
I/O-Algorithms

Lars Arge

Spring 2012

February 27, 2012

http://www.cs.au.dk/~large/ioS12/

Lars Arge

I/O-algorithms

2

Random Access Machine Model

• Standard theoretical model of computation:
– Infinite memory
– Uniform access cost

R
A
M

Lars Arge

I/O-algorithms

3

Hierarchical Memory

• Modern machines have complicated memory hierarchy
– Levels get larger and slower further away from CPU
– Large access time amortized using block transfer between levels

• Bottleneck often transfers between largest memory levels in use

L
1

L
2

R
A
M

Lars Arge

I/O-algorithms

4

I/O-Bottleneck
• I/O is often bottleneck when handling massive datasets

– Disk access is 106 times slower than main memory access
– Large transfer block size (typically 8-16 Kbytes)

• Important to obtain “locality of reference”
– Need to store and access data to take advantage of blocks

track

magnetic surface

read/write arm
read/write head

Lars Arge

I/O-algorithms

5

I/O-Model

• Parameters
N = # elements in problem instance
B = # elements that fits in disk block
M = # elements that fits in main memory

T = # output size in searching problem

• We often assume that M>B2

• I/O: Movement of block between memory
and disk

D

P

M

Block I/O

Lars Arge

I/O-algorithms

6

Fundamental Bounds
Internal External

• Scanning: N
• Sorting: N log N
• Permuting
• Searching:

• Note:
– Linear I/O: O(N/B)
– Permuting not linear
– Permuting and sorting bounds are equal in all practical cases
– B factor VERY important:
– Cannot sort optimally with search tree

NBlog

B
N

B
N

B
Mlog

B
N

NB
N

B
N

B
N

B
M <<< log

}log,min{ B
N

B
N

B
MNN

N2log

Lars Arge

I/O-algorithms

7

Merge Sort
• Merge sort:

– Create N/M memory sized sorted runs
– Merge runs together M/B at a time

⇒ phases using I/Os each

• Distribution sort similar (but harder – partition elements)

)(B
NO)(log M

N
B

MO

Lars Arge

I/O-algorithms

8

Permuting Lower Bound
Permuting N elements according to a given permutation takes

I/Os in “indivisibility” model

• Indivisibility model: Move of elements only allowed operation
• Note:

– We can allow copies (and destruction of elements)
– Bound also a lower bound on sorting

• Proof:
– View memory and disk as array of N tracks of B elements
– Assume all I/Os track aligned (assumption can be removed)

})log,(min{ B
N

B
N

B
MNΩ

Lars Arge

I/O-algorithms

9

Permuting Lower Bound
– Array contains permutation of N elements at all times
– We will count how many permutations can be

reached (produced) with t I/Os
– Input:

* Choose track: N possibilities
* Rearrange ≤ B element in track and place among ≤ M-B

elements in memory:
– possibilities if “fresh” track
– otherwise

⇒ at most permutations after t inputs
– Output:

* Choose track: N possibilities

B
N

B
M BN t)!())((⋅⋅

)(!
B
MB ⋅≤

)(
B
M≤

Lars Arge

I/O-algorithms

10

Permuting Lower Bound
– Permutation algorithm needs to be able to produce N! permutations

(using Stirlings formula and)
– If we have
– If we have and thus

⇒

!)!())((NBN B
N

B
M t ≥⋅⋅

⇓
)!log())log((log)!log(NNtB

B
M

B
N ≥++

NNBNtBN B
M log)log(loglog ≥++

B
M

B
N

BN
N

t
loglog

log
+

≥

⇓
⇓

xxx log!log ≈ B
MB

B
M log)log(≈

B
MBN loglog ≤ ()B

N
BMB

N
B

N

B
M
B
N

t /log2

log logΩ=≥

B
MBN loglog > NB <<

() () ()NNNNNt N
B

N
N B

N

Ω=−≥−=≥ 2
1

2
1

log
log

2
1

log2
log

})log,(min{ B
N

B
N

B
MNt Ω=

Lars Arge

I/O-algorithms

11

Sorting lower bound
Sorting N elements takes I/Os in comparison model

• Proof:
– Initially N elements stored in

N/B first blocks on disk
– Initially all N! possible orderings

consistent with our knowledge
– After t I/Os?

)log(B
N

B
N

B
MΩ

N!

Lars Arge

I/O-algorithms

12

Sorting lower bound
• Consider one input assuming:

– S consistent orderings before input
– Compute total order of elements in memory
– Adversary choose ”worst” outcome of comparisons done

• possible orderings of M-B ”old”
and B new elements in memory

• Adversary can choose outcome such that
still consistent orderings

• Only get B! term N/B times
⇓

consistent orderings after t I/Os
⇒

!)(B
B
M ⋅≤ N!

)!)/((BS
B
M ⋅≥

))!()/((! B
N

B
M BN t ⋅≥

)log(1))!()/((! B
N

B
Nt

B
M

B
N

B
M tBN Ω=⇒=⋅

Lars Arge

I/O-algorithms

13

Summary/Conclusion: Sorting

• External merge or distribution sort takes I/Os
– Merge-sort based on M/B-way merging
– Distribution sort based on -way distribution

and partition elements finding

• Optimal in comparison model

• Can prove lower bound
in stronger model
– Holds even for permuting

)log(B
N

B
N

B
MO

})log,(min{ B
N

B
N

B
MNΩ

B
M

Lars Arge

I/O-algorithms

14

– If nodes stored arbitrarily on disk
⇒ Search in I/Os
⇒ Rangesearch in I/Os

• Binary search tree:
– Standard method for search among N elements
– We assume elements in leaves

– Search traces at least one root-leaf path

External Search Trees

)(log2 NO

)(log2 NΟ

)(log2 TNO +

Lars Arge

I/O-algorithms

15

External Search Trees

• BFS blocking:
– Block height
– Output elements blocked
⇓
Rangesearch in I/Os

• Optimal: O(N/B) space and query

)(log2 BΟ

)(BΘ

)(log)(log/)(log 22 NOBONO B=

)(log B
T

B N +Ο
)(log B

T
B N +Ο

Lars Arge

I/O-algorithms

16

• Maintaining BFS blocking during updates?
– Balance normally maintained in search trees using rotations

• Seems very difficult to maintain BFS blocking during rotation
– Also need to make sure output (leaves) is blocked!

External Search Trees

x

y

x

y

Lars Arge

I/O-algorithms

17

B-trees
• BFS-blocking naturally corresponds to tree with fan-out

• B-trees balanced by allowing node degree to vary
– Rebalancing performed by splitting and merging nodes

)(BΘ

Lars Arge

I/O-algorithms

18

• (a,b)-tree uses linear space and has height
⇓
Choosing a,b = each node/leaf stored in one disk block
⇓
Ο(Ν/Β) space and query

(a,b)-tree
• T is an (a,b)-tree (a≥2 and b≥2a-1)

– All leaves on the same level and
contain between a and b elements

– Except for the root, all nodes have
degree between a and b

– Root has degree between 2 and b

)(log NO a

)(log B
T

B N +Ο

)(BΘ

(2,4)−tree

Lars Arge

I/O-algorithms

19

(a,b)-Tree Insert
• Insert:

Search and insert element in leaf v
DO v has b+1 elements/children

Split v:
make nodes v’ and v’’ with

and elements
insert element (ref) in parent(v)
(make new root if necessary)

v=parent(v)

• Insert touch nodes

⎡ ⎤ bb ≤+
2

1 ⎣ ⎦ ab ≥+
2

1

)(log NaΟ

v

v’ v’’

⎡ ⎤2
1+b ⎣ ⎦2

1+b

1+b

Lars Arge

I/O-algorithms

20

(2,4)-Tree Insert

Lars Arge

I/O-algorithms

21

(a,b)-Tree Delete
• Delete:

Search and delete element from leaf v
DO v has a-1 elements/children

Fuse v with sibling v’:
move children of v’ to v
delete element (ref) from parent(v)
(delete root if necessary)

If v has >b (and ≤ a+b-1<2b) children split v
v=parent(v)

• Delete touch nodes)(log NO a

v

v

1−a

12 −≥ a

Lars Arge

I/O-algorithms

22

(2,4)-Tree Delete

Lars Arge

I/O-algorithms

23

• (a,b)-tree properties:
– If b=2a-1 every update can

cause many rebalancing
operations

– If b≥2a update only cause O(1) rebalancing operations amortized
– If b>2a only rebalancing operations amortized

* Both somewhat hard to show
– If b=4a easy to show that update causes rebalance

operations amortized
* After split during insert a leaf contains ≅ 4a/2=2a elements
* After fuse during delete a leaf contains between ≅ 2a and ≅

5a elements (split if more than 3a ⇒ between 3/2a and 5/2a)

(a,b)-Tree

)()(11
2

aa OO b =−

)log(1 NO aa

insert

delete

(2,3)-tree

Lars Arge

I/O-algorithms

24

Summary/Conclusion: B-tree
• B-trees: (a,b)-trees with a,b =

– O(N/B) space
– O(logB N+T/B) query
– O(logB N) update

• B-trees with elements in the leaves sometimes called B+-tree

• Construction in I/Os
– Sort elements and construct leaves
– Build tree level-by-level bottom-up

)(BΘ

)log(B
N

B
N

B
MO

Lars Arge

I/O-algorithms

25

Summary/Conclusion: B-tree
• B-tree with branching parameter b and leaf parameter k (b,k≥8)

– All leaves on same level and contain between 1/4k and k elements
– Except for the root, all nodes have degree between 1/4b and b
– Root has degree between 2 and b

• B-tree with leaf parameter
– O(N/B) space
– Height
– amortized leaf rebalance operations
– amortized internal node rebalance operations

• B-tree with branching parameter Bc, 0<c≤1, and leaf parameter B
– Space O(N/B), updates , queries

)(log B
N

bO
)(1

kO
)log(1

B
N

bkbO ⋅

)(Bk Ω=

)(log NO B)(log B
T

B NO +

Lars Arge

I/O-algorithms

26

Secondary Structures
• When secondary structures used, a rebalance on v often requires

O(w(v)) I/Os (w(v) is weight of v)
– If inserts have to be made below v between operations

⇒ O(1) amortized split bound
⇒ amortized insert bound

• Nodes in standard B-tree do not have this property

))((vwΩ

)(log NO B

(2,4)−tree

Lars Arge

I/O-algorithms

27

BB[α]-tree
• In internal memory BB[α]-trees have the desired property
• Defined using weight-constraint

– Ratio between weight of left child and weight of right child of a
node v is between α and 1-α (α<1)

⇓
Height O(log N)

• If rebalancing can be performed using rotations

• Seems hard to implement BB[α]-trees I/O-efficiently

21 2
1

11
2 −<< α

x

y
x

y

Lars Arge

I/O-algorithms

28

Weight-balanced B-tree
• Idea: Combination of B-tree and BB[α]-tree

– Weight constraint on nodes instead of degree constraint
– Rebalancing performed using split/fuse as in B-tree

• Weight-balanced B-tree with parameters b and k (b>8, k≥8)
– All leaves on same level and

contain between k/4 and k elements
– Internal node v at level l has

w(v) <
– Except for the root, internal node v

at level l has w(v)>
– The root has more than one child

kbl

kbl
4
1

level l-1

level lkbkb ll ...4
1

kbkb ll 11
4
1 ... −−

Lars Arge

I/O-algorithms

29

Weight-balanced B-tree
• Every internal node has degree between

and

⇓
Height

• External memory:
– Choose 4b=B (or even Bc for 0 < c ≤ 1)
– k=B
⇓
O(N/B) space, query

bkbkb ll
4
11

4
1 / =− bkbkb ll 4/ 1

4
1 =−

)(log k
N

bO

)(log B
T

B NO +

level l-1

level lkbkb ll ...4
1

kbkb ll 11
4
1 ... −−

Lars Arge

I/O-algorithms

30

Weight-balanced B-tree Insert
• Search for relevant leaf u and insert new element
• Traverse path from u to root:

– If level l node v now has w(v)=blk+1
then split into nodes v’ and v’’ with

and

• Algorithm correct since
such that and
– touch nodes

• Weight-balance property:
– updates below v’ and v’’ before next rebalance operation

⎣ ⎦ kbkbvw ll 1
2
1)1()'(−−+≥

⎡ ⎤ kbkbvw ll 1
2
1)1()''(−++≤

kbkb ll
8
11 ≤≤ −

kbvw l
8
3)'(≥ kbvw l

8
5)''(≤

)(kblΩ

1+kbl

kbkb ll 11
4
1 ... −−

kbkb ll 11
4
1 ... ++

)(log k
N

bO

Lars Arge

I/O-algorithms

31

Weight-balanced B-tree Delete
• Search for relevant leaf u and delete element
• Traverse path from u to root:

– If level l node v now has
then fuse with sibling into node v’
with

– If now then split into nodes
with weight
and

• Algorithm correct and touch nodes
• Weight-balance property:

– updates below v’ and v’’ before next rebalance operation

1)'(1 4
5

4
2 −≤≤− kbvwkb ll

)(kblΩ

1)(4
1 −= kbvw l

kbvw l
8
7)'(≥

11 16
51

16
7 −≥−−≥ − kbkbkb lll

kbkbkb lll
8
61

8
5 ≤+≤ −

14
1 −kbl

kbkb ll 11
4
1 ... −−

kbkb ll 11
4
1 ... ++

)(log k
N

bO

Lars Arge

I/O-algorithms

32

Summary/Conclusion: Weight-balanced B-tree
• Weight-balanced B-tree with branching parameter b and leaf

parameter k=Ω(B)
– O(N/B) space
– Height
– rebalancing operations after update
– Ω(w(v)) updates below v between consecutive operations on v

• Weight-balanced B-tree with branching parameter Bc and leaf
parameter B
– Updates in and queries in I/Os

• Construction bottom-up in I/O

)(log k
N

bO
)(log NO b

)(log NO B)(log B
T

B NO +

)log(B
N

B
N

B
MO

Lars Arge

I/O-algorithms

33

References
• Lower bound on External Permuting/Sorting

Lecture notes by L. Arge.

• External Memory Geometric Data Structures
Lecture notes by Lars Arge.
– Section 1-3

	I/O-Algorithms
	Random Access Machine Model
	Hierarchical Memory
	I/O-Bottleneck
	I/O-Model
	Fundamental Bounds
	Merge Sort
	Permuting Lower Bound
	Permuting Lower Bound
	Permuting Lower Bound
	Sorting lower bound
	Sorting lower bound
	Summary/Conclusion: Sorting
	External Search Trees
	External Search Trees
	External Search Trees
	B-trees
	(a,b)-tree
	(a,b)-Tree Insert
	(2,4)-Tree Insert
	(a,b)-Tree Delete
	(2,4)-Tree Delete
	(a,b)-Tree
	Summary/Conclusion: B-tree
	Summary/Conclusion: B-tree
	Secondary Structures
	BB[]-tree
	Weight-balanced B-tree
	Weight-balanced B-tree
	Weight-balanced B-tree Insert
	Weight-balanced B-tree Delete
	Summary/Conclusion: Weight-balanced B-tree
	References

