
Massive Data Algorithmics

Lecture 9: Algorithms for trees

Massive Data Algorithmics Lecture 9: Algorithms for trees

Graphs

Massive graphs

- Web modeling: web crawling
- Geographic information systems: Modeling terrains by graphs

Representing graphs

- Adjacency list
- Unordered collection of edges

Massive Data Algorithmics Lecture 9: Algorithms for trees

Graphs

Massive graphs

- Web modeling: web crawling
- Geographic information systems: Modeling terrains by graphs

Representing graphs

- Adjacency list
- Unordered collection of edges

Massive Data Algorithmics Lecture 9: Algorithms for trees

Graphs

Key difficulties in designing I/O-efficient graph algorithms

- Nodes visited in unpredictable order.
unstructured access to adjacency
lists seems to need at least one I/O
per node.

- Remembering settled nodes requires
extra data structures-algorithmic
changes.

Massive Data Algorithmics Lecture 9: Algorithms for trees

Graphs

Many results, many open questions.

Undirected case often easier than directed cases.

Dense graphs often easier than sparse graphs

Special graph classes often easier

General Methods: Time-forward processing, PRAM simulation, Graph
reduction, ...

Efficient solutions: MST, CC, Listranking, ...

Still difficult: BFS, DFS, Shortest paths, ...
Massive Data Algorithmics Lecture 9: Algorithms for trees

Fundamental algorithms for trees

Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Can be simply done with O(|V|) I/Os

Can be done in O(sort(|V|))?
Massive Data Algorithmics Lecture 9: Algorithms for trees

Fundamental algorithms for trees

r

Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Can be simply done with O(|V|) I/Os

Can be done in O(sort(|V|))?
Massive Data Algorithmics Lecture 9: Algorithms for trees

Fundamental algorithms for trees

r 1

2

3 4

5

67

8

9
10

11

12

Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Can be simply done with O(|V|) I/Os

Can be done in O(sort(|V|))?
Massive Data Algorithmics Lecture 9: Algorithms for trees

Fundamental algorithms for trees

r

1 2

3

4 5

6

7
8

9

10

11

12

Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Can be simply done with O(|V|) I/Os

Can be done in O(sort(|V|))?
Massive Data Algorithmics Lecture 9: Algorithms for trees

Fundamental algorithms for trees

r 0

1

2
2

1

23

1

2
2

2

2

Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Can be simply done with O(|V|) I/Os

Can be done in O(sort(|V|))?
Massive Data Algorithmics Lecture 9: Algorithms for trees

Fundamental algorithms for trees

r 0

1

2
2

1

23

1

2
2

2

2

Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Can be simply done with O(|V|) I/Os

Can be done in O(sort(|V|))?
Massive Data Algorithmics Lecture 9: Algorithms for trees

Fundamental algorithms for trees

r 0

1

2
2

1

23

1

2
2

2

2

Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Can be simply done with O(|V|) I/Os

Can be done in O(sort(|V|))?
Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Given a link list L, compute for every element of L its distance from
the head of L.

More General: each element v associated with w(v). Compute ρ(v)
where ρ(v) = ρ(pred(v))⊕w(v).

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Naive algorithms

O(|V|) I/Os with LRU paging strategy

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Maintained information for each node

Node id
Successor id
w(v) (known) and ρ(v) (to be computed)
extra data depending on applications

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Overall strategy

If L fits into memory, load L to the memory.
Construct L′ with size 2/3|L| with removing a large independent set I.
Updates the weight of elements in LI so that their weight ranks in L
and L′ are the same.
Recurse on L′

Compute the weight rank of elements in I by adding their weights to
the weight ranks of their predecessors

I(N) = O(sort(N))

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

1 2 3 4 5 6 7 8 9 10

Line 4: O(sort(N))

1 2 3 4 5 6 7 8 9 10

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

1 2 3 4 5 6 7 8 9 10

Line 4: O(sort(N))

1 2 3 4 5 6 7 8 9 10

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Line 5-8: O(scan(N))

1 2 3 4 5 6 7 8 9 10

2 4 6 7 9 10

1 3 5 8

L′

I

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Line 5-8: O(scan(N))

1 2 3 4 5 6 7 8 9 10

2 4 6 7 9 10

1 3 5 8

L′

I

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Line 9-13: O(sort(N))

1 2 3 4 5 6 7 8 9 10

2 4 6 7 9 10

8 1 3 5

L′

I

2 4 7 9

10 3 ∞ 8 6 5

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Line 14-18: O(sort(N))

1 2 3 4 5 6 7 8 9 10

4 10 9 7 2 6

1 3 5 8

L′

I

4 7 9 2

3 5 6 8 10 ∞

Massive Data Algorithmics Lecture 9: Algorithms for trees

Listranking

Line 19-20: O(I(2/3N))

Line 21-26: O(sort(N))

- Sort L′ based on their weight ranks
- Sort I based on the weight ranks of their successors

Massive Data Algorithmics Lecture 9: Algorithms for trees

Euler Tour

Replace {v,w} with directed edges (v,w) and (w,v)
∀v ∈ T:

- Let incoming edges be e1, · · · ,ek and outgoing edges be e′1, · · · ,e′k
where ei and e′i have the same endpoints

- edge ei is succeeded by edge e′i mod k

Massive Data Algorithmics Lecture 9: Algorithms for trees

Euler Tour

Replace {v,w} with directed edges (v,w) and (w,v)
∀v ∈ T:

- Let incoming edges be e1, · · · ,ek and outgoing edges be e′1, · · · ,e′k
where ei and e′i have the same endpoints

- edge ei is succeeded by edge e′i mod k

Massive Data Algorithmics Lecture 9: Algorithms for trees

Euler Tour

Replace {v,w} with directed edges (v,w) and (w,v)
∀v ∈ T:

- Let incoming edges be e1, · · · ,ek and outgoing edges be e′1, · · · ,e′k
where ei and e′i have the same endpoints

- edge ei is succeeded by edge e′i mod k

v

Massive Data Algorithmics Lecture 9: Algorithms for trees

Euler Tour

Replace {v,w} with directed edges (v,w) and (w,v)
∀v ∈ T:

- Let incoming edges be e1, · · · ,ek and outgoing edges be e′1, · · · ,e′k
where ei and e′i have the same endpoints

- edge ei is succeeded by edge e′i mod k

v

Massive Data Algorithmics Lecture 9: Algorithms for trees

Euler Tour

Adjacency list representation

- Euler tour: O(scan(N))

Unorderd collection of edges

- Euler tour: O(sort(N))

v

Massive Data Algorithmics Lecture 9: Algorithms for trees

Rooting a tree

A tree can be rooted in O(sort(N)) I/Os

1: Compute an Euler tour L of tree T
2: Compute the rank of every edges e in L
3: for every edges {u,w} ∈ T do
4: Store the ranks of edges (v,w) and (w,v) in L with {u,w}

Massive Data Algorithmics Lecture 9: Algorithms for trees

Labeling rooted trees

Labeling

- Preorder
- Postorder
- Depth

Procedure LabelTree

1: Compute an Euler tour L of tree T that start at the root of T
2: Assign appropriate weights to the edges in the Euler tour
3: Compute the weighted rank of each edges in L
4: Extract a labeling of the vertices of T from these ranks

Massive Data Algorithmics Lecture 9: Algorithms for trees

Weight assigning

Depth

w(e) =
{

1 if v = p(w)
−1 if w = p(v)

Preorder

w(e) =
{

1 if v = p(w)
0 if w = p(v)

Massive Data Algorithmics Lecture 9: Algorithms for trees

Evaluating Directed Acyclic Graphs

Given a DAG G = (V,E)
- Each vertex is associated with w(v) (known) and (ρ(v)) (to be

computed)
- ρ(v) depends on the in-neighbors u1, · · · ,uk of v

Listranking is a special case

Two assumptions to get efficient solution

1: Vertices are given in a topological sort, otherwise Ω(|V|) I/Os are
needed to topologically sort vertices

2: If the in-degree is unbounded, computation of ρ(v) from its
in-neighbors u1, · · · ,uk can be done in O(sort(k)) I/Os

* Since Listranking is so restricted without two above assumptions we
get efficient solution

Massive Data Algorithmics Lecture 9: Algorithms for trees

Time-Forward Processing

Procedure TimeForwardProcessing

1: Q← /0
2: For every vertex v ∈ G in topologically sorted order do
3: Let u1, · · · ,uk be in-neighbors of v
4: Retrieve ρ(u1), · · · ,ρ(uk) from Q using k DeleteMin operations
4: Compute ρ(v) from w(v) and ρ(u1), · · · ,ρ(uk)
5: Let w1, · · · ,w` be out-neighbors of v
6: Insert ` copies of ρ(v) into priority queue Q. Give the i-th copy

priority wi

A DAG G can be evaluated in O(sort(E)) I/Os if vertices are given a
topologically sorted order

Massive Data Algorithmics Lecture 9: Algorithms for trees

Maximal Independent Set

Procedure MaximalIndependentSet

1: I← /0
2: Direct the edge of G from vertices with lower numbers to vertices with

higher numbers
3: Sort the vertices of G by their numbers and the edges by the number

of their sources
4: for every vertices v ∈ G in sorted order
4: if no in-neighbor of v is in I then
5: add v to I

Line 4-8 can be simulated using Time-Forward Processing

A maximal independent set of a undirected graph G can be computed
in O(sort(|V|+ |E|))

Massive Data Algorithmics Lecture 9: Algorithms for trees

Maximal Independent Set

Any maximal independent set of a list L has size at leas N/3, since
every vertex has at most two neighbors

A maximal independent set of a list L can be computed in O(sort(N))

Massive Data Algorithmics Lecture 9: Algorithms for trees

PRAM Simulation

Parallel Random Access Machine (PRAM)

- N processors
- Shared Memory

Read/write conflicts

- Exclusive Read Exclusive Write (EREW)
- Concurrent Read Exclusive Write (CREW)
- Exclusive Read Concurrent Write (ERCW)
- Concurrent Read Concurrent Write (CRCW)

Massive Data Algorithmics Lecture 9: Algorithms for trees

PRAM Simulation

Assumptions

- N processors and N space
- EREW strategy

In a single step, each PRAM processor reads O(1) operands from
memory, performs some computation, and then writes O(1) results to
memory.

Simulation

- Sort a copy of the contents of the PRAM memory based on the indices
of the processors for which they will be operands in this step.

- Scan this copy and perform the computation for each processor being
simulated, and write the results to the disk as we do so

- Sort the results of the computation based on the memory addresses to
which the PRAM processors would store them and then scan the list
and a reserved copy of memory to merge the stored values back into
the memory.

Massive Data Algorithmics Lecture 9: Algorithms for trees

PRAM Simulation

P1 P2 P3 P4 P5

7 11 27 40 1 19 17 25 31 29 41 37 5 43 51

P1 P2 P3 P4 P5

711 2740 1 191725 3129 41 375 4351

Massive Data Algorithmics Lecture 9: Algorithms for trees

PRAM Simulation

If a PRAM algorithm using O(N) space and processors runs in T
steps, the algorithm can be simulated using O(T.sort(N)) I/Os

If every O(1) steps, space and the number of processors decrease by a
constant factor of N, the algorithm can be simulated in O(sort(N))
I/Os.

Massive Data Algorithmics Lecture 9: Algorithms for trees

Summary: Algorithms for trees

Listranking can be performed in O(sort(N)) I/Os

The following algorithms can be done on trees using Listranking

- Making rooted
- Preorder ranking
- Postorder ranking
- Computing depth

Techniques

- Time-forward processing
- PRAM simulation

Massive Data Algorithmics Lecture 9: Algorithms for trees

References

I/O efficient graph algorithms
Lecture notes by Norbert Zeh.
- Section 1-4

Massive Data Algorithmics Lecture 9: Algorithms for trees

