Lars Arge

Spring 2012

February 27, 2012

http://www.cs.au.dk/~large/ioS12/

[/O-algorithms

Random Access Machine Model

W

 Standard theoretical model of computation:
— Infinite memory

— Uniform access cost

Lars Arge 2

[/O-algorithms

Hierarchical Memory

I\, =

* Modern machines have complicated memory hierarchy

— Levels get larger and slower further away from CPU

— Large access time amortized using block transfer between levels

 Bottleneck often transfers between largest memory levels in use

Lars Arge 3

[/O-algorithms

|/O-Bottleneck

I/O 1s often bottleneck when handling massive datasets
— Disk access is 10° times slower than main memory access

— Large transfer block size (typically 8-16 Kbytes)

read/write head
read/write arm

Cd
~~~-_-"

magnetic surface

 Important to obtain “locality of reference”

— Need to store and access data to take advantage of blocks

Lars Arge



[/O-algorithms

|/O-Model

‘ D \ e Parameters

N =# elements in problem instance
B = # elements that fits in disk block

Block\ I/O M = # elements that fits in main memory

T = # output size in searching problem

« We often assume that M>B?

* [/O: Movement of block between memory
and disk

Lars Arge 5



[/O-algorithms

Fundamental Bounds

Internal External

Scanning: N
Sorting: Nlog N %10&% %
Permuting N min{N ,ﬂlog% -

Searching: log, N logyz N

Note:
— Linear I/O: O(N/B)
— Permuting not linear
— Permuting and sorting bounds are equal 1n all practical cases
— B factor VERY important: £ < %logM/B L <<N

— Cannot sort optimally with search tree

Lars Arge



[/O-algorithms

Merge Sort

e Merge sort:
— Create N/M memory sized sorted runs
— Merge runs together M/B at a time

= O(log., %) phases using O(?/;) I/Os each

 Distribution sort similar (but harder — partition elements)

Lars Arge 7



[/O-algorithms

Permuting Lower Bound

Permuting N elements according to a given permutation takes
Q(min{N, X log W/ %}) [/Os in “indivisibility” model

* Indivisibility model: Move of elements only allowed operation
* Note:
— We can allow copies (and destruction of elements)

— Bound also a lower bound on sorting

* Proof:
— View memory and disk as array of N tracks of B elements

— Assume all I/Os track aligned (assumption can be removed)

Lars Arge 8



[/O-algorithms

Permuting Lower Bound

— Array contains permutation of N elements at all times
— We will count how many permutations can be
reached (produced) with ¢ I/Os
— Input:
* Choose track: N possibilities

* Rearrange < B element in track and place among < M-B
elements in memory:

— < BI(") possibilities if “fresh” track

— < (1‘; ) otherwise

= at most (N - (*))’ ~(B!)% permutations after ¢ inputs

— Qutput:
* Choose track: N possibilities

Lars Arge 9



[/O-algorithms

Permuting Lower Bound

— Permutation algorithm needs to be able to produce N/ permutations
(N-(")" -(B!)”* > N!
log(B!) +t(log N +log(*)) = log(N!)

Nlog B +t(log N + Blog®-) > Nlog N
Nlog*
~ log N + BlogL

U
U

(using Stirlings formula log x!= x log x and 10g(1‘§) ~ B log%)
—If logN<BlOg 5 W€ have t> Vioz, :Q(N lOgM/B ﬂ)

log B
— If log N > Blog - we have B<<\/7and thus
>N10gB: (N NlogB) I(N

— 2logN log N 2

t = Q(min{N,;log% 1)

Lars Arge 10



[/O-algorithms

Sorting lower bound

Sorting N elements takes Q(% 1Og% %) I/Os in comparison model

* Proof:
— Initially N elements stored in
N/B first blocks on disk
— Initially all MV! possible orderings
consistent with our knowledge
— After ¢ 1/0Os?

Lars Arge 11



[/O-algorithms

Sorting lower bound

 Consider one input assuming:
— S consistent orderings before input
— Compute total order of elements in memory
— Adversary choose ”worst” outcome of comparisons done
* <(%)- B! possible orderings of M-B "old”

and B new elements in memory

« Adversary can choose outcome such that

still =2 §/((")) - B!) consistent orderings @
* Only get B/ term N/B times
U

> NI/((*)' -(B!)”#) consistent orderings after ¢ [/Os
SN (B ) =1 = t=0(Flog,, ¥

Lars Arge 12



[/O-algorithms

Summary/Conclusion: Sorting

 External merge or distribution sort takes O(N logM/ ) 1/Os
— Merge-sort based on M/B-way merging

— Distribution sort based on ,/*/,-way distribution

and partition elements finding

* Optimal in comparison model

« Can prove Q(min{N,& 7 logu, & &3) lower bound

in stronger model

— Holds even for permuting

Lars Arge 13



[/O-algorithms

External Search Trees

* Binary search tree:
— Standard method for search among N elements

— We assume elements 1n leaves

O(log, N)<

O O E O e

— Search traces at least one root-leaf path
— If nodes stored arbitrarily on disk

= Search in O(log, N) I/Os
— Rangesearch in O(log, N +7T) I/Os

Lars Arge 14



[/O-algorithms

External Search Trees

Ll

PETATOEATe

Ll

O(5)

« BFS blocking:
— Block height O(log, N)/O(log, B) = O(logz N)
— Output elements blocked

U

Rangesearch in O(logz N + /) I/Os
* Optimal: O(N/B) space and O(logz N +7/;) query

Lars Arge

15



[/O-algorithms

External Search Trees
e Maintaining BFS blocking during updates?

— Balance normally maintained in search trees using rotations

Q\

» Seems very difficult to maintain BFS blocking during rotation

— Also need to make sure output (leaves) is blocked!

Lars Arge 16



[/O-algorithms

B-trees

» BFS-blocking naturally corresponds to tree with fan-out ®(B)

Z

Z

L4

LA

L4

L4

LA

L4

LA

LA

N

« B-trees balanced by allowing node degree to vary

— Rebalancing performed by splitting and merging nodes

%NH/N /I\

Lars Arge

17



[/O-algorithms

(a,b)-tree

* T'1s an (a,b)-tree (a>2 and b>2a-1)

— All leaves on the same level and
contain between a and b elements

— Except for the root, all nodes have
degree between a and b

— Root has degree between 2 and b

* (a,b)-tree uses linear space and has height O(log, N)
U

Choosing a,b =O(B) each node/leaf stored in one disk block
U
O(N/B) space and O(logz N +7/;) query

Lars Arge 18



[/O-algorithms

(a,b)-Tree Insert

Insert:

Search and insert element in leaf v
DO v has b+1 elements/children
Split v:
make nodes v’ and v’’ with
(ﬁ—‘ﬁ band \_%J > a elements
insert element (ref) in parent(v)

(make new root if necessary)

v=parent(v)

e Insert touchO(log, N)nodes

Lars Arge 19



[/O-algorithms

(2,4)-Tree Insert

Lars Arge 20



[/O-algorithms

(a,b)-Tree Delete

e Delete:

Search and delete element from leaf v
DO v has a-1 elements/children
Fuse v with sibling v’
move children of v’ to v
delete element (ref) from parent(v)
(delete root if necessary)
If v has >b (and <a+b-1<2b) children split v
v=parent(v)

* Delete touch O(log, N)nodes

Lars Arge 21



[/O-algorithms

(2,4)-Tree Delete

Lars Arge 22



[/O-algorithms

(a,b)-Tree

* (a,b)-tree properties: s, (@3)-tree

— If b=2a-1 every update can insert

—
—_—

cause many rebalancing delete

operations

— If b>2a update only cause O(1) rebalancing operations amortized
— If b>2a only O( yl_ ) = O(%) rebalancing operations amortized
) a
* Both somewhat hard to show

— If b=4a easy to show that update causes O(% log,, N) rebalance
operations amortized

* After split during insert a leaf contains =4a/2=2a elements

* After fuse during delete a leaf contains between =2a and =
5a elements (split if more than 3a = between 3/2a and 5/2q

Lars Arge 23



[/O-algorithms

Summary/Conclusion: B-tree
 B-trees: (a,b)-trees with a,b = O(B)
— O(N/B) space
— O(logy N+T/B) query
— O(logy N) update

* B-trees with elements in the leaves sometimes called B*-tree

e Construction in O(% logM/B %) I/Os

— Sort elements and construct leaves

— Build tree level-by-level bottom-up

Lars Arge 24



[/O-algorithms

Summary/Conclusion: B-tree

e B-tree with branching parameter b and leaf parameter & (b,k>8)
— All leaves on same level and contain between //4k and k elements
— Except for the root, all nodes have degree between 1/4b and b
— Root has degree between 2 and b

 B-tree with leaf parameter k£ = Q(B)
— O(N/B) space
— Height O(log, %

— O(%) amortized leaf rebalance operations

— O(ﬁ log, %) amortized internal node rebalance operations

» B-tree with branching parameter B¢, 0<c<I, and leaf parameter B
— Space O(N/B), updates O(log g N), queries O(logz N +7/y)

Lars Arge 25



[/O-algorithms

Secondary Structures

* When secondary structures used, a rebalance on v often requires
O(w(v)) I/0s (w(v) 1s weight of v)
— If Q(w(v)) inserts have to be made below v between operations
= (/) amortized split bound

= O(log z N) amortized insert bound

« Nodes in standard B-tree do not have this property

(2,4)—tree i %

Lars Arge 26




[/O-algorithms

BB[a]-tree
* In internal memory BB[a]-trees have the desired property

 Defined using weight-constraint

— Ratio between weight of left child and weight of right child of a
node v is between a and 1-a (a<I)

U
Height O(log N)

s If Y <a<l-Y V2 rebalancing can be performed using rotations

X

» Seems hard to implement BB[a]-trees I/O-efficiently

Lars Arge 27



[/O-algorithms

Weight-balanced B-tree

 Idea: Combination of B-tree and BB[a]-tree
— Weight constraint on nodes instead of degree constraint

— Rebalancing performed using split/fuse as in B-tree

« Weight-balanced B-tree with parameters b and & (b>8, k>8)
— All leaves on same level and
contain between k/4 and k elements
— Internal node v at level / has
w(v) < bk
— Except for the root, internal node v
at level / has w(v)>%blk

— The root has more than one child

Lo 6k level I-1

Lars Arge 28



[/O-algorithms

Weight-balanced B-tree

Every internal node has degree between
Lo'k /b k=1band b'k/ L0k =4b

level [

U

- N
Helght O(logb k lbl_lk bl—lk level [-1
A

External memory:
— Choose 4b=B (or even B¢ for 0 < ¢ < 1)
— k=B
U
O(N/B) space, O(log 5 N +7/) query

Lars Arge 29



[/O-algorithms

Weight-balanced B-tree Insert

Search for relevant leaf u and insert new element
Traverse path from u to root:
— If level I node v now has w(v)=b'k+1 Ly bk

then split into nodes v’ and v’” with
W) = |20k +1) |- 5"k and

W) <| L0k +1) |+ bk

Lok bk

Algorithm correct since < bk < %bl k
such that w(v') = 2b'kand w('") < 2b'k
— touch O(log, %) nodes
Weight-balance property:
— Q(b'k)updates below v’ and v’’ before next rebalance operation

Lars Arge 30



[/O-algorithms

Weight-balanced B-tree Delete

o Search for relevant leaf # and delete element

Lp™ e bk
 Traverse path from u to root: )

— If level / node v now has w(v) = %blk -1
Lplk—1
then fuse with sibling into node v’ 4
with 26’k —1< w(»') < 3 bk —1
\ X Ly bk
1

— If now w(v') 2 %blk then split into nodes
with weight> Lb'k—1-b""k > 2 b'k -1
<3b'k+b""k<Sb'k

» Algorithm correct and touch O(log,, 2-) nodes
» Weight-balance property:
— Q(b'k)updates below v’ and v’’ before next rebalance operation

Lars Arge 31



[/O-algorithms

Summary/Conclusion: Weight-balanced B-tree
« Weight-balanced B-tree with branching parameter b and leaf
parameter k=CQ(B)
— O(N/B) space
— Height O(log,, %
— O(log;, N) rebalancing operations after update

— Q(w(v)) updates below v between consecutive operations on v

* Weight-balanced B-tree with branching parameter B¢ and leaf
parameter B

— Updates in O(log z N) and queries in O(logz N + /) I/Os

 Construction bottom-up in O(% log my %) I/0

Lars Arge 32



[/O-algorithms

References

» Lower bound on External Permuting/Sorting
Lecture notes by L. Arge.

External Memory Geometric Data Structures
Lecture notes by Lars Arge.

— Section 1-3

Lars Arge 33



	I/O-Algorithms
	Random Access Machine Model
	Hierarchical Memory
	I/O-Bottleneck
	I/O-Model
	Fundamental Bounds
	Merge Sort
	Permuting Lower Bound
	Permuting Lower Bound
	Permuting Lower Bound
	Sorting lower bound
	Sorting lower bound
	Summary/Conclusion: Sorting
	External Search Trees
	External Search Trees
	External Search Trees
	B-trees
	(a,b)-tree
	(a,b)-Tree Insert
	(2,4)-Tree Insert
	(a,b)-Tree Delete
	(2,4)-Tree Delete
	(a,b)-Tree
	Summary/Conclusion: B-tree
	Summary/Conclusion: B-tree
	Secondary Structures
	BB[]-tree
	Weight-balanced B-tree
	Weight-balanced B-tree
	Weight-balanced B-tree Insert
	Weight-balanced B-tree Delete
	Summary/Conclusion: Weight-balanced B-tree
	References

