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Typical Computer
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Hierarchical Memory Basics

Data moved between adjacent memory level in blocks
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A Trivial Program

Massive Data Algorithmics Lecture 12: Cache-Oblivious Model



A Trivial Program: d = 1
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A Trivial Program: d = 1
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A Trivial Program: n = 224
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A Trivial Program: Hardware Spec

Experiments were performed on a DELL 8000, Pentium III, 850 MHz,
128MB RAM, running Linux 2.4.2, and using gcc version 2.96 with
optimization -O3

L1 instruction and data caches

- 4-way set associative, 32-byte line size
- 16 KB instruction cache and 16KB write-back data cache

L2 level cache

- 8-way set associative, 32-byte line size
- 256KB
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Algorithmic Problems

Memory hierarchy has become a fact of life

Accessing non-local storage may take a very long time

Good locality is important for achieving high performance
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Algorithmic Problems

Modern hardware is not uniform many different parameters

- Number of memory levels
- Cache sizes
- Cache line/disk block sizes
- Cache associativity
- Cache replacement strategy
- CPU/BUS/memory speed

Programs should ideally run for many different parameters

- by knowing many of the parameters at runtime
- by knowing few essential parameters
- ignoring the memory hierarchies
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Hierarchical Memory Model—many parameters

Limited success since model to complicated
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I/O Model—two parameters

Measure number of block
transfers between two memory
levels

Very successful (simplicity)

Limitations

Parameters B and M must be known

Does not handle multiple memory levels

Does not handle dynamic M
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Ideal Cache Model—no parameters!?

Program with only one memory

Analyze in the I/O model for

Optimal off-line cache
replacement strategy arbitrary B
and M

Advantages

Optimal on arbitrary level ⇒ optimal on all levels

Portability, B and M not hard-wired into algorithm

Dynamic changing parameters
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Justification of the Ideal Cache Model

Optimal replacement: LRU + 2×cache size ⇒ at most 2× cache
misses

Fully associativity cache: Simulation using hashing

Tall-cache assumption: height is bigger than width ⇒ M/B≥ B
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Scan

Write data in a contiguous segment of memory
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Median

Conceptually partition the array into N/5 quintuplets of ve adjacent
elements each.

Compute the median of each quintuplet using O(1) comparisons.

Recursively compute the median of these medians

Partition the elements of the array into two groups, according to
whether they are at most or strictly greater than this median.

Count the number of elements in each group, and recurse into the
group that contains the element of the desired rank.
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Median

Each step can be done with at most 3 parallel scans.

T(N) = T(N/5)+T(7N/10)+O(N/B)

T(O(1)) = O(1)⇒ T(N) = Ω(Nc) where (1/5)c +(7/10)c = 1
(c = 0.839)

T(N) = Ω(Nc) is larger than N/B when N is larger than B and smaller
than BNc

But T(O(B)) = O(1) ⇒ (N/B)c leaves in the recursion tree.

O((N/B)c) = o(N/B) memory transfer

Cost per level decrease geometrically

Total cost: O(N/B)
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Matrix Multiplication

Problem

Z = X.Y zij =
n

∑
k=1

xikykj

Lay out
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Matrix Multiplication

Algorithm 1: Nested Loops

Row major

Reading a column of Y, N I/Os

Total O(N3) I/Os

if Y is columns major ⇒
O(N3/B) I/Os

for i = 1 to N

for j = 1 to N

zij = 0

for k = 1 to N

zij = zij + xik.ykj
Algorithm 2: cache aware

Partition into s× s blocks

s = O(
√

M)

Apply algorithm 1 to N/s×N/s
matrices where elements are
s× s matrices

Row major and M = O(B2)

O((N/s)3.s2/B) = O(N3/(B
√

M)
I/Os
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Matrix Multiplication
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Static Search Tree

Sorted array

T(N) = T(N/2)+1

T(B) = O(1)

T(N) = logN− logB >> logB N
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Static Search Tree
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Static Search Tree
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Ordered File

Maintaining a sequence of elements in order in memory, with
constant size gaps, subject to N insertions and deletions of elements
in the middle of the order

Two extremes of trivial (inefficient) solutions

- Avoid gaps: O(N/B) memory transfers
- Allocate 2N memory, and the new element is stored in midway between

the two given elements: O(1) memory transfers
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Ordered File

Fix N: whenever N grows or shrinks by a constant factor (2 for
instance), rebuild the entire the data structure

Conceptually divide the array of size N into subranges of size O(logN)

Conceptually construct a complete binary tree over subranges: height
h = logN− log logN

Density of a node: the number of elements below that node divided
by the total capacity of that node

Density constraint to each node: for nodes at depth d density must
be between 1

2 −
1
4 d/h(∈ [1/4,1/2]) and 3

4 +
1
4 d/h(∈ [3/4,1])
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Ordered File: Updates

Insertion:

If there is space in the relevant leaf subrange, we can accommodate
the new element by possibly moving O(logN) moves
Otherwise, we walk up the tree by scanning elements until we find an
ancestor within threshold.
We rebalance this ancestor by redistributing all of its element uniformly
throughout the constituent leafs ⇒ every descendant will be within
threshold as density constraint increase walking down the tree.

Deletion: In a similar way
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Ordered File: Analysis

The difference in density threshold of two adjacent levels is
O(1

4 h) = O(1/ logN)

If the node has capacity K, Θ(K/ logN) elements should be inserted
or deleted in order to fall outside the threshold again.

Amortized cost of inserting and deleting below a particular node is
Θ(logN)

Each element falls below h = Θ(logN) nodes ⇒ total amortized cost:
Θ(log2 N)

⇒ O(log2 N) time and O((log2 N)/B) memory transfers
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B-trees

A combination of two structures

An ordered file
A static search tree with size N

We also maintain a fix one-to-one correspondence bidirectional
pointers between cell in ordered files and leafs in the tree

Each node of the tree store the maximum (non-blank) key of its two
children
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B-trees: search

Based on the maximum key stored in the left child we can decide go
to left or right

Since the tree is stored in Van Emde Boas layout, search needs
O(logB N) memory transfers
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B-trees: Update

Search in the tree for the location of given element

Insert in the ordered file

Let K be the number of movements in ordered file (K amortized is
O(log2 N))

Leaves of tree corresponding to the affected K cells in ordered file
must be updated using bidirectional pointers: O(K/B) memory
transfers

The key changes are propagated up the tree (using post-order
traversal) to all ancestors to updates maximum keys stored in internal
nodes: O(K/B+ logB N) memory transfers

⇒ Updates: O(logB N +(log2 N)/B) memory transfers
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Merge Sort
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Merge Sort
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K-Merger
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K-Merger
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K-Merger
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K-Merger
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K-Merger
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Funnel Sort

Divide input in N1/3 segments of size N23

Recursively Funnel-Sort each segment

Merge sorted segments by an N1/3-merger

T(N) = N1/3T(N2/3)+O(N/B logM/B N/B+N1/3) and T(B2) = O(B)
⇒ T(N) = O(sort(N))
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