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@ B-trees
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Introduction

@ We want search trees of large degree because of using all the
information we get when reading a block to guide the search

@ B-trees are a generalization of balanced binary search trees to

balanced trees of degree O(B)

@ N: the size of the key set and B: the number of keys or pointers that

fit in one block

External Search Trees

O(log, B)
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Introduction(continue)

@ In a B-tree all leaves have the same distance to the root

@ Level of a node: its distance to its descendant leaves

@ Weight of node v: the number of leaves subtree of node v,is shown by
w(v)

level : 0
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Definition

T is a weight-balanced B-tree with branching parameter b and leaf
parameter k,(b > 4 and k) 0 )if:

@ All leaves of T have the same depth and weight between k and 2k — 1
@ An internal node on level | has weight less than 2b'k
@ An internal node on level | except for the root has weight greater than
141
=b'k
2

@ The root has more than one child
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@ Limitation on weight results Limitation on degree of each node

level : 0
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@ Limitation on weight results Limitation on degree of each node

1 level : 0
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@ Limitation on weight results Limitation on degree of each node

@ Degree of each node is between f;’ and 4b

[3671k < w(v) < 207K

1 level : 0
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@ Limitation on weight results Limitation on degree of each node
@ Degree of each node is between % and 4b

@ The degree of any non-root node is ©(b)

1 level : 0
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The New B-tree is introduced by our book
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The New B-tree is introduced by our book

The Result

The result branching parameter is: b =
And we assume leaf parameter: k = 2

B
8
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The New B-tree is introduced by our book (continue)

@ An internal node on level i has weight less than 4(%)i

e An i'nternal node on level i except for the root has weight greater than
(§)

@ Any node has less than B/2 children

@ Any non-root node has greater than B/32 children
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Searching a B-tree

@ In a node v stores sorting keys ki, ..., kd,—1

@ The ith subtree of v stores keys k with k;_; <k< k; (defining
ko = —oo and kg, = 00).

@ the information in a node suffices to determine in which subtree to
continue a search

@ The worst-case number of |/Os needed for searching a B-tree equals
the worst-case height of a B-tree, at most 1 + [log]¥]
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"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

o Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50



"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

o Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

O(logy")

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50



"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

@ Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

O(logy")

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50



"report all keys in the range [a,b]"
@ Search for the key a, which will lead to the smallest key x > a

o Traverse the linked list starting with x and report all keys smaller than
b

e of 1/Os of Rang queries(output sensitivity):O(log} + Z/B)

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 11 / 50



Range Reporting(continue)

Two Notes
© Optimal solution is based on hashing data structures that performs in
O(1+ Z/B)
@ Optimal output sensitivity fails when query changes to "report the
first Z keys in the range [a,b]"
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Inserting and Deleting Keys in a B-tree

Inserting Key x
@ Search for the key x, find node v

that is parent of x bk 20

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50




Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50



Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level |, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50



Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level |, w(v)=2b"k
(overweight), we rebalance it by
" Split” An overweight nod

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 13 / 50



Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v

that is parent of x e 20

@ Insert the key x to node v

e If at level |, w(v)=2b"k
(overweight), we rebalance it by
"split”

D S

Split node

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

13 / 50



Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v
that is parent of x

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

1k, 20k

bk + 20k bk — 20k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

13 / 50



Inserting and Deleting Keys in a B-tree

Inserting Key x

@ Search for the key x, find node v
that is parent of x

@ Insert the key x to node v

e If at level i, w(v)=2b"k
(overweight), we rebalance it by
"split”

@ We split a node v to two new
nodes u,u’

@ starting from the bottom and
going up

v

1k, 20k

bk + 26k bk — 20k

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

13 / 50



Inserting key x(continue)
o bk —2b'"1k({ w(u),w(u’) (b'k +2b'"1k
@ Since b > 4
° %b’k( w(u),w(u’) (%b’k
o The weight of each of these new nodes(u,u’) is Q(b)
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Inserting and Deleting Keys in a B-tree(continue)

Deleting Key x (fuse)
@ Search for the key x to find the internal node v that is parent x
@ Delete the key x from node v

o If at level I, w(v)=21b'k (underweight), we will rebalance it by " fuse”
or "share” operations

starting from the bottom and going up

Node w:one of its nearest sibling of node v

If w(w)< 2b'k we do "fuse” operation
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Deleting Keys in a B-tree (fuse)

1k, 20
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Deleting Keys in a B-tree (fuse)

1k, 20

Loa o

bk k. 20k
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Deleting Keys in a B-tree (fuse)

1k, 20

Fuse two nodes
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Deleting Keys in a B-tree (share)

o if 2b'k( w(w) (2b'k we do
"share” operation

Lk, 20k

@ We have two new nodes u,u’
result of "share”

o w(u)=Zb'k —2b""1k
w(u)=2b"k + 26"tk

@ The weight of each of
them(u,u’) is Q(b')

An underweight yodg
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Analysis of inserting and deleting in B-tree

The cost of rebalancing a node: O(1) I/Os
The total cost of B-tree rebalancing:O(log)’) 1/0s

The weight of node v at level i, W = ©(b')

To assume S : an auxiliary data structure used when searching in the
v's subtree

When v is rebalanced we spend f(W) 1/Os to compute S

°
°
@ We have in fact shown something stronger
°
°
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Analysis(continue)

@ The rebalancing operation have Q(W) insertions and deletions in v's
subtree and also in S

@ The amortized cost of maintaining S :O(f(W)/W) 1/Os per node on
the search path of an update

f(w
or O( (W )/ogév) |/Os per update

e As an example,if f(W)=0(W/B) I/Os
@ The amortized cost per update is O( 4/og)’) 1/Os

@ that this is negligible
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B-tree Variants
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B-tree Variants

1.Parent Pointers and Level Links
@ Maintain a pointer to the parent of each node
Maintain all nodes at each level with a doubly linked list

One application of these pointers is a " finger search”

Q: the number of leaves between v and w

°
°
@ Given a leaf v in the B-tree, search for another leaf w
°
@ The number of 1/Os: O(/ong)
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°
°
@ Given a leaf v in the B-tree, search for another leaf w
@ Q: the number of leaves between v and w

°

The number of 1/Os: O(/ogbo)

2.String B-trees
@ We have assumed that the B-tree’s keys have fixed length

@ In some applications the keys are strings of unbounded length

@ all the usual B-tree operations,can be efficiently supported in this

setting
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B-tree Variants

3.Divide and Merge Operations
@ We have two useful applications
@ Divide a B-tree into two parts
@ Merge two B-trees "glue”

@ These operations can be supported in O(/ogév) [/Os

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389

21 / 50



Batched Dynamic Problems

@ B-trees answer queries in an on-line fashion

@ In batched dynamic problems a batch of updates and queries is
provided to the data structure

@ Only at the end of the batch, the data structure delivers the answers

The batched range searching
@ Given a sequence of insertions and deletions of integers

@ Each query of integers is compared with the sequense and reported
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Buffer trees

The buffer tree technique has been used for I/O optimal algorithms
Each internal node has an buffer with size ©(M)

A buffer tree has degree ©(M/B)

Leaves contain ©(B) keys

Root buffer reside entirely on main memory

Non-root buffers reside entirely on external memory

OQogps g )

o(B)
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How does a buffer tree work?

main memory

root [] M elements

Oflog pp,
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How does a buffer tree work?

main memory

[] M elements

Oflog pp,

If there are too few or too many children
rebalancing operations are performed
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|/O Analysis for Buffer tree
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|/O Analysis for Buffer tree

The cost of flushing a buffer
e O(M/B) I/Os for reading the buffer
e O(M/B) I/Os for writing the operations to the buffers of the children

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 25 / 50



|/O Analysis for Buffer tree

The cost of flushing a buffer
e O(M/B) I/Os for reading the buffer
e O(M/B) I/Os for writing the operations to the buffers of the children

N
The cost of all of flushes O(4/og) I/Os per operation
B

o A flushing costs O(1/B) I/Os per operation in the buffer

Zorieh Soltani (Yazd University) Basic External Memory Data Structures Fall-1389 25 / 50



|/O Analysis for Buffer tree

The cost of flushing a buffer

e O(M/B) 1/Os for reading the buffer
e O(M/B) I/Os for writing the operations to the buffers of the children

N
The cost of all of flushes O(4/og) I/Os per operation

B

@ A flushing costs O(1/B) I/Os per operation in the buffer

The total cost of rebalancing during N updates is O(N/B) 1/0s
@ The cost of a rebalancing operation on a node is O(M/B) 1/Os

@ Number of nodes that need to rebalancing operations during N
updates is O(N/M)
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Priority Queues

@ The basic operations insertion of a key, finding the smallest key, and
deleting the smallest key

@ Sometimes additional operations are supported, such as deleting an
arbitrary key and decreasing the value of a key

@ we use buffering technique for priority queue

@ The entire buffer of the root node and the O(M/B) leftmost leaves
are always kept in internal memory
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How does priority queue using buffer tree work?
@ All buffers on the path from the root to the leftmost leaf must be
empty
@ For this,Whenever the root is flushed we also flush all buffers down
the leftmost path

main memory

Ml M elements

Ollospyyp 5)
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How does priority queue using buffer tree work?
@ All buffers on the path from the root to the leftmost leaf must be
empty
@ For this,Whenever the root is flushed we also flush all buffers down
the leftmost path

main memory

] M elements

o(M/B)
All buffers on leftmost path are
empty

Ollospyyp 5)
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I/O Analysis for Priority Queues
N
o All buffers on the leftmost path are flushed with O(¥logf) 1/Os
B
@ We have O(M) operations with each flush of the root buffer

N
® The amortized cost of these extra flushes is O(&log) 1/Os per
B

operation
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I/O Analysis for Priority Queues

N

o All buffers on the leftmost path are flushed with O(¥logf) 1/Os
B

@ We have O(M) operations with each flush of the root buffer

N
® The amortized cost of these extra flushes is O(&log) 1/Os per
B

operation

Results
@ Find-minimum queries can be answered on-line without using any
1/Os
@ It can shown that is impossible to perform insertion and delete

N
minimums in o(%/ogﬁ) [/Os
B

@ Open problems
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Hashing Based Dictionaries

@ Hashing Based Dictionaries
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Lookup with Good Expected Performance

o We will consider linear probing and chaining with separate lists
@ These schemes need only a single hash function h in internal memory

@ We assume that any hash function value h(x) is uniformly random
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Lookup with Good Expected Performance

o We will consider linear probing and chaining with separate lists
@ These schemes need only a single hash function h in internal memory

@ We assume that any hash function value h(x) is uniformly random

Load factor «

@ M is the number of different addresses are produced by hash function

and N is the number of keys

— N
o a=
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Linear Probing Example

* h(k) =k mod 13
* Ingert keys:
* 1841224459323173

0 1 2 3 4 5 6 & & 9 10 11 12

L L ICL B ]

0 &k 2 F 4 5 w6 ¥ & 9 40 4% 12
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Linear Probing Example

* h(k) =k mod 13
+ Ingert keys:
* 1841224459323173

0 1 2 3 4 5 6 7 & % 10 1L 12

| | Ja] | |is|aa|so]s2]22]31]7] |
B 12 &% 4 5% § & 8 do 0 12
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1.Linear Probing

Operations
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1.Linear Probing

Operations
@ Insertion
@ Deletion

@ Lookup

The Number of 1/Os for a Lookup
@ The expected average number of |/Os for a lookup is
14 (1 —a)"22-%B)
@ a <1—¢ and B is not too small = the expected average is very
close to 1

@ The probability of using k (more than one) I/Os for a lookup is
0—Q(B(k—1))
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2.Chaining with Separate Lists

Chaining works faster than Linear Probing

@ Each block in the hash table is the start of a linked list of keys
hashing to that block

@ When the pseudo random function works truly, all lists will consist of
just a single block

@ The probability that more than kB keys hash to a certain block is at
most e~@B(k/a=1)*/3 (Chernoff bounds)

@ The probabilities decrease faster with k than in linear probing

o If B is large and the load factor is not too high, overflows will be very
rare

v

0
1
2
3
4

[ [ [ [—m
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Lookup Using One External Memory Access
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Hashing Based Dictionaries

Lookup Using One External Memory Access

1-Making Use of Internal Memory

If sufficient internal memory is available, searching in a dictionary can be
done in a single 1/O with two approaches:

@ Overflow area

@ Perfect hashing and extendible hashing
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Hashing Based Dictionaries

Lookup Using One External Memory Access

1-Making Use of Internal Memory

If sufficient internal memory is available, searching in a dictionary can be
done in a single 1/O with two approaches:

@ Overflow area

@ Perfect hashing and extendible hashing

2-Using a Predecessor Dictionary

If we increase internal computation, both internal and external space usage
can be made better than of extendible hashing

v
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Overflow area

First Idea
o Internal memory for 2~(B) \/ keys and associated information is
available

@ Store the keys that can not be accommodated externally in an
internal memory dictionary

o The probability that be more than 2~<(®)2AB) N such keys is so small

o If it happens we rehash, choose a new hash function to replace h
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Hashing Based Dictionaries

Overflow area (continue)

Second Idea

The overflow area can reside in external memory
For single 1/0 lookups, internal memory data structures must:
© lIdentify blocks that have overflown

@ Facilitate single 1/0O lookup of the elements hashing to these blocks

4
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Hashing Based Dictionaries

Overflow area (continue)

Second Idea

The overflow area can reside in external memory
For single 1/0 lookups, internal memory data structures must:
© lIdentify blocks that have overflown

@ Facilitate single 1/0O lookup of the elements hashing to these blocks

First Task

@ It be solved by maintaining a dictionary of overflowing blocks
o This requires O(2-<(*)B NiogN) bits of internal space
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Hashing Based Dictionaries

Overflow area (continue)

Second Idea

The overflow area can reside in external memory
For single 1/0 lookups, internal memory data structures must:
© lIdentify blocks that have overflown

@ Facilitate single 1/0O lookup of the elements hashing to these blocks

First Task

@ It be solved by maintaining a dictionary of overflowing blocks
o This requires O(2~(®)B NjogN) bits of internal space

Second Task

@ It be solved recursively by a dictionary supporting single 1/0 lookups
@ Store a set that with high probability has size O(2-<(®)B )
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Perfect hashing

Mairson introduced a B-perfect hash function
@ Hash function p : K — {1,...,[N/B]}
@ It maps at most B keys to each block
@ A function uses O(Nlog(B)/B) bits of internal memory
o If the number of blocks is [N/B], this is the best possible
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Perfect hashing

Mairson introduced a B-perfect hash function
e Hash function p: K — {1,...,[N/B]}
@ It maps at most B keys to each block
@ A function uses O(Nlog(B)/B) bits of internal memory
o If the number of blocks is [N/B], this is the best possible

Disadvantages

© The time and space needed to evaluate this hash functions is
extremely high

@ It seems very difficult to obtain a dynamic version
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Extendible Hashing

Use an internal structure called a directory

Directory is an array of 29 pointers to external blocks
Random hash function h : K — {0,1}" for r > d
Lookup of a key k is performed by using h(k)q

h(k)q is d least significant bits of h(k) for determine an entry in the
directory

@ The parameter d is the smallest number that with it at most B
dictionary keys map to the same value under h(k)y

o If r > 3logN, such a d exists with high probability, else we rehash it
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Extendible Hashing(continue)

The Main Results
@ Lookups uses a single |/O and constant internal processing time

o The expected number of directory’s entries is 4% /B

o If we have N/B blocks = we require 1 Nlog(B)/B + ©(N/B) bits of

internal space (it is close to optimal)
@ It can be shown that about 69 percent of the space is utilized
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Extendible Hashing(continue)

Extendible Hashing adapts to changes of the key set

o The level of a block is the largest d < d for which all its keys map to
the same value under h

o Whenever a block at level d’ has run full,it is split into two blocks at
level d’ + 1 using hy_,

o In case d’ = d we first need to double the size of the directory

o If two blocks at level d" with keys having the same function value
under h,_; contain less than B keys in total, these blocks are merged

@ If no blocks are left at level d, the size of the directory is halved
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Lookup Using Two Parallel External Memory Accesses
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Lookup Using Two Parallel External Memory Accesses

Two-Way Chaining Scheme
@ It can be thought of as two chained hashing data structures
@ We have two pseudo random hash functions h; and h;

@ Key x reside in either block hj(x) of hash table one or block hy(x) of
hash table two

@ New keys are inserted in the block with the smallest number of keys,
with ties broken such that keys go to table one
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@ We have two pseudo random hash functions h; and h;

@ Key x reside in either block hj(x) of hash table one or block hy(x) of
hash table two

@ New keys are inserted in the block with the smallest number of keys,
with ties broken such that keys go to table one

Analysis

@ The probability of an insertion causing an overflow is N/229(1_°‘)B
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Lookup Using Two Parallel External Memory Accesses

Two-Way Chaining Scheme
@ It can be thought of as two chained hashing data structures
@ We have two pseudo random hash functions h; and h;

@ Key x reside in either block hj(x) of hash table one or block hy(x) of
hash table two

@ New keys are inserted in the block with the smallest number of keys,
with ties broken such that keys go to table one

Analysis

@ The probability of an insertion causing an overflow is N/229(1_°‘)B

@ The effect of deletions does not appear to have been analyzed
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Resizing Hash Tables

Keep « in a certain interval to have a good external memory utilization
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Hashing Based Dictionaries

Resizing Hash Tables

Keep « in a certain interval to have a good external memory utilization
The challenge

Rehash to the new table without an expensive reorganization of the old
hash table
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Resizing Hash Tables

Keep « in a certain interval to have a good external memory utilization

The challenge

Rehash to the new table without an expensive reorganization of the old
hash table

The Solution
@ Choosing a new convenient hash function

@ This requires a especial random permutation of the keys

N
For this task we require @(%Iog,ﬁ) |/Os
B

N = (M/B)°(B) — O(N)I/Os
©(N) updates between two rehashes
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Resizing Hash Tables Example

o {6 +—{2 ]
11— ]

17 g—115] |

5 Items
h(k) = k mod 4
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Resizing Hash Tables Example

1

| (6 {1 ]
e

—17 1 +—115] |

1

1

5 Items
h(k) = k mod 8

Grow the array

NGkl |O
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Resizing Hash Tables Example
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Resizing Hash Tables Example

B
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Resizing Hash Tables Example

i
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Resizing Hash Tables (continue)

Linear Hashing

4
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Resizing Hash Tables (continue)

Linear Hashing

The Basic Idea for Hashing to a Range of Size r

Extract b = [log] bits from a mother hash function

o If b bits encode an integer k less than r, this is used as the hash value
o Otherwise the hash function value k — 26~ is returned

@ Expand the size of the hash table by one block (increasing r by one)
@ All keys that hash to the new block r+1 previously hashed to block
r+1-26-1

Decreasing the size of the hash table is done in a symmetric manner

v
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Resizing Hash Tables (continue)

Linear Hashing

The Basic Idea for Hashing to a Range of Size r

Extract b = [log] bits from a mother hash function

o If b bits encode an integer k less than r, this is used as the hash value
o Otherwise the hash function value k — 26=1 is returned

@ Expand the size of the hash table by one block (increasing r by one)
@ All keys that hash to the new block r+1 previously hashed to block
r+1-—2b-1

Decreasing the size of the hash table is done in a symmetric manner

v

The Main Problem
When r is not a power of 2, the keys are not mapped uniformly to the
range

v
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Dynamization Techniques

@ Dynamization Techniques
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The Logarithmic Method
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The Logarithmic Method

The Problem Must Be Decomposable
@ Split the set S of elements into disjoint subsets S, ..., Sk

o Create a (static) data structure for each of them
@ Queries on the whole set can be answered by querying each of these

data structures

Fall-1389 46 / 50
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The Logarithmic Method

The Problem Must Be Decomposable
@ Split the set S of elements into disjoint subsets S, ..., Sk
o Create a (static) data structure for each of them
@ Queries on the whole set can be answered by querying each of these

data structures )

Examples of Decomposable Problems

Dictionaries and Priority Queues

Fall-1389 46 / 50
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The Logarithmic Method (continue)

Obtain data structures with insertion and query operations
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The Logarithmic Method (continue)

Obtain data structures with insertion and query operations

The Basic ldea
@ Maintain a collection of data structures of different sizes

@ Merge periodically a number data structures into one
@ keep the number of data structures to be queried low
o

In internal memory,the number of data structures is O(logN)
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The Logarithmic Method (continue)

Obtain data structures with insertion and query operations

The Basic ldea
@ Maintain a collection of data structures of different sizes

@ Merge periodically a number data structures into one
@ keep the number of data structures to be queried low

@ In internal memory,the number of data structures is O(logN)

The External Memory Version of the Logarithmic Method
@ The number of data structures is decreased to O(logk)
@ Insertions are done by rebuilding the first static data structure

@ The invariant is that the ith data structure should have size no more
than B’
o If this size is reached, it is merged with the i+1st data structure

v
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The Logarithmic Method (continue)

Analysis
o Insert N elements, each element is part of a rebuilding O(BlogQ)
times
o Building a static data structure for N elements uses O(§log&N) 1/Os
@ The total amortized cost of inserting an element is O(IogéHN) 1/Os

o Queries take O(Blog}) times more 1/Os than queries in the
corresponding static data structures
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Dynamization Techniques

Global Rebuilding

@ Some data structures for sets support deletions, but do not recover
the space occupied by deleted elements

@ For example, weak delete

@ Keep the number of deleted elements at some fraction of the total
number of elements is global rebuilding

Zorieh Soltani (Yazd University) Basic External Memory Data Structures

Fall-1389 49 / 50



Global Rebuilding

@ Some data structures for sets support deletions, but do not recover
the space occupied by deleted elements

@ For example, weak delete

@ Keep the number of deleted elements at some fraction of the total
number of elements is global rebuilding

The Main ldea

@ In a data structure of N elements, whenever aN elements have been
deleted,for some constant « 0, the entire data structure is rebuilt

@ The cost of rebuilding is at most a constant factor higher than the
cost of inserting N elements

@ The amortized cost of global rebuilding can be charged to the
insertions of the deleted elements
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Thanks

Have a Good Day
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