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• Pervasive use of computers and sensors
• Increased ability to acquire/store/process data

→ Massive data collected everywhere
• Society increasingly “data driven”

→ Access/process data anywhere any time

Nature/Science special issues
• 2/06,9/08, 2/11
• Scientific data size growing exponentially,

while quality and availability improving
• Paradigm shift: Science will be about mining data

Massive Data

Obviously not only in sciences:
• Economist 02/10:

• From 150 Billion Gigabytes five years ago
to 1200 Billion today

• Managing data deluge difficult; doing so
will transform business/public life
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Example: Grid Terrain Data
• Appalachian Mountains (800km x 800km)

– 100m resolution ⇒ ~ 64M cells
⇒ ~128MB raw data (~500MB when processing)

– ~ 1.2GB at 30m resolution
NASA SRTM mission acquired 30m
data for 80% of the earth land mass

– ~ 12GB at 10m resolution (much of US available from USGS)
– ~ 1.2TB at 1m resolution (quickly becoming available)
– …. 10-100 points per m2 already possible
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Example: LIDAR Terrain Data
• Massive (irregular) point sets (~1m resolution)

– Becoming relatively cheap and easy to collect

• Sub-meter resolution using mobile mapping
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Example: LIDAR Terrain Data
• COWI A/S (and others) have scanned Denmark



Example: LIDAR Terrain Data

• ~2 million points at 30 meter (<1GB)
• ~18 billion points at 1 meter  (>1TB)
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Application Example: Flooding Prediction

+1 meter
+2 meter



Example: Detailed Data Essential
• Mandø with 2 meter sea-level raise

80 meter terrain model 2 meter terrain model
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Random Access Machine Model

• Standard theoretical model of computation:
– Infinite memory
– Uniform access cost

• Simple model crucial for success of computer industry
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Hierarchical Memory

• Modern machines have complicated memory hierarchy
– Levels get larger and slower further away from CPU
– Data moved between levels using large blocks
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Slow I/O

– Disk systems try to amortize large access time transferring large 
contiguous blocks of data (8-16Kbytes)

• Important to store/access data to take advantage of blocks (locality)

• Disk access is 106 times slower than main memory access

track

magnetic surface

read/write arm
read/write head

“The difference in speed 
between modern CPU and 

disk technologies is  
analogous to the difference 

in speed in sharpening a 
pencil using a sharpener on 

one’s desk or by taking an 
airplane to the other side of 

the world and using a 
sharpener on someone else’s 

desk.” (D. Comer)
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Scalability Problems
• Most programs developed in RAM-model

– Run on large datasets because
OS moves blocks as needed

• Moderns OS utilizes sophisticated paging and prefetching strategies
– But if program makes scattered accesses even good OS cannot 

take advantage of block access

⇓

Scalability problems!

data size

ru
nn

in
g 

tim
e



Lars Arge

I/O-Algorithms

13

N =  # of items in the problem instance
B =  # of items per disk block
M =  # of items that fit in main memory

T =  # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that M >B2

D

P

M

Block  I/O

External Memory Model
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Fundamental Bounds
Internal External

• Scanning: N
• Sorting: N log N
• Permuting
• Searching:

• Note:
– Linear I/O: O(N/B)
– Permuting not linear
– Permuting and sorting bounds are equal in all practical cases
– B factor VERY important: 
– Cannot sort optimally with search tree
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Scalability Problems: Block Access Matters
• Example: Traversing linked list (List ranking)

– Array size N = 10 elements
– Disk block size B = 2 elements
– Main memory size M = 4 elements (2 blocks)

• Large difference between N and N/B large since block size is large
– Example: N = 256 x 106, B = 8000 , 1ms disk access time
⇒ N I/Os take 256 x 103 sec = 4266 min = 71 hr
⇒ N/B I/Os take 256/8 sec = 32 sec

Algorithm 2: N/B=5 I/OsAlgorithm 1: N=10 I/Os

1 5 2 6 73 4 108 9 1 2 10 9 85 4 76 3

15Lars Arge
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Queues and Stacks
• Queue:

– Maintain push and pop blocks in main memory 

⇓
O(1/B) Push/Pop operations

• Stack:
– Maintain push/pop blocks in main memory

⇓
O(1/B) Push/Pop operations

Push Pop
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Sorting
• <M/B sorted lists (queues) can be merged in O(N/B) I/Os

M/B blocks in main memory

• Unsorted list (queue) can be distributed using <M/B split elements 
in O(N/B) I/Os
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Sorting
• Merge sort:

– Create N/M memory sized sorted lists
– Repeatedly merge lists together Θ(M/B) at a time
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Sorting
• Distribution sort (multiway quicksort):

– Compute Θ(M/B) splitting elements
– Distribute unsorted list into Θ(M/B) unsorted lists of equal size
– Recursively split lists until fit in memory

⇒ phases
⇒ I/Os if splitting elements computed in O(N/B) I/Os
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Computing Splitting Elements
• In internal memory (deterministic) quicksort split element (median) 

found using linear time selection

• Selection algorithm: Finding i’th element in sorted order
1) Select median of every group of 5 elements
2) Recursively select median of ~ N/5 selected elements
3) Distribute elements into two lists using computed median
4) Recursively select in one of two lists

• Analysis:
– Step 1 and 3 performed in O(N/B) I/Os.
– Step 4 recursion on at most ~        elements
⇒ I/Os
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Sorting
• Distribution sort (multiway quicksort):

• Computing splitting elements:
– Θ(M/B) times linear I/O selection ⇒ O(NM/B2) I/O algorithm
– But can use selection algorithm to compute           splitting 

elements in O(N/B) I/Os, partitioning into lists of size < 
⇒ phases ⇒ algorithm
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Computing Splitting Elements
1) Sample         elements:

– Create N/M memory sized sorted lists
– Pick every            ’th element from each sorted list

2) Choose          split elements from sample:
– Use selection algorithm           times to find every

’th element

• Analysis:
– Step 1 performed in O(N/B) I/Os
– Step 2 performed in                                          I/Os
⇒ O(N/B) I/Os
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Computing Splitting Elements
1) Sample         elements:

– Create N/M memory sized sorted lists
– Pick every            ’th element from each sorted list

2) Choose          split elements from sample:
– Use selection algorithm           times to find every       ’th element
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Computing Splitting Elements
• Elements in range R defined by consecutive split elements

– Sampled elements in R:
– Between sampled elements in R:
– Between sampled element in R and outside R:
⇒
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Summary/Conclusion: Sorting

• External merge or distribution sort takes                         I/Os
– Merge-sort based on M/B-way merging
– Distribution sort based on         -way distribution

and partition elements finding

• Optimal
– As we will prove next time
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Project 1: Implementation of Merge Sort

http://www.cs.au.dk/~large/ioS12/project1.pdf
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