keep the number of data structures to be queried low

In internal memory,the number of data structures is O(logN)

The External Memory Version of the Logarithmic Method

The number of data structures is decreased to O(logB
N )

Insertions are done by rebuilding the first static data structure

The invariant is that the ith data structure should have size no more
than B i

If this size is reached, it is merged with the i+1st data structure
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Dynamization Techniques

The Logarithmic Method (continue)

Analysis

Insert N elements, each element is part of a rebuilding O(BlogN
B )

times

Building a static data structure for N elements uses O(NB log
k
BN) I/Os

The total amortized cost of inserting an element is O(logk+1
B N) I/Os

Queries take O(BlogN
B ) times more I/Os than queries in the

corresponding static data structures
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Dynamization Techniques

Global Rebuilding

Some data structures for sets support deletions, but do not recover
the space occupied by deleted elements

For example, weak delete

Keep the number of deleted elements at some fraction of the total
number of elements is global rebuilding

The Main Idea

In a data structure of N elements, whenever αN elements have been
deleted,for some constant α 0, the entire data structure is rebuilt

The cost of rebuilding is at most a constant factor higher than the
cost of inserting αN elements

The amortized cost of global rebuilding can be charged to the
insertions of the deleted elements
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