Massive Data Algorithmics

Lecture 9: Algorithms for trees

Massive Data Algorithmics Lecture 9: Algorithms for trees



@ Massive graphs

- Web modeling: web crawling
- Geographic information systems: Modeling terrains by graphs

Massive Data Algorithmics Lecture 9: Algorithms for trees



@ Massive graphs

- Web modeling: web crawling
- Geographic information systems: Modeling terrains by graphs

@ Representing graphs
- Adjacency list
- Unordered collection of edges

Massive Data Algorithmics Lecture 9: Algorithms for trees



e Key difficulties in designing 1/O-efficient graph algorithms

- Nodes visited in unpredictable order.

graph nodes external adjacency lists

unstructured access to adjacency WEEE S EaEEEEEEE
lists seems to need at least one |/0O = ]
per node.

- Remembering settled nodes requires

extra data structures-algorithmic e T 0000 <f

changes.

Massive Data Algorithmics Lecture 9: Algorithms for trees



Many results, many open questions.
Undirected case often easier than directed cases.
Dense graphs often easier than sparse graphs

Special graph classes often easier

General Methods: Time-forward processing, PRAM simulation, Graph
reduction, ...

o Efficient solutions: MST, CC, Listranking, ...
o Still difficult: BFS, DFS, Shortest paths, ...



Fundamental algorithms for trees

e Fundamental algorithms on tree T = (V,E)

Massive Data Algorithmics Lecture 9: Algorithms for trees



Fundamental algorithms for trees

e Fundamental algorithms on tree T = (V,E)
- Make rooted

Massive Data Algorithmics Lecture 9: Algorithms for trees



Fundamental algorithms for trees

e Fundamental algorithms on tree T = (V,E)

- Make rooted
- Preorder ranking

Massive Data Algorithmics Lecture 9: Algorithms for trees



Fundamental algorithms for trees

e Fundamental algorithms on tree T = (V,E)

- Make rooted
- Preorder ranking
- Postorder ranking

Massive Data Algorithmics Lecture 9: Algorithms for trees



Fundamental algorithms for trees

e Fundamental algorithms on tree T = (V,E)
- Make rooted

Preorder ranking

- Postorder ranking

Computing depth

Massive Data Algorithmics Lecture 9: Algorithms for trees



Fundamental algorithms for trees

e Fundamental algorithms on tree T = (V,E)

- Make rooted

- Preorder ranking

- Postorder ranking
- Computing depth

@ Can be simply done with O(|V|) 1/0Os

Massive Data Algorithmics Lecture 9: Algorithms for trees



Fundamental algorithms for trees

e Fundamental algorithms on tree T = (V,E)
- Make rooted
- Preorder ranking
- Postorder ranking
- Computing depth
@ Can be simply done with O(|V|) 1/0Os

e Can be done in O(sort(|V]))?



4‘\
Sl
1!

|
1!
()

1!
-

|
1!
(=]

L ]

[¥4]

1!
Pl

—
=
1!
o

1!
iy
1!
e ||
|
1!
@ 1
i

@ Given a link list L, compute for every element of L its distance from
the head of L.

@ More General: each element v associated with w(v). Compute p(v)
where p(v) = p(pred(v)) @ w(v).

Massive Data Algorithmics Lecture 9: Algorithms for trees



o Naive algorithms

Procedure NAITVELISTRANKING
1: v h

2 pe 0y {0; is the left-neutral element w.r.t. &.}

3: while v # nil do

4 pepawl)

. plu)p

6: v« succ(v)

7: end while

@ O(]V]) 1/Os with LRU paging strategy

Massive Data Algorithmics Lecture 9: Algorithms for trees



=T
il
o
il
il
il
e ||
—
!
@ |
il

@ Maintained information for each node
o Node id
e Successor id
o w(v) (known) and p(v) (to be computed)
e extra data depending on applications

Massive Data Algorithmics Lecture 9: Algorithms for trees



@ Overall strategy

o If L fits into memory, load L to the memory.

o Construct L' with size 2/3|L| with removing a large independent set I.

e Updates the weight of elements in LI so that their weight ranks in L
and L' are the same.

o Recurse on L'

o Compute the weight rank of elements in I by adding their weights to
the weight ranks of their predecessors

e J(N) = 0O(sort(N))

O(scan(N)) if N<M
I(2N) + O(sort(N)) if N> M

Massive Data Algorithmics Lecture 9: Algorithms for trees

I(N) = {



Procedure FASTLISTRANKING
1: if |L| < M then

2:

Load list L into main memory, and use procedure NATVELISTRANKING to com-
pute the ranks of all elements in L.
Find an independent set I of size at least N/3 in L.
for all v e L\ I do
sucey (v) +— suceg(v)
pr(v) = pr(v)
end for
for allv € I do
if succ(v) # nil then
wyr(sucer (v)) + we(v) @ we(sucer(v))
end if
end for
for all v ¢ I do
if succr(v) # nil and succr (v) € T then
suecs (v) + suceg (sucep(v))
end if
end for
Let L' be the list defined by the vertices in L\ I, pointers succr' (v) and weights
wrr (v).
Recursively apply procedure FASTLISTRANKING to list L. Let pgs(v) be the rank
assigned to every element v in L\ I.
for all v € I do
pL(v) < pr(v)
if succr (v) # nil and sucez (v) € T then
pr(succe(v)) < pr(v) & wi(sucer (v))
end if
end for

Massive Data Algorithmics Lecture 9: Algorithms for trees



D QO @ @O O ® © O

Massive Data Algorithmics Lecture 9: Algorithms for trees



D QO @ @O O ® © O

e Line 4: O(sort(N))

DO W @U@0 ©® ® © @

Massive Data Algorithmics Lecture 9: Algorithms for trees



e Line 5-8: O(scan(N))

DOQO® W ®EO @© ® ®© ®

)

Massive Data Algorithmics Lecture 9: Algorithms for trees



@ Line 5-8: O(scan(N))

U\j@

Massive Data Algorithmics Lecture 9: Algorithms for trees




@ Line 9-13: O(sort(N))

DOO® W OO O ® O O

RRKRAA®

R NN

Massive Data Algorithmics Lecture 9: Algorithms for trees



@ Line 14-18: O(sort(N))

DOO® W OO O ® O O

e & gaq

10 0

RN

Massive Data Algorithmics Lecture 9: Algorithms for trees



o Line 19-20: O(I(2/3N))

@ Line 21-26: O(sort(N))
- Sort L' based on their weight ranks
- Sort I based on the weight ranks of their successors

Massive Data Algorithmics Lecture 9: Algorithms for trees



Euler Tour

@ Replace {v,w} with directed edges (v,w) and (w,v)

Massive Data Algorithmics Lecture 9: Algorithms for trees



Euler Tour

@ Replace {v,w} with directed edges (v,w) and (w,v)

Massive Data Algorithmics Lecture 9: Algorithms for trees



Euler Tour

@ Replace {v,w} with directed edges (v,w) and (w,v)
e WweT:

- Let incoming edges be ej,---,¢; and outgoing edges be ¢/, --- e
where ¢; and ¢/ have the same endpoints

/

i modk

- edge ¢; is succeeded by edge e

Massive Data Algorithmics Lecture 9: Algorithms for trees



Euler Tour

@ Replace {v,w} with directed edges (v,w) and (w,v)
o WeT:

- Let incoming edges be ¢, -, e, and outgoing edges be ¢},--- e}
where ¢; and € have the same endpoints

- edge ¢; is succeeded by edge e} .

Massive Data Algorithmics Lecture 9: Algorithms for trees



Euler Tour

@ Adjacency list representation
- Euler tour: O(scan(N))

@ Unorderd collection of edges
- Euler tour: O(sort(N))

Massive Data Algorithmics Lecture 9: Algorithms for trees



Rooting a tree

@ A tree can be rooted in O(sort(N)) 1/Os

1: Compute an Euler tour L of tree T

: Compute the rank of every edges e in L

. for every edges {u,w} € T do

Store the ranks of edges (v,w) and (w,v) in L with {u,w}

A WN

Massive Data Algorithmics Lecture 9: Algorithms for trees



Labeling rooted trees

o Labeling
- Preorder
- Postorder
- Depth
@ Procedure LabelTree

1: Compute an Euler tour L of tree T that start at the root of T
2: Assign appropriate weights to the edges in the Euler tour

3: Compute the weighted rank of each edges in L

4: Extract a labeling of the vertices of T from these ranks

Massive Data Algorithmics Lecture 9: Algorithms for trees



Weight assigning

@ Depth

@ Preorder

Massive Data Algorithmics Lecture 9: Algorithms for trees



Evaluating Directed Acyclic Graphs

e Given a DAG G = (V,E)
- Each vertex is associated with w(v) (known) and (p(v)) (to be
computed)
- p(v) depends on the in-neighbors uy,--- ,u; of v
@ Listranking is a special case
@ Two assumptions to get efficient solution
1: Vertices are given in a topological sort, otherwise Q(|V]) 1/Os are
needed to topologically sort vertices
2: If the in-degree is unbounded, computation of p(v) from its
in-neighbors uy,--- ,u; can be done in O(sort(k)) 1/Os

* Since Listranking is so restricted without two above assumptions we
get efficient solution

Massive Data Algorithmics Lecture 9: Algorithms for trees



Time-Forward Processing

@ Procedure TimeForwardProcessing
1. 0«0
2: For every vertex v € G in topologically sorted order do

3:

ARl

Let uy,--- ,u; be in-neighbors of v

Retrieve p(u1),---,p(ux) from Q using k DeleteMin operations
Compute p(v) from w(v) and p(uy),---,p (uy)

Let wy, -+ ,wy be out-neighbors of v

Insert ¢ copies of p(v) into priority queue Q. Give the i-th copy
priority w;

@ A DAG G can be evaluated in O(sort(E)) 1/Os if vertices are given a
topologically sorted order

Massive Data Algorithmics Lecture 9: Algorithms for trees



Maximal Independent Set

@ Procedure MaximallndependentSet

1:
2:

4.
4.
5:

10
Direct the edge of G from vertices with lower numbers to vertices with
higher numbers

. Sort the vertices of G by their numbers and the edges by the number

of their sources
for every vertices v € G in sorted order
if no in-neighbor of v is in I then
add vto

@ Line 4-8 can be simulated using Time-Forward Processing

@ A maximal independent set of a undirected graph G can be computed
in O(sort(|V|+|E|))

Massive Data Algorithmics Lecture 9: Algorithms for trees



Maximal Independent Set

@ Any maximal independent set of a list L has size at leas N /3, since
every vertex has at most two neighbors

e A maximal independent set of a list L can be computed in O(sort(N))

Massive Data Algorithmics Lecture 9: Algorithms for trees



PRAM Simulation

e Parallel Random Access Machine (PRAM)

- N processors

- Shared Memory
@ Read/write conflicts

- Exclusive Read Exclusive Write (EREW)
Concurrent Read Exclusive Write (CREW)
- Exclusive Read Concurrent Write (ERCW)
Concurrent Read Concurrent Write (CRCW)

Massive Data Algorithmics Lecture 9: Algorithms for trees



PRAM Simulation

@ Assumptions
- N processors and N space
- EREW strategy
o In a single step, each PRAM processor reads O(1) operands from

memory, performs some computation, and then writes O(1) results to
memory.

@ Simulation

- Sort a copy of the contents of the PRAM memory based on the indices
of the processors for which they will be operands in this step.

- Scan this copy and perform the computation for each processor being
simulated, and write the results to the disk as we do so

- Sort the results of the computation based on the memory addresses to
which the PRAM processors would store them and then scan the list
and a reserved copy of memory to merge the stored values back into
the memory.

Massive Data Algorithmics Lecture 9: Algorithms for trees



=
.9
)

(T
=
£
(9p)]
=
<
o
[

7 |11127/40( 1 |19]17[25] 31]29]41|37| 5]43|51

AARA S

11140|29| 7 (27|25|17|41|31| 5 |51| 1 |37]19|43




PRAM Simulation

e If a PRAM algorithm using O(N) space and processors runs in T
steps, the algorithm can be simulated using O(T.sort(N)) 1/Os

o If every O(1) steps, space and the number of processors decrease by a
constant factor of N, the algorithm can be simulated in O(sort(N))
[/Os.

Massive Data Algorithmics Lecture 9: Algorithms for trees



Summary: Algorithms for trees

e Listranking can be performed in O(sort(N)) |/Os
@ The following algorithms can be done on trees using Listranking
- Making rooted
- Preorder ranking
- Postorder ranking
- Computing depth
@ Techniques
- Time-forward processing
- PRAM simulation

Massive Data Algorithmics Lecture 9: Algorithms for trees



References

e 1/0 efficient graph algorithms
Lecture notes by Norbert Zeh.
- Section 1-4

Massive Data Algorithmics Lecture 9: Algorithms for trees



