I/O-Algorithms

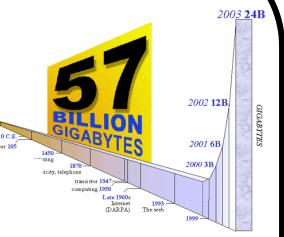
Lars Arge

Spring 2012

January 31, 2012

Massive Data

- Pervasive use of computers and sensors
- Increased ability to acquire/store/process data
 - → Massive data collected everywhere
- Society increasingly "data driven"
 - → Access/process data anywhere any time



Obtion Sy in tonspic is diences

- •• E2/006,9/198,02//110:
- SciEntific to Billion Gischert Specifically, while 1200 Billion to day lability improving
- Managing data deluge difficult; doing so Paradigm shift: Science will be about mining data will transform business/public life

Example: Grid Terrain Data

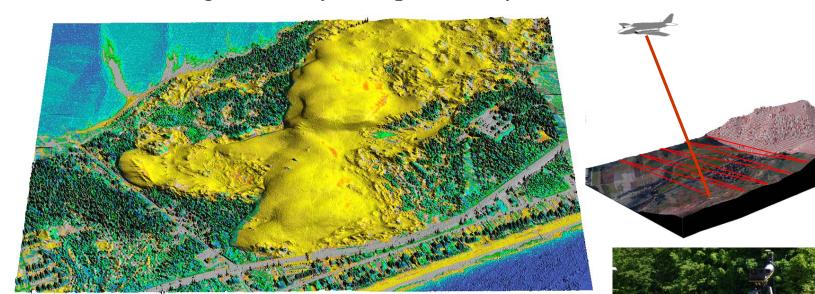
• Appalachian Mountains (800km x 800km)

- -100m resolution $\Rightarrow \sim 64$ M cells
 - \Rightarrow ~128MB raw data (~500MB when processing)
- ~ 1.2GB at 30m resolution
 NASA SRTM mission acquired 30m
 data for 80% of the earth land mass

- ~ 1.2 TB at 1m resolution (quickly becoming available)
- 10-100 points per m² already possible

Example: LIDAR Terrain Data

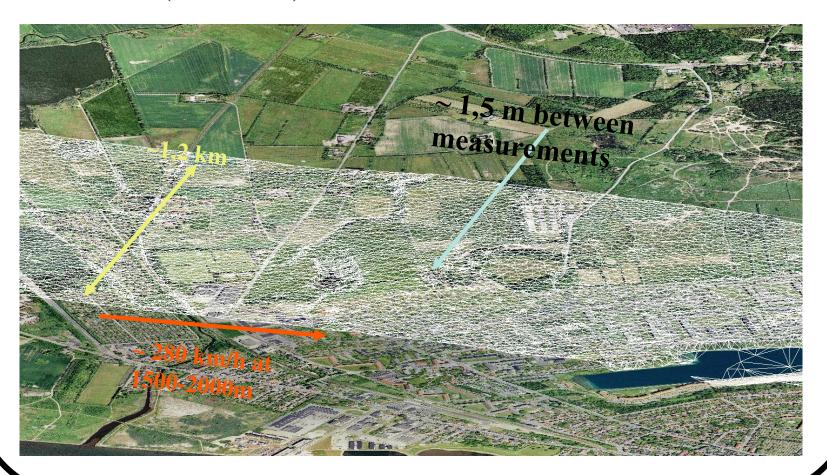
- Massive (irregular) point sets (~1m resolution)
 - Becoming relatively cheap and easy to collect



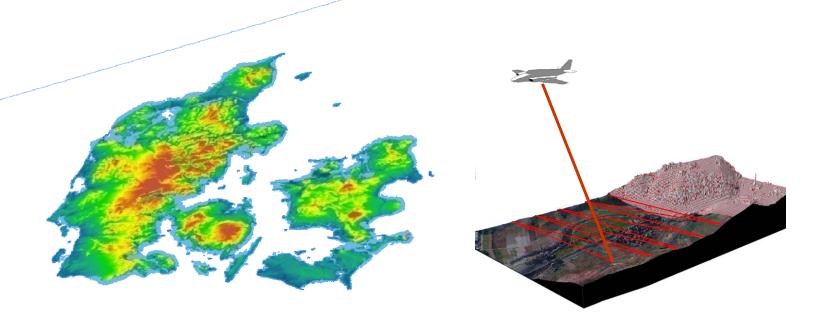
• Sub-meter resolution using mobile mapping

Example: LIDAR Terrain Data

• COWI A/S (and others) have scanned Denmark



Example: LIDAR Terrain Data



- ~2 million points at 30 meter (<1GB)
- \sim 18 billion points at 1 meter (>1TB)

Application Example: Flooding Prediction

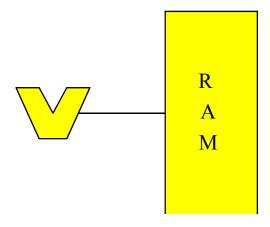
Example: Detailed Data Essential

• Mandø with 2 meter sea-level raise

80 meter terrain model

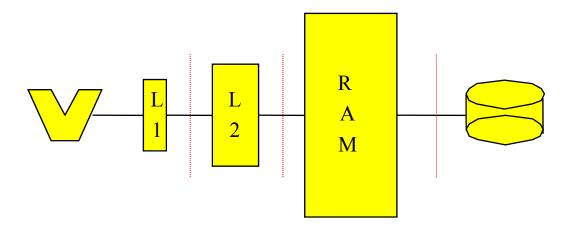
2 meter terrain model

Random Access Machine Model



- Standard theoretical model of computation:
 - Infinite memory
 - Uniform access cost
- Simple model crucial for success of computer industry

Hierarchical Memory



- Modern machines have complicated memory hierarchy
 - Levels get larger and slower further away from CPU
 - Data moved between levels using large blocks

Slow I/O

• Disk access is 10⁶ times slower than main memory access

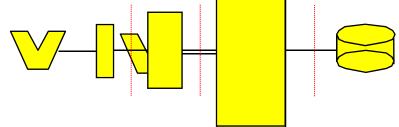
read/write head
read/write arm
The aifference in speed
tween modern CPU and
disk technologies is
analogous to the difference
in speed in sharpening a
pencil using a sharpener on
one's desk or by taking an
airplane to the other side of

airplane to the other side of — Disk systems try to amortize large access time transferring large a contiguous blocks of data (8-16Kbytes) arpener on someone else's

• Important to store/access data to take advantage of blacks (locality)

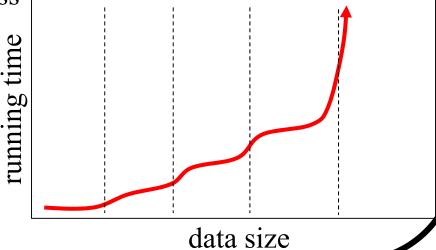
Scalability Problems

- Most programs developed in RAM-model
 - Run on large datasets because
 OS moves blocks as needed



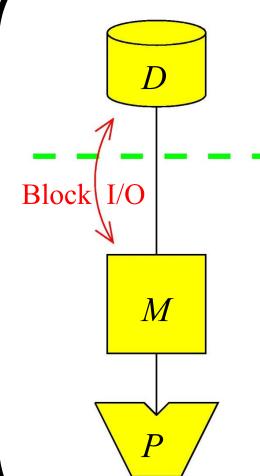
- Moderns OS utilizes sophisticated paging and prefetching strategies
 - But if program makes scattered accesses even good OS cannot

take advantage of block access



Scalability problems!

External Memory Model



N= # of items in the problem instance

B = # of items per disk block

M = # of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that $M > B^2$

Fundamental Bounds

Internal

• Scanning: N

• Sorting: $N \log N$

• Permuting N

• Searching: $\log_2 N$

External

 $\frac{\frac{N}{B}}{\log_{M/B}} \frac{N}{B}$

 $\min\{N, \frac{N}{B} \log_{M/B} \frac{N}{B}\}$

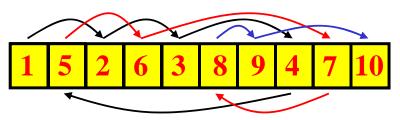
 $\log_B N$

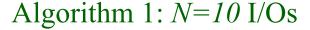
• Note:

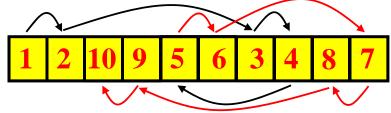
- Linear I/O: O(N/B)
- Permuting not linear
- Permuting and sorting bounds are equal in all practical cases
- B factor VERY important: $\frac{N}{B} < \frac{N}{B} \log_{M/B} \frac{N}{B} << N$
- Cannot sort optimally with search tree

Scalability Problems: Block Access Matters

- Example: Traversing linked list (List ranking)
 - Array size N = 10 elements
 - Disk block size B = 2 elements
 - Main memory size M = 4 elements (2 blocks)







Algorithm 2: N/B=5 I/Os

- Large difference between N and N/B large since block size is large
 - Example: $N = 256 \times 10^6$, B = 8000, 1ms disk access time
 - \Rightarrow N I/Os take 256 x 10³ sec = 4266 min = 71 hr
 - \Rightarrow N/B I/Os take 256/8 sec = 32 sec

Queues and Stacks

- Queue:
 - Maintain push and pop blocks in main memory

 \downarrow

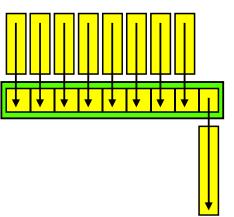
O(1/B) Push/Pop operations

- Stack:
 - Maintain push/pop blocks in main memory

 \bigcup

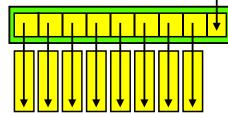
O(1/B) Push/Pop operations

• <*M/B* sorted lists (queues) can be merged in O(N/B) I/Os

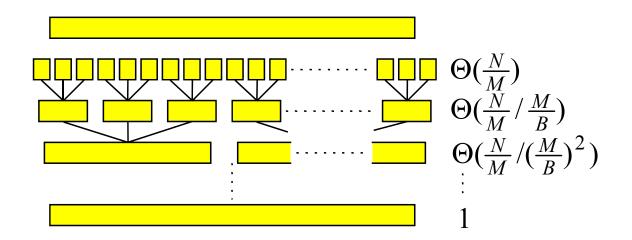


M/B blocks in main memory

• Unsorted list (queue) can be distributed using < M/B split elements in O(N/B) I/Os

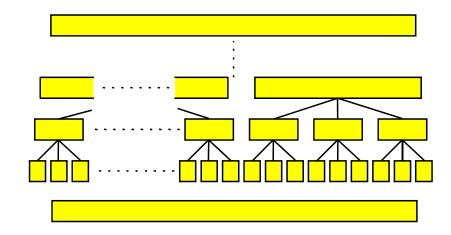


- Merge sort:
 - Create N/M memory sized sorted lists
 - Repeatedly merge lists together $\Theta(M/B)$ at a time



 $\Rightarrow O(\log_{M/B} \frac{N}{M})$ phases using O(N/B) I/Os each $\Rightarrow O(\frac{N}{B} \log_{M/B} \frac{N}{B})$ I/Os

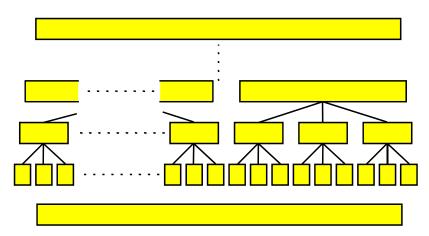
- Distribution sort (multiway quicksort):
 - Compute $\Theta(M/B)$ splitting elements
 - Distribute unsorted list into $\Theta(M/B)$ unsorted lists of equal size
 - Recursively split lists until fit in memory



- $\Rightarrow O(\log_{M/B} \frac{N}{M}) \text{ phases}$ $\Rightarrow O(\frac{N}{B} \log_{M/B} \frac{N}{B}) \text{ I/Os if splitting elements computed in } O(N/B) \text{ I/Os}$

- In internal memory (deterministic) quicksort split element (median) found using linear time selection
- Selection algorithm: Finding *i*'th element in sorted order
 - 1) Select median of every group of 5 elements
 - 2) Recursively select median of $\sim N/5$ selected elements
 - 3) Distribute elements into two lists using computed median
 - 4) Recursively select in one of two lists
- Analysis:
 - Step 1 and 3 performed in O(N/B) I/Os.
 - Step 4 recursion on at most $\sim \frac{7}{10}N$ elements
 - $\Rightarrow T(N) = O(\frac{N}{B}) + T(\frac{N}{5}) + T(\frac{7N}{10}) = O(\frac{N}{B})$ I/Os

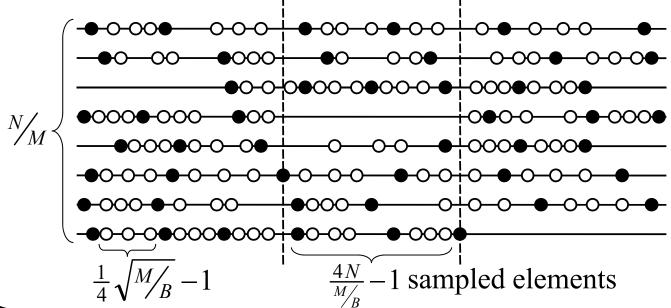
• Distribution sort (multiway quicksort):



- Computing splitting elements:
 - $-\Theta(M/B)$ times linear I/O selection $\Rightarrow O(NM/B^2)$ I/O algorithm
 - But can use selection algorithm to compute $\sqrt{M/B}$ splitting elements in O(N/B) I/Os, partitioning into lists of size $<\frac{3}{2}\frac{N}{\sqrt{M/B}}$
- $\Rightarrow O(\log_{\sqrt{M/B}} \frac{N}{M}) = O(\log_{M/B} \frac{N}{M}) \text{ phases} \Rightarrow O(\frac{N}{B} \log_{M/B} \frac{N}{B}) \text{ algorithm}$

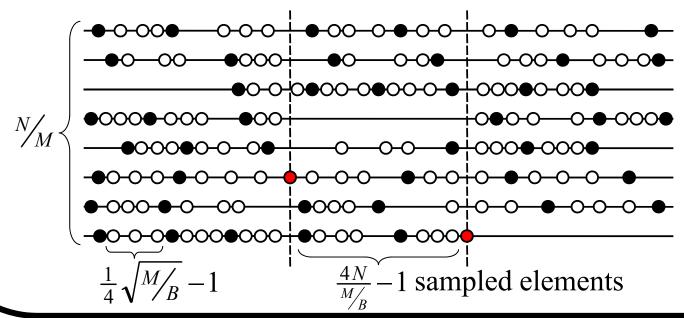
- 1) Sample $\frac{4N}{\sqrt{M/p}}$ elements:
 - Create N/M memory sized sorted lists
 - Pick every $\frac{1}{4}\sqrt{M/B}$ 'th element from each sorted list
- 2) Choose $\sqrt{M/R}$ split elements from sample:
 - Use selection algorithm $\sqrt{M/B}$ times to find every $\frac{4N}{\sqrt{M/B}} / \sqrt{M/B} = \frac{4N}{M/B}$ 'th element
- Analysis:
 - Step 1 performed in O(N/B) I/Os
 - Step 2 performed in $\sqrt{\frac{N}{B}} \cdot O(\frac{N}{\sqrt{\frac{M}{B}}}) = O(\frac{N}{B})$ I/Os
 - $\Rightarrow O(N/B) \text{ I/Os}$

- 1) Sample $\frac{4N}{\sqrt{M/R}}$ elements:
 - Create N/M memory sized sorted lists
 - Pick every $\frac{1}{4}\sqrt{M/B}$ 'th element from each sorted list
- 2) Choose $\sqrt{M/B}$ split elements from sample:
 - Use selection algorithm $\sqrt{M/B}$ times to find every $\frac{4N}{M/B}$ 'th element



- Elements in range R defined by consecutive split elements
 - Sampled elements in R: $\frac{4N}{M_R}$ 1
 - Between sampled elements in $R: (\frac{4N}{M/R} 1) \cdot (\frac{1}{4} \sqrt{M/R} 1)$
 - Between sampled element in R and outside R: $2\frac{N}{M} \cdot (\frac{1}{4}\sqrt{M/B}-1)$

$$\implies < \frac{4N}{M_B} + \left(\frac{N}{\sqrt{M_B}} - \frac{4N}{M_B}\right) + \frac{N}{2B\sqrt{M_B}} < \frac{3}{2} \frac{N}{\sqrt{M_B}}$$



Summary/Conclusion: Sorting

- External merge or distribution sort takes $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
 - Merge-sort based on M/B-way merging
 - Distribution sort based on $\sqrt{M/B}$ -way distribution and partition elements finding
- Optimal
 - As we will prove next time

References

• Input/Output Complexity of Sorting and Related Problems

A. Aggarwal and J.S. Vitter. CACM 31(9), 1998

• External partition element finding

Lecture notes by L. Arge and M. G. Lagoudakis.

Project 1: Implementation of Merge Sort