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Massive Data
Pervasive use of computers and sensors
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Increased ability to acquire/store/process data
2002 12BI|
— Massive data collected everywhere o — ‘
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— Access/process data anywhere any time

Society increasingly “data driven” -’ \ ":::%B
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Example: Grid Terrain Data
» Appalachian Mountains (800km x 800km)
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— ~ 1.2GB at 30m resolution
NASA SRTM mission acquired 30m
data for 80% of the earth land mass
— ~ 12GB at 10m resolution (much of US available from USGS)

— ~ 1.2TB at 1m resolution (quickly becoming available)

. 10-100 points per m? already possible
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Example: LIDAR Terrain Data

e Massive (irregular) point sets (~1m resolution)

— Becoming relatively cheap and easy to collect

Sub-meter resolution using mobile mapping
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Example: LIDAR Terrain Data
« COWI A/S (and others) have scanned Denmark
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Example: LIDAR Terrain Data

~2 million points at 30 meter (<1GB)
~18 billion points at 1 meter (>1TB)
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_Application Examp
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le: Flooding Prediction
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Example: Detailed Data Essential
« Mandg with 2 meter sea-level raise

80 meter terrain model 2 meter terrain model
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Random Access Machine Model
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 Standard theoretical model of computation:
— Infinite memory
— Uniform access cost

« Simple model crucial for success of computer industry
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Hierarchical Memory
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* Modern machines have complicated memory hierarchy
— Levels get larger and slower further away from CPU
— Data moved between levels using large blocks
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Slow 1/0O

Disk access is 10° times slower than main memory access

read/write head

readfWB i rence in speed
tween modern CPU and
disk technologies is
analogous to the difference

in speed in sharpening a
pencil using a sharpener on
magnetic surface one s desk or by taking an

_ . airplane to the other side of
— Disk systems try to amortize large access tl%%&ﬁ%ﬁ%&% u

contiguous blocks of data (8-16Kbytg%)arp ener on someone else’s
* Important to store/access data to take advantage ofjbipckg0locHityt)
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Scalability Problems

* Most programs developed in RAM-model
— Run on large datasets because B
OS moves blocks as needed w L %

* Moderns OS utilizes sophisticated paging and prefetching strategies

— But if program makes scattered accesses even good OS cannot
take advantage of block access

running time

Scalability problems!

data size
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Block
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External Memory Model

‘ D \ N= # of items in the problem instance

B = # of items per disk block

O M = # of items that fit in main memory

T'= # of items in output

[/O: Move block between memory and disk
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We assume (for convenience) that M >B?
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Fundamental Bounds

Internal External

Scanning: N
Sorting: Nlog N %10&% %
Permuting N min{N ,ﬂlog% -

Searching: log, N logyz N

Note:
— Linear I/O: O(N/B)
— Permuting not linear
— Permuting and sorting bounds are equal 1n all practical cases
— B factor VERY important: £ < %logM/B L <<N

— Cannot sort optimally with search tree

Lars Arge
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Scalability Problems: Block Access Matters
Example: Traversing linked list (List ranking)

— Array size N = 10 elements
— Disk block size B = 2 elements
— Main memory size M = 4 elements (2 blocks)

WA/M\

11512163 |8|9]|4]|7110] 1|2

Y~— 5>
Algorithm 1: N=101/Os Algorithm 2: N/B=5 1/Os

» Large difference between N and N/B large since block size is large
— Example: N =256 x 10°, B = 8000, Ims disk access time
= N 1/Os take 256 x 10° sec = 4266 min = 71 hr
= N/B 1/Os take 256/8 sec = 32 sec
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Queues and Stacks

* Queue:
— Maintain push and pop blocks in main memory

Push —— —— Pop

U
O(1/B) Push/Pop operations
 Stack:
— Maintain push/pop blocks in main memory

—_—
—

U
O(1/B) Push/Pop operations
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sSorting
« <M/B sorted lists (queues) can be merged in O(N/B) 1/0Os

I

I

M/B blocks 1n main memory

* Unsorted list (queue) can be distributed using <M/B split elements
in O(N/B) 1/Os

Lars Arge 17



[/O-Algorithms

sSorting

* Merge sort:
— Create N/M memory sized sorted lists
— Repeatedly merge lists together @(M/B) at a time

O(y7)
O(LL /)

T 0L /(4?)

1

= O(log W/ %) phases using O(*) I/Os each = O(% log% %) I/Os
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sorting

 Distribution sort (multiway quicksort):
— Compute O(M/B) splitting elements
— Dastribute unsorted list into @(M/B) unsorted lists of equal size
— Recursively split lists until fit in memory

= O(log., =) phases
= O(% log 1y %) [/Os 1f splitting elements computed in O(N/B) 1/0s
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Computing Splitting Elements

* In internal memory (deterministic) quicksort split element (median)
found using linear time selection

 Selection algorithm: Finding i’th element in sorted order
1) Select median of every group of 5 elements
2) Recursively select median of ~ N/5 selected elements
3) Distribute elements into two lists using computed median
4) Recursively select in one of two lists
e Analysis:
— Step 1 and 3 performed in O(N/B) 1/Os.

— Step 4 recursion on at most ~%N elements
= T(N) =0+ TV +T(",) = O(Vp) 1/0s
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sorting

 Distribution sort (multiway quicksort):

e Computing splitting elements:
— O(M/B) times linear 1/0 selection = O(NM/B?) 1/0 algorithm

— But can use selection algorithm to compute \/MA; sphttlng
elements in O(N/B) 1/Os, partitioning into lists of size 2 r

= O(log 7 )= O(log., - phases = O(& log., &) algorithm
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Computing Splitting Elements

1) Sample 4T]> elements:

_ Create N/M memory sized sorted lists
— Pick every% Mz th element from each sorted list

2) Choose . /M/ split elements from sample:
B

— Use selection algorithm ,/#/, times to find every4—\/% M =

AN >th element
Z:

e Analysis:
— Step 1 performed in O(N/B) 1/0s
— Step 2 performed in \/% -O( \/Mﬂ/BB) = O(%) I/Os
= O(N/B) 1/Os
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Computing Splitting Elements

4N
% | _
— Create N/M memory sized sorted lists

1) Sample clements:

— Pick every% Mz, ’th element from each sorted list

2) Choose /Mé split elements from sample:
: : : 4N >
— Use selection algorlthnln M/, times to find every oA th element

-
—0O0—00—0000+ @O

%

-
AN
.
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Computing Splitting Elements

e Elements in range R defined by consecutive split elements

— Sampled elements in R: 2% —1

— Between sampled elements in R: ( 1) (™5 -1
— Between sampled element in R and outside R: 2% ("5 =D

= <yt (7~ v, T

-

%
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Summary/Conclusion: Sorting

 External merge or distribution sort takes O(% log v %) [/Os

— Merge-sort based on M/B-way merging

— Distribution sort based on ,/*/,-way distribution

and partition elements finding

e Optimal

— As we will prove next time
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