
I/O-Algorithms

Lars Arge

Spring 2012

January 31, 2012

http://www.cs.au.dk/~large/ioS12

• Pervasive use of computers and sensors
• Increased ability to acquire/store/process data

→ Massive data collected everywhere
• Society increasingly “data driven”

→ Access/process data anywhere any time

Nature/Science special issues
• 2/06,9/08, 2/11
• Scientific data size growing exponentially,

while quality and availability improving
• Paradigm shift: Science will be about mining data

Massive Data

Obviously not only in sciences:
• Economist 02/10:

• From 150 Billion Gigabytes five years ago
to 1200 Billion today

• Managing data deluge difficult; doing so
will transform business/public life

Lars Arge

I/O-Algorithms

3

Example: Grid Terrain Data
• Appalachian Mountains (800km x 800km)

– 100m resolution ⇒ ~ 64M cells
⇒ ~128MB raw data (~500MB when processing)

– ~ 1.2GB at 30m resolution
NASA SRTM mission acquired 30m
data for 80% of the earth land mass

– ~ 12GB at 10m resolution (much of US available from USGS)
– ~ 1.2TB at 1m resolution (quickly becoming available)
– …. 10-100 points per m2 already possible

Lars Arge

I/O-Algorithms

4

Example: LIDAR Terrain Data
• Massive (irregular) point sets (~1m resolution)

– Becoming relatively cheap and easy to collect

• Sub-meter resolution using mobile mapping

Lars Arge

I/O-Algorithms

5

Example: LIDAR Terrain Data
• COWI A/S (and others) have scanned Denmark

Example: LIDAR Terrain Data

• ~2 million points at 30 meter (<1GB)
• ~18 billion points at 1 meter (>1TB)

I/O-Algorithms

Lars Arge 6

Lars Arge

I/O-Algorithms

7

Application Example: Flooding Prediction

+1 meter
+2 meter

Example: Detailed Data Essential
• Mandø with 2 meter sea-level raise

80 meter terrain model 2 meter terrain model

Lars Arge

I/O-Algorithms

9

Random Access Machine Model

• Standard theoretical model of computation:
– Infinite memory
– Uniform access cost

• Simple model crucial for success of computer industry

R
A
M

Lars Arge

I/O-Algorithms

10

Hierarchical Memory

• Modern machines have complicated memory hierarchy
– Levels get larger and slower further away from CPU
– Data moved between levels using large blocks

L
1

L
2

R
A
M

Lars Arge

I/O-Algorithms

11

Slow I/O

– Disk systems try to amortize large access time transferring large
contiguous blocks of data (8-16Kbytes)

• Important to store/access data to take advantage of blocks (locality)

• Disk access is 106 times slower than main memory access

track

magnetic surface

read/write arm
read/write head

“The difference in speed
between modern CPU and

disk technologies is
analogous to the difference

in speed in sharpening a
pencil using a sharpener on

one’s desk or by taking an
airplane to the other side of

the world and using a
sharpener on someone else’s

desk.” (D. Comer)

Lars Arge

I/O-Algorithms

12

Scalability Problems
• Most programs developed in RAM-model

– Run on large datasets because
OS moves blocks as needed

• Moderns OS utilizes sophisticated paging and prefetching strategies
– But if program makes scattered accesses even good OS cannot

take advantage of block access

⇓

Scalability problems!

data size

ru
nn

in
g

tim
e

Lars Arge

I/O-Algorithms

13

N = # of items in the problem instance
B = # of items per disk block
M = # of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that M >B2

D

P

M

Block I/O

External Memory Model

Lars Arge

I/O-Algorithms

14

Fundamental Bounds
Internal External

• Scanning: N
• Sorting: N log N
• Permuting
• Searching:

• Note:
– Linear I/O: O(N/B)
– Permuting not linear
– Permuting and sorting bounds are equal in all practical cases
– B factor VERY important:
– Cannot sort optimally with search tree

NBlog

B
N

B
N

B
Mlog

B
N

NB
N

B
N

B
N

B
M <<< log

}log,min{ B
N

B
N

B
MNN

N2log

Scalability Problems: Block Access Matters
• Example: Traversing linked list (List ranking)

– Array size N = 10 elements
– Disk block size B = 2 elements
– Main memory size M = 4 elements (2 blocks)

• Large difference between N and N/B large since block size is large
– Example: N = 256 x 106, B = 8000 , 1ms disk access time
⇒ N I/Os take 256 x 103 sec = 4266 min = 71 hr
⇒ N/B I/Os take 256/8 sec = 32 sec

Algorithm 2: N/B=5 I/OsAlgorithm 1: N=10 I/Os

1 5 2 6 73 4 108 9 1 2 10 9 85 4 76 3

15Lars Arge

I/O-Algorithms

Lars Arge

I/O-Algorithms

16

Queues and Stacks
• Queue:

– Maintain push and pop blocks in main memory

⇓
O(1/B) Push/Pop operations

• Stack:
– Maintain push/pop blocks in main memory

⇓
O(1/B) Push/Pop operations

Push Pop

Lars Arge

I/O-Algorithms

17

Sorting
• <M/B sorted lists (queues) can be merged in O(N/B) I/Os

M/B blocks in main memory

• Unsorted list (queue) can be distributed using <M/B split elements
in O(N/B) I/Os

Lars Arge

I/O-Algorithms

18

Sorting
• Merge sort:

– Create N/M memory sized sorted lists
– Repeatedly merge lists together Θ(M/B) at a time

⇒ phases using I/Os each ⇒ I/Os)(B
NO)(log M

N
B

MO)log(B
N

B
N

B
MO

)(M
NΘ

)/(B
M

M
NΘ

))/((2
B
M

M
NΘ

1

Lars Arge

I/O-Algorithms

19

Sorting
• Distribution sort (multiway quicksort):

– Compute Θ(M/B) splitting elements
– Distribute unsorted list into Θ(M/B) unsorted lists of equal size
– Recursively split lists until fit in memory

⇒ phases
⇒ I/Os if splitting elements computed in O(N/B) I/Os

)(log M
N

B
MO

)log(B
N

B
N

B
MO

Lars Arge

I/O-Algorithms

20

Computing Splitting Elements
• In internal memory (deterministic) quicksort split element (median)

found using linear time selection

• Selection algorithm: Finding i’th element in sorted order
1) Select median of every group of 5 elements
2) Recursively select median of ~ N/5 selected elements
3) Distribute elements into two lists using computed median
4) Recursively select in one of two lists

• Analysis:
– Step 1 and 3 performed in O(N/B) I/Os.
– Step 4 recursion on at most ~ elements
⇒ I/Os

N10
7

)()()()()(10
7

5 B
NNN

B
N OTTONT =++=

Lars Arge

I/O-Algorithms

21

Sorting
• Distribution sort (multiway quicksort):

• Computing splitting elements:
– Θ(M/B) times linear I/O selection ⇒ O(NM/B2) I/O algorithm
– But can use selection algorithm to compute splitting

elements in O(N/B) I/Os, partitioning into lists of size <
⇒ phases ⇒ algorithm

B
M

B
M
N

2
3

)(log)(log M
N

M
N

B
M

B
M OO =)log(B

N
B
N

B
MO

Lars Arge

I/O-Algorithms

22

Computing Splitting Elements
1) Sample elements:

– Create N/M memory sized sorted lists
– Pick every ’th element from each sorted list

2) Choose split elements from sample:
– Use selection algorithm times to find every

’th element

• Analysis:
– Step 1 performed in O(N/B) I/Os
– Step 2 performed in I/Os
⇒ O(N/B) I/Os

B
M
N4

B
M

4
1

B
M

B
M =B

MN
B

M
4

B
M

N4

)()(B
N

B
N

B
M OO

B
M

=⋅

Lars Arge

I/O-Algorithms

23

Computing Splitting Elements
1) Sample elements:

– Create N/M memory sized sorted lists
– Pick every ’th element from each sorted list

2) Choose split elements from sample:
– Use selection algorithm times to find every ’th element

14
1 −B

M

M
N

14 −
B

M
N sampled elements

B
M
N4

B
M

4
1

B
M

B
M

B
M

N4

Lars Arge

I/O-Algorithms

24

Computing Splitting Elements
• Elements in range R defined by consecutive split elements

– Sampled elements in R:
– Between sampled elements in R:
– Between sampled element in R and outside R:
⇒

14
1 −B

M

M
N

14 −
B

M
N sampled elements

14 −
B

M
N

)1()1(4
14 −⋅− B

MN
B

M

)1(2 4
1 −⋅ B

M
M
N

B
M

B
MB

M
B

MB
M

N
B

NNNN
2
3

2
44)(<+−+<

Lars Arge

I/O-Algorithms

25

Summary/Conclusion: Sorting

• External merge or distribution sort takes I/Os
– Merge-sort based on M/B-way merging
– Distribution sort based on -way distribution

and partition elements finding

• Optimal
– As we will prove next time

)log(B
N

B
N

B
MO

B
M

Lars Arge

I/O-Algorithms

26

References

• Input/Output Complexity of Sorting and Related Problems
A. Aggarwal and J.S. Vitter. CACM 31(9), 1998

• External partition element finding
Lecture notes by L. Arge and M. G. Lagoudakis.

Lars Arge

I/O-Algorithms

27

Project 1: Implementation of Merge Sort

http://www.cs.au.dk/~large/ioS12/project1.pdf

	I/O-Algorithms
	Massive Data
	Example: Grid Terrain Data
	Example: LIDAR Terrain Data
	Example: LIDAR Terrain Data
	Example: LIDAR Terrain Data
	Application Example: Flooding Prediction
	Example: Detailed Data Essential
	Random Access Machine Model
	Hierarchical Memory
	Slow I/O
	Scalability Problems
	External Memory Model
	Fundamental Bounds
	Scalability Problems: Block Access Matters
	Queues and Stacks
	Sorting
	Sorting
	Sorting
	Computing Splitting Elements
	Sorting
	Computing Splitting Elements
	Computing Splitting Elements
	Computing Splitting Elements
	Summary/Conclusion: Sorting
	References
	Project 1: Implementation of Merge Sort

