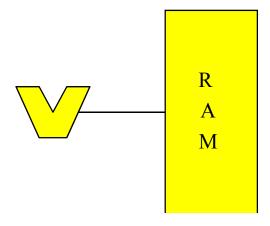
I/O-Algorithms

Lars Arge

Spring 2012

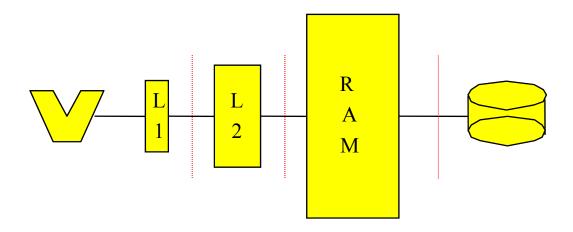
February 27, 2012

Random Access Machine Model



- Standard theoretical model of computation:
 - Infinite memory
 - Uniform access cost

Hierarchical Memory

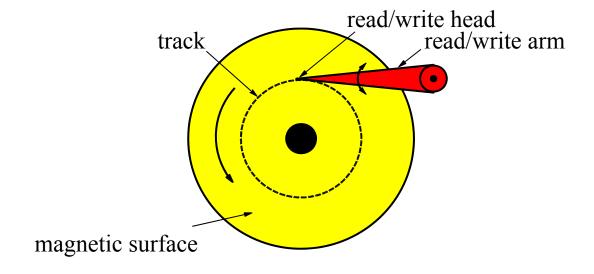


- Modern machines have complicated memory hierarchy
 - Levels get larger and slower further away from CPU
 - Large access time amortized using block transfer between levels

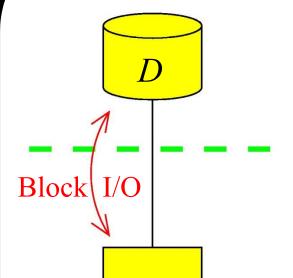
• Bottleneck often transfers between largest memory levels in use

I/O-Bottleneck

- I/O is often bottleneck when handling massive datasets
 - Disk access is 10⁶ times slower than main memory access
 - Large transfer block size (typically 8-16 Kbytes)



- Important to obtain "locality of reference"
 - Need to store and access data to take advantage of blocks



M

Parameters

N = # elements in problem instance

B = # elements that fits in disk block

M = # elements that fits in main memory

T = # output size in searching problem

- We often assume that $M>B^2$
- I/O: Movement of block between memory and disk

Fundamental Bounds

Internal

• Scanning: N

• Sorting: $N \log N$

• Permuting N

• Searching: $\log_2 N$

External

 $\frac{N}{B}$

 $\frac{N}{B}\log_{M/B}\frac{N}{B}$

 $\min\{N, \frac{N}{B}\log_{M/B}\frac{N}{B}\}$

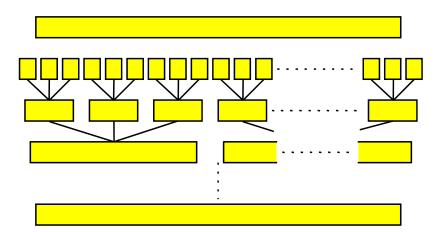
 $\log_B N$

• Note:

- Linear I/O: O(N/B)
- Permuting not linear
- Permuting and sorting bounds are equal in all practical cases
- B factor VERY important: $\frac{N}{B} < \frac{N}{B} \log_{M/B} \frac{N}{B} << N$
- Cannot sort optimally with search tree

Merge Sort

- Merge sort:
 - Create N/M memory sized sorted runs
 - Merge runs together M/B at a time
- $\Rightarrow O(\log_{\frac{N}{B}} \frac{N}{M})$ phases using $O(\frac{N}{B})$ I/Os each



Distribution sort similar (but harder – partition elements)

Permuting Lower Bound

Permuting N elements according to a given permutation takes $\Omega(\min\{N, \frac{N}{B}\log_{M/B} \frac{N}{B}\})$ I/Os in "indivisibility" model

- Indivisibility model: Move of elements only allowed operation
- Note:
 - We can allow copies (and destruction of elements)
 - Bound also a lower bound on sorting
- Proof:
 - View memory and disk as array of N tracks of B elements
 - Assume all I/Os track aligned (assumption can be removed)

Permuting Lower Bound

- Array contains permutation of N elements at all times
- We will count how many permutations can be reached (produced) with t I/Os
- *Input*:
 - * Choose track: N possibilities
 - * Rearrange $\leq B$ element in track and place among $\leq M$ -B elements in memory:
 - $\le B! \binom{M}{R}$ possibilities if "fresh" track
 - $\le \binom{M}{R}$ otherwise
 - \Rightarrow at most $(N \cdot \binom{M}{B})^t \cdot (B!)^{\frac{N}{B}}$ permutations after t inputs
- Output:
 - * Choose track: N possibilities

Permuting Lower Bound

– Permutation algorithm needs to be able to produce N! permutations

$$(N \cdot \binom{M}{B})^{t} \cdot (B!)^{\frac{N}{B}} \ge N!$$

$$\frac{N}{B} \log(B!) + t(\log N + \log\binom{M}{B}) \ge \log(N!)$$

$$N \log B + t(\log N + B \log \frac{M}{B}) \ge N \log N$$

$$t \ge \frac{N \log \frac{N}{B}}{\log N + B \log \frac{M}{B}}$$

(using Stirlings formula $\log x! \approx x \log x$ and $\log \binom{M}{B} \approx B \log \frac{M}{B}$)

- If $\log N \le B \log \frac{M}{B}$ we have $t \ge \frac{N \log \frac{N}{B}}{2B \log \frac{M}{B}} = \Omega \left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$
- If $\log N > B \log \frac{M}{B}$ we have $B \ll \sqrt{N}$ and thus

$$t \ge \frac{N \log \frac{N}{B}}{2 \log N} = \frac{1}{2} \left(N - N \frac{\log B}{\log N} \right) \ge \frac{1}{2} \left(N - \frac{1}{2} N \right) = \Omega(N)$$

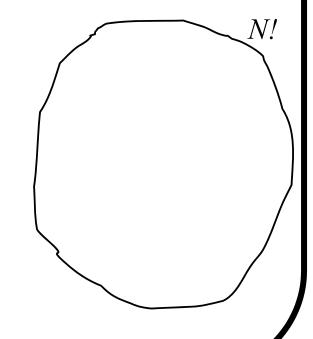
$$t = \Omega(\min\{N, \frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B}\})$$

Sorting lower bound

Sorting N elements takes $\Omega(\frac{N}{B}\log_{M_R}\frac{N}{B})$ I/Os in comparison model

• Proof:

- Initially N elements stored in
 N/B first blocks on disk
- Initially all N! possible orderings
 consistent with our knowledge
- After t I/Os?



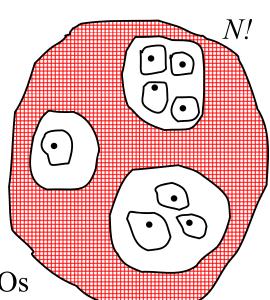
Sorting lower bound

- Consider one input assuming:
 - S consistent orderings before input
 - Compute total order of elements in memory
 - Adversary choose "worst" outcome of comparisons done
- $\leq \binom{M}{B} \cdot B!$ possible orderings of *M-B* "old" and *B* new elements in memory
- Adversary can choose outcome such that still $\geq S/(\binom{M}{B} \cdot B!)$ consistent orderings
- Only get B! term N/B times

 \bigcup

 $\geq N!/(\binom{M}{B}^t \cdot (B!)^{N/B})$ consistent orderings after t I/Os

$$\Rightarrow N!/(\binom{M}{B}^t \cdot (B!)^{\frac{N}{B}}) = 1 \implies t = \Omega(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B})$$

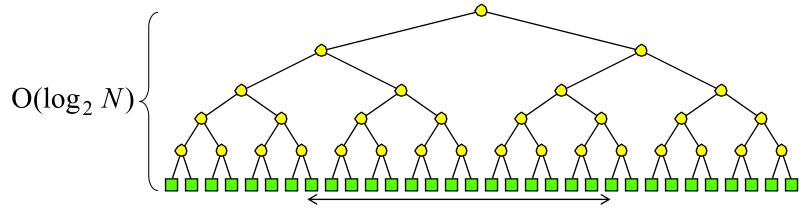


Summary/Conclusion: Sorting

- External merge or distribution sort takes $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
 - Merge-sort based on M/B-way merging
 - Distribution sort based on $\sqrt{M/B}$ -way distribution and partition elements finding
- Optimal in comparison model
- Can prove $\Omega(\min\{N, \frac{N}{B}\log_{M/B} \frac{N}{B}\})$ lower bound in stronger model
 - Holds even for permuting

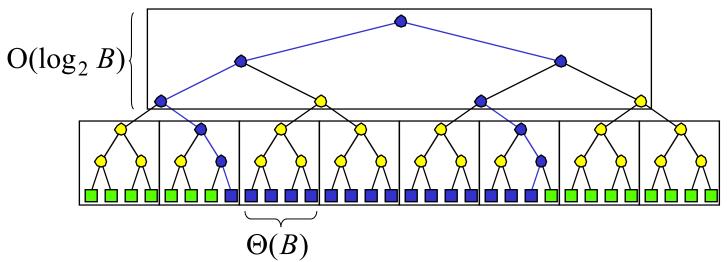
External Search Trees

- Binary search tree:
 - Standard method for search among N elements
 - We assume elements in leaves



- Search traces at least one root-leaf path
- If nodes stored arbitrarily on disk
 - \Rightarrow Search in $O(\log_2 N)$ I/Os
 - \Rightarrow Rangesearch in $O(\log_2 N + T)$ I/Os

External Search Trees



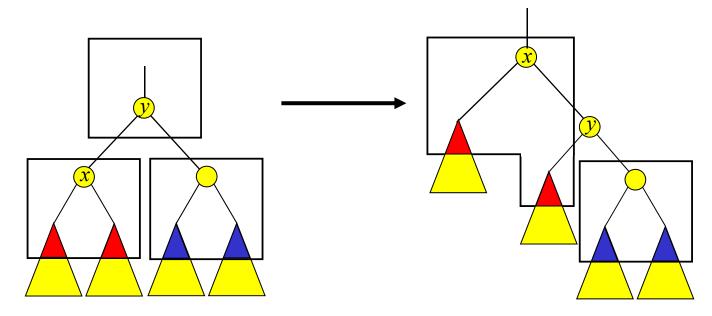
- BFS blocking:
 - Block height $O(\log_2 N) / O(\log_2 B) = O(\log_B N)$
 - Output elements blocked

Rangesearch in $O(\log_B N + T/B)$ I/Os

• Optimal: O(N/B) space and $O(\log_B N + T/B)$ query

External Search Trees

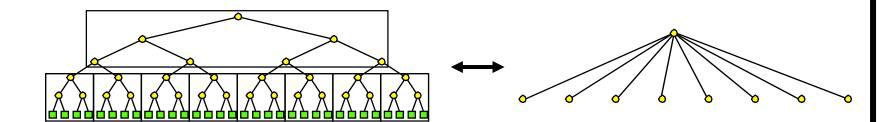
- Maintaining BFS blocking during updates?
 - Balance normally maintained in search trees using rotations



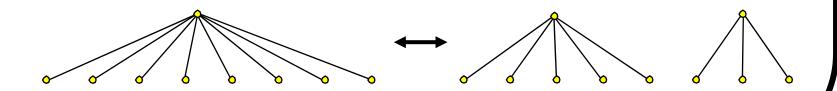
- Seems very difficult to maintain BFS blocking during rotation
 - Also need to make sure output (leaves) is blocked!

B-trees

• BFS-blocking naturally corresponds to tree with fan-out $\Theta(B)$

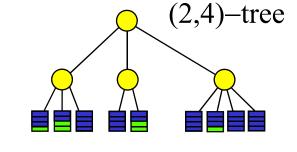


- B-trees balanced by allowing node degree to vary
 - Rebalancing performed by splitting and merging nodes



(a,b)-tree

- T is an (a,b)-tree $(a \ge 2 \text{ and } b \ge 2a-1)$
 - All leaves on the same level and contain between a and b elements
 - Except for the root, all nodes have degree between a and b



- Root has degree between 2 and b
- (a,b)-tree uses linear space and has height $O(\log_a N)$

Choosing $a,b = \Theta(B)$ each node/leaf stored in one disk block $\downarrow \downarrow$

O(N/B) space and $O(\log_B N + T/B)$ query

(a,b)-Tree Insert

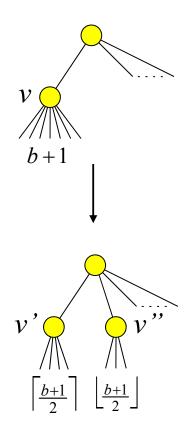
• Insert:

Search and insert element in leaf vDO v has b+1 elements/children

Split v:

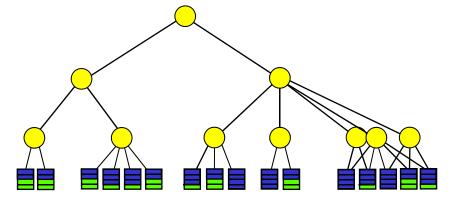
make nodes v and v with $\left\lceil \frac{b+1}{2} \right\rceil \le b$ and $\left\lfloor \frac{b+1}{2} \right\rfloor \ge a$ elements

insert element (ref) in parent(v)(make new root if necessary) v=parent(v)



• Insert touch $O(\log_a N)$ nodes

(2,4)-Tree Insert



(a,b)-Tree Delete

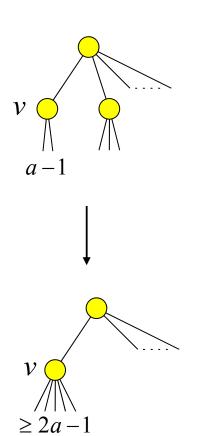
• Delete:

Search and delete element from leaf vDO v has a-l elements/children

Fuse v with sibling v':

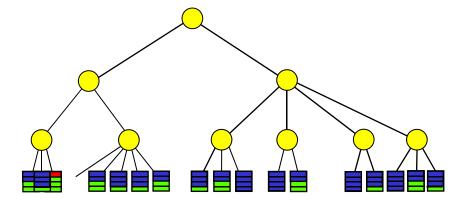
move children of v' to vdelete element (ref) from parent(v)(delete root if necessary)

If v has >b (and $\leq a+b-1<2b$) children split v v=parent(v)



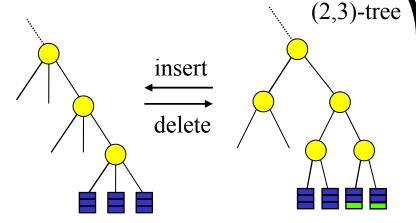
• Delete touch $O(\log_a N)$ nodes

(2,4)-Tree Delete



(*a*,*b*)-Tree

- (*a*,*b*)-tree properties:
 - If b=2a-1 every update can cause many rebalancing operations



- If $b \ge 2a$ update only cause O(1) rebalancing operations amortized
- If b > 2a only $O(\frac{1}{\frac{b}{2}-a}) = O(\frac{1}{a})$ rebalancing operations amortized * Both somewhat hard to show
- If b=4a easy to show that update causes $O(\frac{1}{a}\log_a N)$ rebalance operations amortized
 - * After split during insert a leaf contains $\approx 4a/2 = 2a$ elements
 - * After fuse during delete a leaf contains between $\cong 2a$ and \cong 5a elements (split if more than $3a \Rightarrow$ between 3/2a and 5/2a)

Summary/Conclusion: B-tree

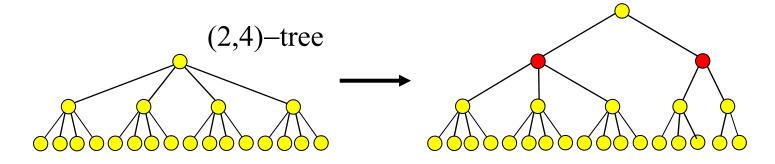
- B-trees: (a,b)-trees with $a,b = \Theta(B)$
 - -O(N/B) space
 - $-O(\log_B N + T/B)$ query
 - $-O(\log_B N)$ update
- B-trees with elements in the leaves sometimes called B⁺-tree
- Construction in $O(\frac{N}{B}\log_{M_R}\frac{N}{B})$ I/Os
 - Sort elements and construct leaves
 - Build tree level-by-level bottom-up

Summary/Conclusion: B-tree

- B-tree with branching parameter b and leaf parameter k ($b,k \ge 8$)
 - All leaves on same level and contain between 1/4k and k elements
 - Except for the root, all nodes have degree between 1/4b and b
 - Root has degree between 2 and b
- B-tree with leaf parameter $k = \Omega(B)$
 - -O(N/B) space
 - Height $O(\log_b \frac{N}{R})$
 - $-O(\frac{1}{k})$ amortized leaf rebalance operations
 - $-O(\frac{1}{b \cdot k} \log_b \frac{N}{B})$ amortized internal node rebalance operations
- B-tree with branching parameter B^c , $0 \le c \le 1$, and leaf parameter B
 - Space O(N/B), updates $O(\log_B N)$, queries $O(\log_B N + T/B)$

Secondary Structures

- When secondary structures used, a rebalance on v often requires O(w(v)) I/Os (w(v)) is weight of v)
 - If $\Omega(w(v))$ inserts have to be made below v between operations
 - \Rightarrow O(1) amortized split bound
 - $\Rightarrow O(\log_R N)$ amortized insert bound
- Nodes in standard B-tree do not have this property



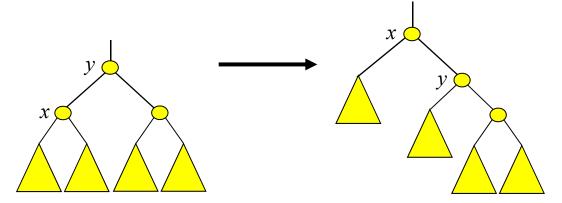
$BB[\alpha]$ -tree

- In internal memory BB[α]-trees have the desired property
- Defined using weight-constraint
 - Ratio between weight of left child and weight of right child of a node v is between α and 1- α (α <1)

 \downarrow

Height $O(\log N)$

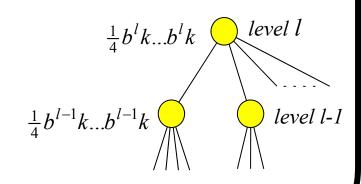
• If $\frac{2}{11} < \alpha < 1 - \frac{1}{2}\sqrt{2}$ rebalancing can be performed using rotations



Seems hard to implement BB[α]-trees I/O-efficiently

Weight-balanced B-tree

- Idea: Combination of B-tree and BB[α]-tree
 - Weight constraint on nodes instead of degree constraint
 - Rebalancing performed using split/fuse as in B-tree
- Weight-balanced B-tree with parameters b and k (b > 8, $k \ge 8$)
 - All leaves on same level and
 contain between k/4 and k elements
 - Internal node v at level l has $w(v) \le b^l k$
 - Except for the root, internal node v at level l has $w(v) > \frac{1}{4}b^l k$
 - The root has more than one child



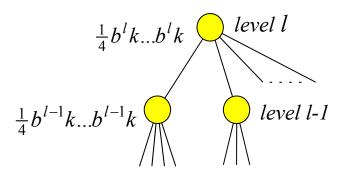
Weight-balanced B-tree

• Every internal node has degree between

$$\frac{1}{4}b^{l}k/b^{l-1}k = \frac{1}{4}b$$
 and $b^{l}k/\frac{1}{4}b^{l-1}k = 4b$

 \bigcup

Height $O(\log_b \frac{N}{k})$



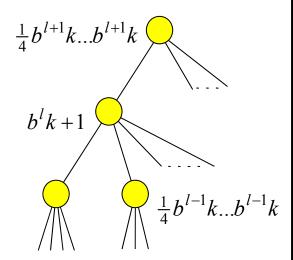
- External memory:
 - Choose 4b=B (or even B^c for 0 < c ≤ 1)
 - -k=B

 \downarrow

O(N/B) space, $O(\log_B N + T/B)$ query

Weight-balanced B-tree Insert

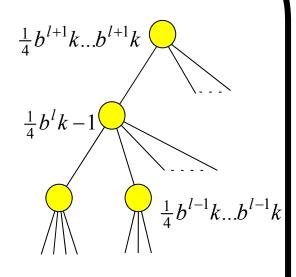
- Search for relevant leaf u and insert new element
- Traverse path from *u* to root:
 - If level l node v now has $w(v)=b^{l}k+1$ then split into nodes v' and v'' with $w(v') \ge \left\lfloor \frac{1}{2}(b^{l}k+1) \right\rfloor - b^{l-1}k$ and $w(v'') \le \left\lfloor \frac{1}{2}(b^{l}k+1) \right\rfloor + b^{l-1}k$
- Algorithm correct since $\leq b^{l-1}k \leq \frac{1}{8}b^{l}k$ such that $w(v') \geq \frac{3}{8}b^{l}k$ and $w(v'') \leq \frac{5}{8}b^{l}k$ - touch $O(\log_{b}\frac{N}{k})$ nodes



- Weight-balance property:
 - $-\Omega(b^l k)$ updates below v' and v'' before next rebalance operation

Weight-balanced B-tree Delete

- Search for relevant leaf u and delete element
- Traverse path from *u* to root:
 - If level l node v now has $w(v) = \frac{1}{4}b^l k 1$ then fuse with sibling into node v' with $\frac{2}{4}b^l k - 1 \le w(v') \le \frac{5}{4}b^l k - 1$
 - If now $w(v') \ge \frac{7}{8}b^l k$ then split into nodes with weight $\ge \frac{7}{16}b^l k - 1 - b^{l-1}k \ge \frac{5}{16}b^l k - 1$ and $\le \frac{5}{8}b^l k + b^{l-1}k \le \frac{6}{8}b^l k$



- Algorithm correct and touch $O(\log_b \frac{N}{k})$ nodes
- Weight-balance property:
 - $-\Omega(b^l k)$ updates below v' and v'' before next rebalance operation

Summary/Conclusion: Weight-balanced B-tree

- Weight-balanced B-tree with branching parameter b and leaf parameter k= $\Omega(B)$
 - -O(N/B) space
 - Height $O(\log_b \frac{N}{k})$
 - $-O(\log_b N)$ rebalancing operations after update
 - $-\Omega(w(v))$ updates below v between consecutive operations on v
- Weight-balanced B-tree with branching parameter B^c and leaf parameter B
 - Updates in $O(\log_B N)$ and queries in $O(\log_B N + T/B)$ I/Os
- Construction bottom-up in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/O

References

- Lower bound on External Permuting/Sorting
 Lecture notes by L. Arge.
- External Memory Geometric Data Structures
 Lecture notes by Lars Arge.
 - Section 1-3