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Random Access Machine Model

• Standard theoretical model of computation:
– Infinite memory
– Uniform access cost

R
A
M



Lars Arge

I/O-algorithms

3

Hierarchical Memory

• Modern machines have complicated memory hierarchy
– Levels get larger and slower further away from CPU
– Large access time amortized using block transfer between levels

• Bottleneck often transfers between largest memory levels in use
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I/O-Bottleneck
• I/O is often bottleneck when handling massive datasets

– Disk access is 106 times slower than main memory access
– Large transfer block size (typically 8-16 Kbytes)

• Important to obtain “locality of reference”
– Need to store and access data to take advantage of blocks
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I/O-Model

• Parameters
N = # elements in problem instance
B = # elements that fits in disk block
M = # elements that fits in main memory

T = # output size in searching problem

• We often assume that M>B2

• I/O: Movement of block between memory 
and disk
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Fundamental Bounds
Internal External

• Scanning: N
• Sorting: N log N
• Permuting
• Searching:

• Note:
– Linear I/O: O(N/B)
– Permuting not linear
– Permuting and sorting bounds are equal in all practical cases
– B factor VERY important: 
– Cannot sort optimally with search tree

NBlog

B
N

B
N

B
Mlog

B
N

NB
N

B
N

B
N

B
M <<< log

}log,min{ B
N

B
N

B
MNN

N2log



Lars Arge

I/O-algorithms

7

Merge Sort
• Merge sort:

– Create N/M memory sized sorted runs
– Merge runs together M/B at a time

⇒ phases using            I/Os each

• Distribution sort similar (but harder – partition elements)
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Permuting Lower Bound
Permuting N elements according to a given permutation takes

I/Os in “indivisibility” model

• Indivisibility model: Move of elements only allowed operation
• Note:

– We can allow copies (and destruction of elements)
– Bound also a lower bound on sorting

• Proof:
– View memory and disk as array of N tracks of B elements
– Assume all I/Os track aligned (assumption can be removed)
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Permuting Lower Bound
– Array contains permutation of N elements at all times
– We will count how many permutations can be

reached (produced) with t I/Os
– Input:

* Choose track: N possibilities
* Rearrange ≤ B element in track and place among ≤ M-B

elements in memory:
– possibilities if “fresh” track
– otherwise

⇒ at most                              permutations after t inputs
– Output:

* Choose track: N possibilities
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Permuting Lower Bound
– Permutation algorithm needs to be able to produce N! permutations

(using Stirlings formula                         and                             )
– If                             we have
– If                             we have                and thus
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Sorting lower bound
Sorting N elements takes                         I/Os in comparison model

• Proof:
– Initially N elements stored in

N/B first blocks on disk
– Initially all N! possible orderings

consistent with our knowledge
– After t I/Os?
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Sorting lower bound
• Consider one input assuming:

– S consistent orderings before input
– Compute total order of elements in memory
– Adversary choose ”worst” outcome of comparisons done

• possible orderings of M-B ”old”
and B new elements in memory

• Adversary can choose outcome such that
still                       consistent orderings

• Only get B! term N/B times 
⇓

consistent orderings after t I/Os
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Summary/Conclusion: Sorting

• External merge or distribution sort takes                         I/Os
– Merge-sort based on M/B-way merging
– Distribution sort based on         -way distribution

and partition elements finding

• Optimal in comparison model

• Can prove                                       lower bound
in stronger model
– Holds even for permuting
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– If nodes stored arbitrarily on disk
⇒ Search in I/Os
⇒ Rangesearch in                         I/Os

• Binary search tree:
– Standard method for search among N elements
– We assume elements in leaves 

– Search traces at least one root-leaf path

External Search Trees
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External Search Trees

• BFS blocking:
– Block height
– Output elements blocked 
⇓
Rangesearch in                           I/Os

• Optimal:  O(N/B) space and                           query
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• Maintaining BFS blocking during updates?
– Balance normally maintained in search trees using rotations

• Seems very difficult to maintain BFS blocking during rotation
– Also need to make sure output (leaves) is blocked!

External Search Trees
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B-trees
• BFS-blocking naturally corresponds to tree with fan-out

• B-trees balanced by allowing node degree to vary
– Rebalancing performed by splitting and merging nodes

)(BΘ



Lars Arge

I/O-algorithms

18

• (a,b)-tree uses linear space and has height
⇓
Choosing a,b =          each node/leaf stored in one disk block
⇓
Ο(Ν/Β) space and                           query

(a,b)-tree
• T is an (a,b)-tree (a≥2 and b≥2a-1)

– All leaves on the same level and 
contain between a and b elements

– Except for the root, all nodes have 
degree between a and b

– Root has degree between 2 and b
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(a,b)-Tree Insert
• Insert:

Search and insert element in leaf v
DO v has b+1 elements/children

Split v:
make nodes v’ and v’’ with 

and                elements
insert element (ref) in parent(v)
(make new root if necessary)

v=parent(v)

• Insert touch                  nodes
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(2,4)-Tree Insert
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(a,b)-Tree Delete
• Delete:

Search and delete element from leaf v
DO v has a-1 elements/children

Fuse v with sibling v’:
move children of v’ to v
delete element (ref) from parent(v)
(delete root if necessary)

If v has >b (and ≤ a+b-1<2b) children split v
v=parent(v)

• Delete touch                   nodes )(log NO a
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(2,4)-Tree Delete
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• (a,b)-tree properties:
– If b=2a-1 every update can

cause many rebalancing
operations

– If b≥2a update only cause O(1) rebalancing operations amortized
– If b>2a only                            rebalancing operations amortized

* Both somewhat hard to show
– If b=4a easy to show that update causes                      rebalance 

operations amortized
* After split during insert a leaf contains ≅ 4a/2=2a elements
* After fuse during delete a leaf contains between ≅ 2a and ≅

5a elements (split if more than 3a ⇒ between 3/2a and 5/2a)

(a,b)-Tree
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Summary/Conclusion: B-tree
• B-trees: (a,b)-trees with a,b =          

– O(N/B) space
– O(logB N+T/B) query
– O(logB N) update

• B-trees with elements in the leaves sometimes called B+-tree

• Construction in                         I/Os
– Sort elements and construct leaves
– Build tree level-by-level bottom-up
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Summary/Conclusion: B-tree
• B-tree with branching parameter b and leaf parameter k (b,k≥8)

– All leaves on same level and contain between 1/4k and k elements
– Except for the root, all nodes have degree between 1/4b and b
– Root has degree between 2 and b

• B-tree with leaf parameter 
– O(N/B) space
– Height 
– amortized leaf rebalance operations
– amortized internal node rebalance operations

• B-tree with branching parameter Bc, 0<c≤1, and leaf parameter B
– Space O(N/B), updates                  , queries

)(log B
N

bO
)( 1

kO
)log( 1

B
N

bkbO ⋅

)(Bk Ω=

)(log NO B )(log B
T

B NO +



Lars Arge

I/O-algorithms

26

Secondary Structures
• When secondary structures used, a rebalance on v often requires 

O(w(v)) I/Os (w(v) is weight of v)
– If                inserts have to be made below v between operations

⇒ O(1) amortized split bound
⇒ amortized insert bound 

• Nodes in standard B-tree do not have this property
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BB[α]-tree
• In internal memory BB[α]-trees have the desired property
• Defined using weight-constraint

– Ratio between weight of left child and weight of right child of a 
node v is between α and 1-α (α<1)

⇓
Height O(log N)

• If                                rebalancing can be performed using rotations

• Seems hard to implement BB[α]-trees I/O-efficiently
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Weight-balanced B-tree
• Idea: Combination of B-tree and BB[α]-tree

– Weight constraint on nodes instead of degree constraint
– Rebalancing performed using split/fuse as in B-tree

• Weight-balanced B-tree with parameters b and k (b>8, k≥8)
– All leaves on same level and

contain between k/4 and k elements
– Internal node v at level l has

w(v) < 
– Except for the root, internal node v

at level l has w(v)>
– The root has more than one child
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Weight-balanced B-tree
• Every internal node has degree between                                 

and

⇓
Height 

• External memory:
– Choose 4b=B (or even Bc for 0 < c ≤ 1)
– k=B
⇓
O(N/B) space,                            query
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Weight-balanced B-tree Insert
• Search for relevant leaf u and insert new element
• Traverse path from u to root:

– If level l node v now has w(v)=blk+1
then split into nodes v’ and v’’ with                                           

and

• Algorithm correct since                         
such that                      and 
– touch                  nodes

• Weight-balance property:
– updates below v’ and v’’ before next rebalance operation
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Weight-balanced B-tree Delete
• Search for relevant leaf u and delete element
• Traverse path from u to root:

– If level l node v now has
then fuse with sibling into node v’
with

– If now                       then split into nodes
with weight
and  

• Algorithm correct and touch                  nodes
• Weight-balance property:

– updates below v’ and v’’ before next rebalance operation
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Summary/Conclusion: Weight-balanced B-tree
• Weight-balanced B-tree with branching parameter b and leaf 

parameter k=Ω(B)
– O(N/B) space
– Height
– rebalancing operations after update
– Ω(w(v)) updates below v between consecutive operations on v

• Weight-balanced B-tree with branching parameter Bc and leaf 
parameter B
– Updates in                   and queries in                           I/Os

• Construction bottom-up in                        I/O
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