Basic External Memory Data Structures J

Zorieh Soltani

Yazd University

Fall-1389

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 1/50

Content

@ 2.3 B-trees
@ 2.4 Hashing Based Dictionaries

@ 2.5 Dynamization Techniques

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 2 /50

@ B-trees

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 3 /50

Introduction

@ We want search trees of large degree because of using all the
information we get when reading a block to guide the search

@ B-trees are a generalization of balanced binary search trees to

balanced trees of degree O(B)

@ N: the size of the key set and B: the number of keys or pointers that

fit in one block

External Search Trees

O(log, B)

/< \:‘/\'\

£

LN,

®(B)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

Fall-1389

4 /50

Introduction(continue)

@ In a B-tree all leaves have the same distance to the root

@ Level of a node: its distance to its descendant leaves

@ Weight of node v: the number of leaves subtree of node v,is shown by
w(v)

level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 5 /50

Introduction(continue)

@ In a B-tree all leaves have the same distance to the root

@ Level of a node: its distance to its descendant leaves

@ Weight of node v: the number of leaves subtree of node v,is shown by
w(v)

level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 5 /50

Introduction(continue)

@ In a B-tree all leaves have the same distance to the root
@ Level of a node: its distance to its descendant leaves

@ Weight of node v: the number of leaves subtree of node v,is shown by
w(v)

level : 2

level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 5 /50

Introduction(continue)

@ In a B-tree all leaves have the same distance to the root
@ Level of a node: its distance to its descendant leaves

@ Weight of node v: the number of leaves subtree of node v,is shown by
w(v)

v level : 2

level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 5 /50

Definition

T is a weight-balanced B-tree with branching parameter b and leaf
parameter k,(b > 4 and k) 0)if:

@ All leaves of T have the same depth and weight between k and 2k — 1
@ An internal node on level | has weight less than 2b'k
@ An internal node on level | except for the root has weight greater than
141
=b'k
2

@ The root has more than one child

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 6 / 50

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 /50

@ Limitation on weight results Limitation on degree of each node

level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 /50

@ Limitation on weight results Limitation on degree of each node

1 level : 0

1] :

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 /50

@ Limitation on weight results Limitation on degree of each node

@ Degree of each node is between f;’ and 4b

[3671k < w(v) < 207K

1 level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 /50

@ Limitation on weight results Limitation on degree of each node
@ Degree of each node is between % and 4b

@ The degree of any non-root node is ©(b)

1 level : 0

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 7 /50

The New B-tree is introduced by our book

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 8 /50

The New B-tree is introduced by our book

The Result

The result branching parameter is: b =
And we assume leaf parameter: k = 2

B
8

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

8 / 50

The New B-tree is introduced by our book (continue)

@ An internal node on level i has weight less than 4(%)i

e An i'nternal node on level i except for the root has weight greater than
(§)

@ Any node has less than B/2 children

@ Any non-root node has greater than B/32 children

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 9 /50

Searching a B-tree

@ In a node v stores sorting keys ki, ..., kd,—1

@ The ith subtree of v stores keys k with k;_; <k< k; (defining
ko = —oo and kg, = 00).

@ the information in a node suffices to determine in which subtree to
continue a search

@ The worst-case number of |/Os needed for searching a B-tree equals
the worst-case height of a B-tree, at most 1 + [log]¥]

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 10 / 50

"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

o Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50

"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

o Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

O(logy")

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50

"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

@ Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

O(logy")

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50

"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

o Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50

Range Reporting(continue)

Two Notes
© Optimal solution is based on hashing data structures that performs in
O(1+ Z/B)
@ Optimal output sensitivity fails when query changes to "report the
first Z keys in the range [a,b]"

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 12 / 50

Inserting and Deleting Keys in a B-tree

Inserting Key x
@ Search for the key x, find node v

that is parent of x bk 20

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50

Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50

Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level |, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50

Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level |, w(v)=2b"k
(overweight), we rebalance it by
" Split” An overweight nod

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50

Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level |, w(v)=2b"k
(overweight), we rebalance it by
"split”

D S

Split node

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

13 / 50

Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v
that is parent of x

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

1k, 20k

bk + 20k bk — 20k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

13 / 50

Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v
that is parent of x

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

1k, 20k

bk + 26k bk — 20k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

13 / 50

Inserting key x(continue)
o bk —2b'"1k({ w(u),w(u’) (b'k +2b'"1k
@ Since b > 4
° %b’k(w(u),w(u’) (%b’k
o The weight of each of these new nodes(u,u’) is Q(b)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 14 / 50

Inserting and Deleting Keys in a B-tree(continue)

Deleting Key x (fuse)
@ Search for the key x to find the internal node v that is parent x
@ Delete the key x from node v

o If at level I, w(v)=21b'k (underweight), we will rebalance it by " fuse”
or "share” operations

starting from the bottom and going up

Node w:one of its nearest sibling of node v

If w(w)< 2b'k we do "fuse” operation

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 15 / 50

Deleting Keys in a B-tree (fuse)

1k, 20

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 16 / 50

Deleting Keys in a B-tree (fuse)

1k, 20

An underweight odg

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

16 / 50

Deleting Keys in a B-tree (fuse)

1k, 20

Loa o

bk k. 20k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 16 / 50

Deleting Keys in a B-tree (fuse)

1k, 20

Fuse two nodes

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

16 / 50

Deleting Keys in a B-tree (share)

o if 2b'k(w(w) (2b'k we do
"share” operation

Lk, 20k

@ We have two new nodes u,u’
result of "share”

o w(u)=Zb'k —2b""1k
w(u)=2b"k + 26"tk

@ The weight of each of
them(u,u’) is Q(b')

An underweight yodg

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 17 / 50

Deleting Keys in a B-tree (share)

o if 2b'k(w(w) (2b'k we do
"share” operation

Lk, 20k

@ We have two new nodes u,u’
result of "share”

o w(u)=Zb'k —2b""1k
w(u)=2b"k + 26"tk

@ The weight of each of
them(u,u’) is Q(b')

k.. 26k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 17 / 50

Deleting Keys in a B-tree (share)

o if 2b'k(w(w) (2b'k we do
"share” operation

Lk, 20k

@ We have two new nodes u,u’
result of "share”

o w(u)=Zb'k —2b""1k
w(u)=2b"k + 26"tk

@ The weight of each of
them(u,u’) is Q(b')

Lk k.. 26k

Share childern of two nodes

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 17 / 50

Deleting Keys in a B-tree (share)

o if 2b'k(w(w) (2b'k we do
"share” operation

@ We have two new nodes u,u’
result of "share”

o w(u)=gb'k —2b'"1k
w(u)=2b'k +2b'"1k

@ The weight of each of
them(u,u’) is Q(b')

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

ok — 20k

Lk, 20k

A e

Tok + 20k

Fall-1389

17 / 50

Deleting Keys in a B-tree (share)

o if 2b'k(w(w) (2b'k we do
"share” operation

Lk, 20k

@ We have two new nodes u,u’
result of "share”

o w(u)=Zb'k —2b""1k
w(u)=2b"k + 26"tk

@ The weight of each of
them(u,u') is Q(b')

[-

o'k — 2k Ik + 201k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 17 / 50

Analysis of inserting and deleting in B-tree

The cost of rebalancing a node: O(1) I/Os
The total cost of B-tree rebalancing:O(log)’) 1/0s

The weight of node v at level i, W = ©(b')

To assume S : an auxiliary data structure used when searching in the
v's subtree

When v is rebalanced we spend f(W) 1/Os to compute S

°
°
@ We have in fact shown something stronger
°
°

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 18 / 50

Analysis(continue)

@ The rebalancing operation have Q(W) insertions and deletions in v's
subtree and also in S

@ The amortized cost of maintaining S :O(f(W)/W) 1/Os per node on
the search path of an update

f(w
or O((W)/ogév) |/Os per update

e As an example,if f(W)=0(W/B) I/Os
@ The amortized cost per update is O(4/og)’) 1/Os

@ that this is negligible

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 19 / 50

B-tree Variants

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 20 / 50

B-tree Variants

1.Parent Pointers and Level Links
@ Maintain a pointer to the parent of each node
Maintain all nodes at each level with a doubly linked list

One application of these pointers is a " finger search”

Q: the number of leaves between v and w

°
°
@ Given a leaf v in the B-tree, search for another leaf w
°
@ The number of 1/Os: O(/ong)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 20 / 50

B-tree Variants

1.Parent Pointers and Level Links
@ Maintain a pointer to the parent of each node
Maintain all nodes at each level with a doubly linked list
One application of these pointers is a " finger search”

°
°
@ Given a leaf v in the B-tree, search for another leaf w
@ Q: the number of leaves between v and w

°

The number of 1/Os: O(/ogbo)

2.String B-trees
@ We have assumed that the B-tree’s keys have fixed length

@ In some applications the keys are strings of unbounded length

@ all the usual B-tree operations,can be efficiently supported in this

setting

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

Fall-1389

20 / 50

B-tree Variants

3.Divide and Merge Operations
@ We have two useful applications
@ Divide a B-tree into two parts
@ Merge two B-trees "glue”

@ These operations can be supported in O(/ogév) [/Os

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

21 / 50

Batched Dynamic Problems

@ B-trees answer queries in an on-line fashion

@ In batched dynamic problems a batch of updates and queries is
provided to the data structure

@ Only at the end of the batch, the data structure delivers the answers

The batched range searching
@ Given a sequence of insertions and deletions of integers

@ Each query of integers is compared with the sequense and reported

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 22 / 50

Buffer trees

The buffer tree technique has been used for I/O optimal algorithms
Each internal node has an buffer with size ©(M)

A buffer tree has degree ©(M/B)

Leaves contain ©(B) keys

Root buffer reside entirely on main memory

Non-root buffers reside entirely on external memory

OQogps g)

o(B)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 23 / 50

How does a buffer tree work?

main memory

root [] M elements

Oflog pp,

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

L] M elements

O(logpy /g)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

W] M elements

Oflog pp,

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

M elements

O(logpy /g)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

[] M elements

O(logpy /g)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

M elements

O(logpy /g)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

[] M elements

Oflog pp,

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

[] M elements

O(logpy /g)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

Il MM elements

Oflog pp,

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

[] M elements

Oflog pp,

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

[] M elements

Oflog pp,

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

How does a buffer tree work?

main memory

[] M elements

Oflog pp,

If there are too few or too many children
rebalancing operations are performed

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 24 / 50

|/O Analysis for Buffer tree

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 25 / 50

|/O Analysis for Buffer tree

The cost of flushing a buffer
e O(M/B) I/Os for reading the buffer
e O(M/B) I/Os for writing the operations to the buffers of the children

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 25 / 50

|/O Analysis for Buffer tree

The cost of flushing a buffer
e O(M/B) I/Os for reading the buffer
e O(M/B) I/Os for writing the operations to the buffers of the children

N
The cost of all of flushes O(4/og) I/Os per operation
B

o A flushing costs O(1/B) I/Os per operation in the buffer

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 25 / 50

|/O Analysis for Buffer tree

The cost of flushing a buffer

e O(M/B) 1/Os for reading the buffer
e O(M/B) I/Os for writing the operations to the buffers of the children

N
The cost of all of flushes O(4/og) I/Os per operation

B

@ A flushing costs O(1/B) I/Os per operation in the buffer

The total cost of rebalancing during N updates is O(N/B) 1/0s
@ The cost of a rebalancing operation on a node is O(M/B) 1/Os

@ Number of nodes that need to rebalancing operations during N
updates is O(N/M)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 25 / 50

Priority Queues

@ The basic operations insertion of a key, finding the smallest key, and
deleting the smallest key

@ Sometimes additional operations are supported, such as deleting an
arbitrary key and decreasing the value of a key

@ we use buffering technique for priority queue

@ The entire buffer of the root node and the O(M/B) leftmost leaves
are always kept in internal memory

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 26 / 50

How does priority queue using buffer tree work?
@ All buffers on the path from the root to the leftmost leaf must be
empty
@ For this,Whenever the root is flushed we also flush all buffers down
the leftmost path

main memory

Ml M elements

Ollospyyp 5)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 27 / 50

How does priority queue using buffer tree work?
@ All buffers on the path from the root to the leftmost leaf must be
empty
@ For this,Whenever the root is flushed we also flush all buffers down
the leftmost path

main memory

] M elements

Ollospyyp 5)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 27 / 50

How does priority queue using buffer tree work?
@ All buffers on the path from the root to the leftmost leaf must be
empty
@ For this,Whenever the root is flushed we also flush all buffers down
the leftmost path

main memory

] M elements

Ollospyyp 5)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 27 / 50

How does priority queue using buffer tree work?
@ All buffers on the path from the root to the leftmost leaf must be
empty
@ For this,Whenever the root is flushed we also flush all buffers down
the leftmost path

main memory

] M elements

o(M/B)
All buffers on leftmost path are
empty

Ollospyyp 5)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 27 / 50

I/O Analysis for Priority Queues
N
o All buffers on the leftmost path are flushed with O(¥logf) 1/Os
B
@ We have O(M) operations with each flush of the root buffer

N
® The amortized cost of these extra flushes is O(&log) 1/Os per
B

operation

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 28 / 50

I/O Analysis for Priority Queues

N

o All buffers on the leftmost path are flushed with O(¥logf) 1/Os
B

@ We have O(M) operations with each flush of the root buffer

N
® The amortized cost of these extra flushes is O(&log) 1/Os per
B

operation

Results
@ Find-minimum queries can be answered on-line without using any
1/Os
@ It can shown that is impossible to perform insertion and delete

N
minimums in o(%/ogﬁ) [/Os
B

@ Open problems

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

28 / 50

Hashing Based Dictionaries

@ Hashing Based Dictionaries

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 29 / 50

Lookup with Good Expected Performance

o We will consider linear probing and chaining with separate lists
@ These schemes need only a single hash function h in internal memory

@ We assume that any hash function value h(x) is uniformly random

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 30 / 50

Lookup with Good Expected Performance

o We will consider linear probing and chaining with separate lists
@ These schemes need only a single hash function h in internal memory

@ We assume that any hash function value h(x) is uniformly random

Load factor «

@ M is the number of different addresses are produced by hash function

and N is the number of keys

— N
o a=

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 30 / 50

Linear Probing Example

* h(k) =k mod 13
* Ingert keys:
* 1841224459323173

0 1 2 3 4 5 6 & & 9 10 11 12

L L ICL B]

0 &k 2 F 4 5 w6 ¥ & 9 40 4% 12

Basic External Memory Data Structures Fall-1389

31/ 50

Linear Probing Example

* h(k) =k mod 13
* Ingert keys:
* 1841224459323173

0 1 2 3 4 5 6 & & 9 10 11 12

Ll lal [[s] [T T T 11]

0 &k 2 F 4 5 w6 ¥ & 9 40 4% 12

Basic External Memory Data Structures Fall-1389

31/ 50

Linear Probing Example

* h(k) =k mod 13
* Ingert keys:
* 1841224459323173

0 1 2 3 4 5 6 7 8 % 10 11 12

Ll fal | [us] [] [|]]

0 & 2 F 4 5 w6 ¥ & 9 40 9% 12

Basic External Memory Data Structures Fall-1389

31/ 50

Linear Probing Example

* h(k) =/ mod 13
* Ingert keys:
* 1841224459323173

g 1 2 3 4 5 6 7 & 9 10 11 12

L | Ta] | [usfes] | [|] |

0 & 2 F 4 5 w ¥ & 9 A0 9% 12

Basic External Memory Data Structures Fall-1389

31/ 50

Linear Probing Example

* h(k) =/kmod 13
* Ingert keys:
* 1841224459323173

g 1 2 3 4 5 6 7 & 9 10 11 12

L[laf [Dslafso] [of | | |
0 1 2 3 4 5 6 7 8 9 10 11 12

Basic External Memory Data Structures Fall-1389

31/ 50

Linear Probing Example

* h(k) =/kmod 13
+ Ingert keys:
* 1841224459323173

g 1 2 3 4 5 6 7 & 9 10 11 12

L[laf [Dslafsofsa]n] | | |
0 1 2 3 4 5 6 7 8 9 10 11 12

Basic External Memory Data Structures Fall-1389

31/ 50

Linear Probing Example

* h(k) =k mod 13
+ Ingert keys:
* 1841224459323173

g 1 2 3 4 5 6 7 & 9 10 11 12

|| [a] [[islaa]so]s2|22]s] | |
0 1 2 3 4 5 @ % 8 9 10 11 12

Basic External Memory Data Structures Fall-1389

31/ 50

Linear Probing Example

* h(k) =k mod 13
+ Ingert keys:
* 1841224459323173

0 1 2 3 4 5 6 7 & % 10 1L 12

| | Ja] | |is|aa|so]s2]22]31]7] |
B 12 &% 4 5% § & 8 do 0 12

Basic External Memory Data Structures Fall-1389

31/ 50

1.Linear Probing

Operations

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 32 /50

1.Linear Probing

Operations

@ Insertion

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 32 /50

1.Linear Probing

Operations
@ Insertion

@ Deletion

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 32 /50

1.Linear Probing

Operations
@ Insertion
@ Deletion

@ Lookup

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 32 /50

1.Linear Probing

Operations
@ Insertion
@ Deletion

@ Lookup

The Number of 1/Os for a Lookup
@ The expected average number of |/Os for a lookup is
14 (1 —a)"22-%B)
@ a <1—¢ and B is not too small = the expected average is very
close to 1

@ The probability of using k (more than one) I/Os for a lookup is
0—Q(B(k—1))

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 32 /50

2.Chaining with Separate Lists

Chaining works faster than Linear Probing

@ Each block in the hash table is the start of a linked list of keys
hashing to that block

@ When the pseudo random function works truly, all lists will consist of
just a single block

@ The probability that more than kB keys hash to a certain block is at
most e~@B(k/a=1)*/3 (Chernoff bounds)

@ The probabilities decrease faster with k than in linear probing

o If B is large and the load factor is not too high, overflows will be very
rare

v

0
1
2
3
4

[[[[—m

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 33 /50

Lookup Using One External Memory Access

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 34 / 50

Hashing Based Dictionaries

Lookup Using One External Memory Access

1-Making Use of Internal Memory

If sufficient internal memory is available, searching in a dictionary can be
done in a single 1/O with two approaches:

@ Overflow area

@ Perfect hashing and extendible hashing

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 34 / 50

Hashing Based Dictionaries

Lookup Using One External Memory Access

1-Making Use of Internal Memory

If sufficient internal memory is available, searching in a dictionary can be
done in a single 1/O with two approaches:

@ Overflow area

@ Perfect hashing and extendible hashing

2-Using a Predecessor Dictionary

If we increase internal computation, both internal and external space usage
can be made better than of extendible hashing

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 34 / 50

Overflow area

First Idea
o Internal memory for 2~(B) \/ keys and associated information is
available

@ Store the keys that can not be accommodated externally in an
internal memory dictionary

o The probability that be more than 2~<(®)2AB) N such keys is so small

o If it happens we rehash, choose a new hash function to replace h

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 35/ 50

Hashing Based Dictionaries

Overflow area (continue)

Second Idea

The overflow area can reside in external memory
For single 1/0 lookups, internal memory data structures must:
© lIdentify blocks that have overflown

@ Facilitate single 1/0O lookup of the elements hashing to these blocks

4
Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 36 / 50

Hashing Based Dictionaries

Overflow area (continue)

Second Idea

The overflow area can reside in external memory
For single 1/0 lookups, internal memory data structures must:
© lIdentify blocks that have overflown

@ Facilitate single 1/0O lookup of the elements hashing to these blocks

First Task

@ It be solved by maintaining a dictionary of overflowing blocks
o This requires O(2-<(*)B NiogN) bits of internal space

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 36 / 50

Hashing Based Dictionaries

Overflow area (continue)

Second Idea

The overflow area can reside in external memory
For single 1/0 lookups, internal memory data structures must:
© lIdentify blocks that have overflown

@ Facilitate single 1/0O lookup of the elements hashing to these blocks

First Task

@ It be solved by maintaining a dictionary of overflowing blocks
o This requires O(2~(®)B NjogN) bits of internal space

Second Task

@ It be solved recursively by a dictionary supporting single 1/0 lookups
@ Store a set that with high probability has size O(2-<(®)B)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 36 / 50

Perfect hashing

Mairson introduced a B-perfect hash function
@ Hash function p : K — {1,...,[N/B]}
@ It maps at most B keys to each block
@ A function uses O(Nlog(B)/B) bits of internal memory
o If the number of blocks is [N/B], this is the best possible

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

37 / 50

Perfect hashing

Mairson introduced a B-perfect hash function
e Hash function p: K — {1,...,[N/B]}
@ It maps at most B keys to each block
@ A function uses O(Nlog(B)/B) bits of internal memory
o If the number of blocks is [N/B], this is the best possible

Disadvantages

© The time and space needed to evaluate this hash functions is
extremely high

@ It seems very difficult to obtain a dynamic version

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 37 / 50

Extendible Hashing

Use an internal structure called a directory

Directory is an array of 29 pointers to external blocks
Random hash function h : K — {0,1}" for r > d
Lookup of a key k is performed by using h(k)q

h(k)q is d least significant bits of h(k) for determine an entry in the
directory

@ The parameter d is the smallest number that with it at most B
dictionary keys map to the same value under h(k)y

o If r > 3logN, such a d exists with high probability, else we rehash it

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 38 / 50

Extendible Hashing(continue)

The Main Results
@ Lookups uses a single |/O and constant internal processing time

o The expected number of directory’s entries is 4% /B

o If we have N/B blocks = we require 1 Nlog(B)/B + ©(N/B) bits of

internal space (it is close to optimal)
@ It can be shown that about 69 percent of the space is utilized

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

39 / 50

Extendible Hashing(continue)

Extendible Hashing adapts to changes of the key set

o The level of a block is the largest d < d for which all its keys map to
the same value under h

o Whenever a block at level d’ has run full,it is split into two blocks at
level d’ + 1 using hy_,

o In case d’ = d we first need to double the size of the directory

o If two blocks at level d" with keys having the same function value
under h,_; contain less than B keys in total, these blocks are merged

@ If no blocks are left at level d, the size of the directory is halved

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 40 / 50

Lookup Using Two Parallel External Memory Accesses

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 41 / 50

Lookup Using Two Parallel External Memory Accesses

Two-Way Chaining Scheme
@ It can be thought of as two chained hashing data structures
@ We have two pseudo random hash functions h; and h;

@ Key x reside in either block hj(x) of hash table one or block hy(x) of
hash table two

@ New keys are inserted in the block with the smallest number of keys,
with ties broken such that keys go to table one

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 41 / 50

Lookup Using Two Parallel External Memory Accesses

Two-Way Chaining Scheme
@ It can be thought of as two chained hashing data structures
@ We have two pseudo random hash functions h; and h;

@ Key x reside in either block hj(x) of hash table one or block hy(x) of
hash table two

@ New keys are inserted in the block with the smallest number of keys,
with ties broken such that keys go to table one

Analysis

@ The probability of an insertion causing an overflow is N/229(1_°‘)B

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 41 / 50

Lookup Using Two Parallel External Memory Accesses

Two-Way Chaining Scheme
@ It can be thought of as two chained hashing data structures
@ We have two pseudo random hash functions h; and h;

@ Key x reside in either block hj(x) of hash table one or block hy(x) of
hash table two

@ New keys are inserted in the block with the smallest number of keys,
with ties broken such that keys go to table one

Analysis

@ The probability of an insertion causing an overflow is N/229(1_°‘)B

@ The effect of deletions does not appear to have been analyzed

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 41 / 50

Resizing Hash Tables

Keep « in a certain interval to have a good external memory utilization

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 42 / 50

Hashing Based Dictionaries

Resizing Hash Tables

Keep « in a certain interval to have a good external memory utilization
The challenge

Rehash to the new table without an expensive reorganization of the old
hash table

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

Fall-1389 42 / 50

Resizing Hash Tables

Keep « in a certain interval to have a good external memory utilization

The challenge

Rehash to the new table without an expensive reorganization of the old
hash table

The Solution
@ Choosing a new convenient hash function

@ This requires a especial random permutation of the keys

N
For this task we require @(%Iog,ﬁ) |/Os
B

N = (M/B)°(B) — O(N)I/Os
©(N) updates between two rehashes

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 42 / 50

Resizing Hash Tables Example

o {6 +—{2]
11—]

17 g—115] |

5 Items
h(k) = k mod 4

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 43 / 50

Resizing Hash Tables Example

1

| (6 {1]
e

—17 1 +—115] |

1

1

5 Items
h(k) = k mod 8

Grow the array

NGkl |O

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 43 / 50

Resizing Hash Tables Example

—{16] —14] |
—

—17 | -—1{15] |

I

I

I

N|jojg|ls|lw]INn|=|O

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 43 / 50

Resizing Hash Tables Example

B

[—115] |

{16]
7

1
1

NN N ERE
I

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 43 / 50

Resizing Hash Tables Example

i

~N|joe Ol Jw N]|=]|O
B

J—17 1 115 |

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 43 / 50

Resizing Hash Tables (continue)

Linear Hashing

4
Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 44 / 50

Resizing Hash Tables (continue)

Linear Hashing

The Basic Idea for Hashing to a Range of Size r

Extract b = [log] bits from a mother hash function

o If b bits encode an integer k less than r, this is used as the hash value
o Otherwise the hash function value k — 26~ is returned

@ Expand the size of the hash table by one block (increasing r by one)
@ All keys that hash to the new block r+1 previously hashed to block
r+1-26-1

Decreasing the size of the hash table is done in a symmetric manner

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 44 / 50

Resizing Hash Tables (continue)

Linear Hashing

The Basic Idea for Hashing to a Range of Size r

Extract b = [log] bits from a mother hash function

o If b bits encode an integer k less than r, this is used as the hash value
o Otherwise the hash function value k — 26=1 is returned

@ Expand the size of the hash table by one block (increasing r by one)
@ All keys that hash to the new block r+1 previously hashed to block
r+1-—2b-1

Decreasing the size of the hash table is done in a symmetric manner

v

The Main Problem
When r is not a power of 2, the keys are not mapped uniformly to the
range

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 44 / 50

Dynamization Techniques

@ Dynamization Techniques

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 45 / 50

The Logarithmic Method

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 46 / 50

The Logarithmic Method

The Problem Must Be Decomposable
@ Split the set S of elements into disjoint subsets S, ..., Sk

o Create a (static) data structure for each of them
@ Queries on the whole set can be answered by querying each of these

data structures

Fall-1389 46 / 50

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

The Logarithmic Method

The Problem Must Be Decomposable
@ Split the set S of elements into disjoint subsets S, ..., Sk
o Create a (static) data structure for each of them
@ Queries on the whole set can be answered by querying each of these

data structures)

Examples of Decomposable Problems

Dictionaries and Priority Queues

Fall-1389 46 / 50

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

The Logarithmic Method (continue)

Obtain data structures with insertion and query operations

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 47 / 50

The Logarithmic Method (continue)

Obtain data structures with insertion and query operations

The Basic ldea
@ Maintain a collection of data structures of different sizes

@ Merge periodically a number data structures into one
@ keep the number of data structures to be queried low
o

In internal memory,the number of data structures is O(logN)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

47 / 50

The Logarithmic Method (continue)

Obtain data structures with insertion and query operations

The Basic ldea
@ Maintain a collection of data structures of different sizes

@ Merge periodically a number data structures into one
@ keep the number of data structures to be queried low

@ In internal memory,the number of data structures is O(logN)

The External Memory Version of the Logarithmic Method
@ The number of data structures is decreased to O(logk)
@ Insertions are done by rebuilding the first static data structure

@ The invariant is that the ith data structure should have size no more
than B’
o If this size is reached, it is merged with the i+1st data structure

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 47 / 50

The Logarithmic Method (continue)

Analysis
o Insert N elements, each element is part of a rebuilding O(BlogQ)
times
o Building a static data structure for N elements uses O(§log&N) 1/Os
@ The total amortized cost of inserting an element is O(IogéHN) 1/Os

o Queries take O(Blog}) times more 1/Os than queries in the
corresponding static data structures

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 48 / 50

Dynamization Techniques

Global Rebuilding

@ Some data structures for sets support deletions, but do not recover
the space occupied by deleted elements

@ For example, weak delete

@ Keep the number of deleted elements at some fraction of the total
number of elements is global rebuilding

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

Fall-1389 49 / 50

Global Rebuilding

@ Some data structures for sets support deletions, but do not recover
the space occupied by deleted elements

@ For example, weak delete

@ Keep the number of deleted elements at some fraction of the total
number of elements is global rebuilding

The Main ldea

@ In a data structure of N elements, whenever aN elements have been
deleted,for some constant « 0, the entire data structure is rebuilt

@ The cost of rebuilding is at most a constant factor higher than the
cost of inserting N elements

@ The amortized cost of global rebuilding can be charged to the
insertions of the deleted elements

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 49 / 50

Liad
i ad) g ad AS Aad) apdu U Lejd Uae | ol
S allgisa AS)y Aadl add ual U dalgd g adl
1 39 O) Cgld adlay AS ol

S e s

Thanks

Have a Good Day

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 50 / 50

	B-trees
	Hashing Based Dictionaries
	Dynamization Techniques

