Massive Data Algorithmics

Lecture 12: Cache-Oblivious Model

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Typical Computer

. Processor speed 24-3.2GHz
@11 L3 cache size 0.5-2MB
o * Memory 1/4-4GB
s\ Hard Disk 36 GB-146 GB
7.200-15.000RPM
wwwdell.di CD/DVD 8 — 48x
L2 cache size 256-512KB
L2 cache line size 128 Bytes
L1 cache line size 64 Bytes
www.intel.com L1 cache size 16 KB

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Hierarchical Memory Basics

By

L Increasing
- access time
and space

@ Data moved between adjacent memory level in blocks

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

A Trivial Program

for (i=0; i+d<n; i+=d) A[i]l=i+d;
A[i]=0;

for (i=0, j=0; j<8%1024%1024; j++)

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

A Trivial Program: d =1

200

160

120

100

Seconds

60

20

0 + + e s S S e

0 5 10 15 20 25

RAM :n~2® =128 B

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

A Trivial Program: d =1

3
ot
25
+H
¥
2 |-
E
w |
= y
g 15
[0}
7] #
Tr 4
|
05 r e} ST
0 . . L L L L L
2 4 6 8 10 12 14 16 18 20
logn
L1:n=22=16KEB L2:n=28=256KRB

Lecture 12: Cache-Oblivious Model

Massive Data Algorithmics

A Trivial Program: n =

224

Seconds

0.8

0.6

0.4

0.2

logd

25

Massive Data Algorithmics

Lecture 12: Cache-Oblivious Model

A Trivial Program: Hardware Spec

@ Experiments were performed on a DELL 8000, Pentium IlI, 850 MHz,
128MB RAM, running Linux 2.4.2, and using gcc version 2.96 with
optimization -O3

@ L1 instruction and data caches

- 4-way set associative, 32-byte line size
- 16 KB instruction cache and 16KB write-back data cache

o L2 level cache

- 8-way set associative, 32-byte line size
- 256KB

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Algorithmic Problems

@ Memory hierarchy has become a fact of life
@ Accessing non-local storage may take a very long time

@ Good locality is important for achieving high performance

Latency Relative

to CPU

Register 0.5ns 1

L1 cache 0.5ns 1-2

L2 cache 3ns 2-7

DRAM 150 ns 80-200

TLB 500+ ns | 200-2000
Disk 10 ms 107 Increasing

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Algorithmic Problems

@ Modern hardware is not uniform many different parameters

- Number of memory levels

- Cache sizes

- Cache line/disk block sizes
- Cache associativity

- Cache replacement strategy
- CPU/BUS/memory speed

@ Programs should ideally run for many different parameters

- by knowing many of the parameters at runtime
- by knowing few essential parameters
- ignoring the memory hierarchies

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Hierarchical Memory Model—

By

L Increasing
- access time
and space

@ Limited success since model to complicated

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

1/0
il
@ Measure number of block M
transfers between two memory . B -
CPU i c s T
levels / h o
,
o Very successful (simplicity) ¢ y
M

Limitations
@ Parameters B and M must be known

@ Does not handle multiple memory levels

@ Does not handle dynamic M

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Ideal Cache Model—

1 1/0
@ Program with only one memory - =
: — ||m
@ Analyze in the I/O model for : < B e
. . \ Py | (— T
@ Optimal off-line cache o/ h 0
. r
replacement strategy arbitrary B € y
and M
M
Advantages

@ Optimal on arbitrary level = optimal on all levels
o Portability, B and M not hard-wired into algorithm

@ Dynamic changing parameters

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Justification of the Ideal Cache Model

@ Optimal replacement: LRU + 2xcache size = at most 2x cache
misses

o Fully associativity cache: Simulation using hashing

@ Tall-cache assumption: height is bigger than width = M/B > B

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

@ Write data in a contiguous segment of memory

sum =0

fori = 1to NV do sum = sum + Afi

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

e Conceptually partition the array into N/5 quintuplets of ve adjacent
elements each.

e Compute the median of each quintuplet using O(1) comparisons.
@ Recursively compute the median of these medians

@ Partition the elements of the array into two groups, according to
whether they are at most or strictly greater than this median.

@ Count the number of elements in each group, and recurse into the
group that contains the element of the desired rank.

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Each step can be done with at most 3 parallel scans.

T(N) = T(N/5)+T(7N/10) 4+ O(N/B)

T(0(1))=0(1) = T(N) = Q(N) where (1/5)°+(7/10) =1

(¢ =0.839)

T(N)=Q(N°) is larger than N/B when N is larger than B and smaller
than BN¢

But T7(O(B)) = O(1) = (N/B) leaves in the recursion tree.
O((N/B)¢) = o(N/B) memory transfer

Cost per level decrease geometrically

Total cost: O(N/B)

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Matrix Multiplication

@ Problem

n
Z=XY zj=Y xuvy
k=1

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Matrix Multiplication

Algorithm 1: Nested Loops

@ Row major o fori=1toN

@ Reading a column of ¥, N 1/Os o forj=1toN

o Total O(N?) 1/0s ° ;=0

e if Y is columns major = e fork=1toN
O(N*/B) 1/0Os ° Zjj = Zij + Xik.Ykj

Algorithm 2: cache aware

@ Partition into s X s blocks s
e s=0(VM) J0 12 3]4 5|6 7
. 8 010 11|12 13|14 15
@ Apply algorithm 1 to N/s x N/s s e F
matrices where elements are 24 25|26 27|28 20/30 31
s X § matrices 22 3334 35|36 37|38 30
o Row major and M = O(B?) 40 4142 43|44 45|46 47
48 40|50 51|52 53|54 55

3.2/p) — 3 i
® O((N/s)’.s*/B) = O(N°/(BVM) 56 57|58 50|60 61|62 63
[/Os

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Matrix Multiplication

Xll X12 lel }712 _ Xllyvll 7X12},21 X11Yv12 T X12}722
Xo1 Xoo Yo1 Yoo Xo1Y11 + XooVor Xo1Vie + XaoY¥oo
— 8 recursive 5 x 5 multlpl|catlons + 4 Nyl matrix sums

— #1/Os if row major and M = Q(B?)

O if N < e/
T(l\r) S (‘B)N ;\72 I - E
8. T (7) +0 (?) otherwise

T(N) < c(B\\/S_)

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Static Search Tree

Sorted array
T(N)=T(N/2)+1
T(B)=0(1)

T(N)=1logN —logB >>logg N

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Static Search Tree

Lh/2]
A - .
h /f’/l/i\-/ N /’ ‘-/ \\\
A
Th/2] /:-’
TN A
By Bj Y/ AV \
/A A
\
/ff 3\ AN
[a]51] EN VAVAY f’\t\\\

Searches use O(logg V) I/Os

Massive Data Algorithmics

Static Search Tree

Lh/2]

By

Th/2]

By

[al=]

i W o v N
A W 7
/ oy . e A\
[5] Y AVAYY A\\/;A JAGAN

Searches use O(logg N) I/Os
Range reportings use
O (logy N + £) 1/0s

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Ordered File

@ Maintaining a sequence of elements in order in memory, with
constant size gaps, subject to N insertions and deletions of elements

in the middle of the order
@ Two extremes of trivial (inefficient) solutions

- Avoid gaps: O(N/B) memory transfers
- Allocate 2V memory, and the new element is stored in midway between

the two given elements: O(1) memory transfers

Lecture 12: Cache-Oblivious Model

Massive Data Algorithmics

Ordered File

e Fix N: whenever N grows or shrinks by a constant factor (2 for
instance), rebuild the entire the data structure

e Conceptually divide the array of size N into subranges of size O(logN)

o Conceptually construct a complete binary tree over subranges: height
h=1logN —loglogN

@ Density of a node: the number of elements below that node divided
by the total capacity of that node

@ Density constraint to each node: for nodes at depth d density must
be between 1 —1d/h(€ [1/4,1/2]) and 3 + 1d/h(€ [3/4,1])

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Ordered File: Updates

@ Insertion:

o If there is space in the relevant leaf subrange, we can accommodate
the new element by possibly moving O(logN) moves

o Otherwise, we walk up the tree by scanning elements until we find an
ancestor within threshold.

o We rebalance this ancestor by redistributing all of its element uniformly
throughout the constituent leafs = every descendant will be within
threshold as density constraint increase walking down the tree.

@ Deletion: In a similar way

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Ordered File: Analysis

@ The difference in density threshold of two adjacent levels is
O(3h) = O(1/1ogN)

o If the node has capacity K, ®(K/logN) elements should be inserted
or deleted in order to fall outside the threshold again.

@ Amortized cost of inserting and deleting below a particular node is
O(logN)

e Each element falls below 7 = ®(logN) nodes = total amortized cost:
0O(log’ N)

= O(log> N) time and O((log?N)/B) memory transfers

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

@ A combination of two structures

o An ordered file
o A static search tree with size N

@ We also maintain a fix one-to-one correspondence bidirectional
pointers between cell in ordered files and leafs in the tree

@ Each node of the tree store the maximum (non-blank) key of its two
children

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

B-trees: search

@ Based on the maximum key stored in the left child we can decide go
to left or right

@ Since the tree is stored in Van Emde Boas layout, search needs
O(logg N) memory transfers

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

B-trees: Update

Search in the tree for the location of given element

@ Insert in the ordered file

@ Let K be the number of movements in ordered file (K amortized is
O(log”>N))

@ Leaves of tree corresponding to the affected K cells in ordered file

must be updated using bidirectional pointers: O(K/B) memory
transfers

@ The key changes are propagated up the tree (using post-order
traversal) to all ancestors to updates maximum keys stored in internal
nodes: O(K/B+loggN) memory transfers

= Updates: O(loggzN + (log>N)/B) memory transfers

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

ouwput [0 [2| [afa|a]a]s]| s]s]

Merging

[2]s[als[s|[ofafa]s]s]

A A e

E 6 |
) Merging

j Merging

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Degree /10
2 O (% log, &)
| O (% log, %)
d<H -1
? (%) “ (% logur/p %) = O(Sorty,g(N))

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Sorted output stream

?

M

M

k sorted input streams

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Sorted output stream 4

?

«— k'/2-mergers

Recursive def.
; 3/2

B buffers of size k

M

M

k sorted input streams

o 1

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Sorted output stream 4

?

«— k'/2-mergers

Recursive def.
; 3/2

B g o buffers of size k

M

M

k sorted input streams

o 1

Mo ‘ M \/F‘

| Mo ‘ By | My ‘ Ba B %

Recursive Layout

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

T
nhan
Model

]
=]
@
s

i

=

=
<
-]

e
]
[

1S}

&

-
o
£
=

2
o]
Q

—

ive Data Algorithmics

Mass

tt

tt

Procedure Fill(v)
while out-buffer not full
if left in-buffer empty
Fill(left child)
if right in-buffer empty
Fill(right child)
perform one merge step

t

Lemma

If M > B? and output buffer has size
k3 then O(E logy, (K3) + k) 1/O0s are
done during an invocation of Fill(root)

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

Funnel Sort

o Divide input in N'/3 segments of size N?
@ Recursively Funnel-Sort each segment

o Merge sorted segments by an N'/3-merger

/\ N1/3

s 2w

AAA A NY/2T

o T(N)=N'3T(N*?)+O(N/Blogy sN/B+N'?) and T(B*) = O(B)
= T(N) = O(sort(N))

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

References

@ Cache oblivious algorithms and data structures
Lecture notes by Erik D. Demaine.

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model

