

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm Search Structure

1397-2

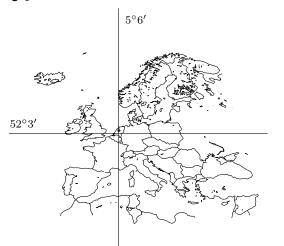
Point Location

4 🗇 → < ∄ → < ≣ → \equiv

Motivation:

Point location in a map

Point location query: Given a map and a query point q specified by its coordinates, find the region of the map containing q.



Computational Geometry

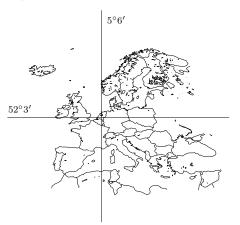
Motivation

Point Location and Trapezoidal Maps

Motivation:

Point location in a map

- Store the map electronically, and let the computer do the point location for you.
- Preprocess the maps, and to store them in a data structure that makes it possible to answer point location queries fast.



Computational Geometry

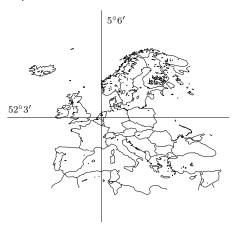
Motivation

Point Location and Trapezoidal Maps

Motivation:

Point location in a map

- Store the map electronically, and let the computer do the point location for you.
- Preprocess the maps, and to store them in a data structure that makes it possible to answer point location queries fast.

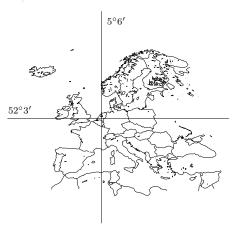


Computational Geometry

Motivation

Point Location and Trapezoidal Maps

- Store the map electronically, and let the computer do the point location for you.
- Preprocess the maps, and to store them in a data structure that makes it possible to answer point location gueries fast.

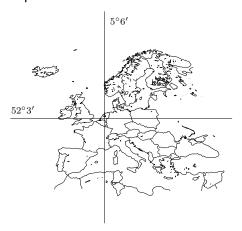


Computational Geometry

Motivation

Point Location and Trapezoidal Maps

- Store the map electronically, and let the computer do the point location for you.
- Preprocess the maps, and to store them in a data structure that makes it possible to answer point location queries fast.

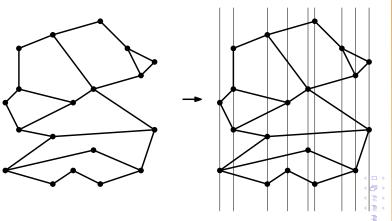


Computational Geometry

Motivation

Point Location and Trapezoidal Maps

 Given a planar subdivision S with n edges, store S in such a way that we can answer queries of the following type: Given a query point q, report the face f of S that contains q.

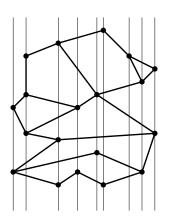


Computational Geometry

Motivation

Point Location and Trapezoidal Maps

- Find the slab containing the query point: $\mathcal{O}(\log n)$ time.

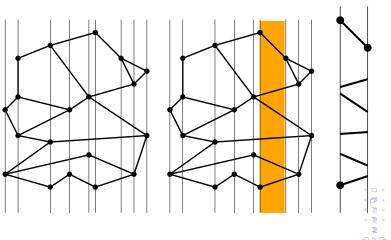


Computational Geometry

Motivation

Point Location and Trapezoidal Maps

- Find the slab containing the query point: $\mathcal{O}(\log n)$ time.
- Query the slab: $O(\log n)$ time.



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

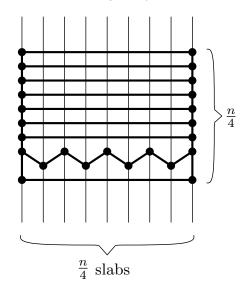
• What about the storage requirements?

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

• What about the storage requirements?

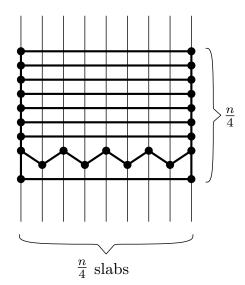


Computational Geometry

Motivation

Point Location and Trapezoidal Maps

• What about the storage requirements? $\mathcal{O}(n^2)$



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Two Simplifications:

- Bounding Box.
- No two distinct points on a vertical line (general position).

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Two Simplifications:

- Bounding Box.
- No two distinct points on a vertical line (general position).

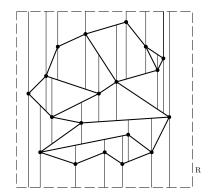
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Trapezoidal Map:

- drawing two vertical extensions from every endpoint
- Sides of a face



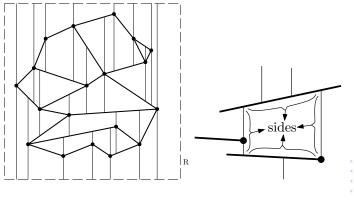
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Trapezoidal Map:

- drawing two vertical extensions from every endpoint
- Sides of a face



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Lemma 6.1 Each face in a trapezoidal map of a set *S* of line segments in general position has one or two vertical sides and exactly two non-vertical sides.

Proof.

- Each face is convex: all angles are at most 180°
- Because of the convexity, each face has at most 2 vertical sides.
- If there is more than two non-vertical sides, then at least two of them must meet at a vertex which contradict the definition of a face.
- Since a face is bounded, it cannot have less than two non-vertical sides and that it must have at least one vertical side.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Lemma 6.1 Each face in a trapezoidal map of a set *S* of line segments in general position has one or two vertical sides and exactly two non-vertical sides.

Proof.

- Each face is convex: all angles are at most 180°
- Because of the convexity, each face has at most 2 vertical sides.
- If there is more than two non-vertical sides, then at least two of them must meet at a vertex which contradict the definition of a face.
- Since a face is bounded, it cannot have less than two non-vertical sides and that it must have at least one vertical side.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Lemma 6.1 Each face in a trapezoidal map of a set *S* of line segments in general position has one or two vertical sides and exactly two non-vertical sides.

Proof.

- Each face is convex: all angles are at most 180°
- Because of the convexity, each face has at most 2 vertical sides.
- If there is more than two non-vertical sides, then at least two of them must meet at a vertex which contradict the definition of a face.
- Since a face is bounded, it cannot have less than two non-vertical sides and that it must have at least one vertical side.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Lemma 6.1 Each face in a trapezoidal map of a set *S* of line segments in general position has one or two vertical sides and exactly two non-vertical sides.

Computational Geometry

Motivation

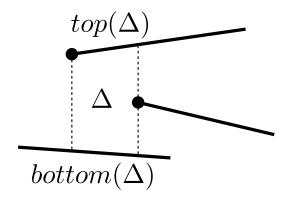
Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Proof.

- Each face is convex: all angles are at most 180°
- Because of the convexity, each face has at most 2 vertical sides.
- If there is more than two non-vertical sides, then at least two of them must meet at a vertex which contradict the definition of a face.
- Since a face is bounded, it cannot have less than two non-vertical sides and that it must have at least one vertical side.

Lemma 6.1 Each face in a trapezoidal map of a set *S* of line segments in general position has one or two vertical sides and exactly two non-vertical sides.



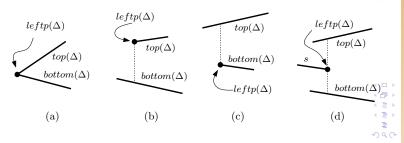
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Trapezoidal Maps: Cases for the left side:

- (a) It degenerates to a point, which is the common left endpoint of $top(\Delta)$ and $bottom(\Delta)$.
- (b) It is the lower vertical extension of the left endpoint of top(Δ) that abuts on bottom(Δ).
- (c) It is the upper vertical extension of the left endpoint of $bottom(\Delta)$ that abuts on $top(\Delta)$.
- (d) It consists of the upper and lower extension of the right endpoint p of a third segment s. These extensions abut on $top(\Delta)$ and $bottom(\Delta)$, respectively.
- (e) It is the left edge of R. This case occurs for a single trapezoid of $\mathcal{T}(S)$ only, namely the unique leftmost trapezoid of $\mathcal{T}(S)$.



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Lemma 6.2 The trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position contains at most 6n + 4 vertices and at most 3n + 1 trapezoids.

Proof.

- #vertices: Bounding box+endpoints of line segments+new vertices generated by extensions= 4+2n+2(2n)=6n+4.
- Left endpoint of a segment can be $leftp(\Delta)$ of two trapezoids. (Note coincide endpoints) .
- Right endpoint of a segment can be $leftp(\Delta)$ of one trapezoid.
- #trapezoids= 3n + 1.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Lemma 6.2 The trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position contains at most 6n + 4 vertices and at most 3n + 1 trapezoids.

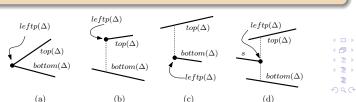
Proof.

- #vertices: Bounding box+endpoints of line segments+new vertices generated by extensions= 4 + 2n + 2(2n) = 6n + 4.
- Left endpoint of a segment can be $leftp(\Delta)$ of two trapezoids. (Note coincide endpoints) .
- Right endpoint of a segment can be $leftp(\Delta)$ of one trapezoid.
- #trapezoids= 3n + 1.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps



Lemma 6.2 The trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position contains at most 6n + 4 vertices and at most 3n + 1 trapezoids.

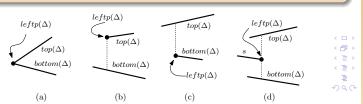
Proof.

- #vertices: Bounding box+endpoints of line segments+new vertices generated by extensions= 4 + 2n + 2(2n) = 6n + 4.
- Left endpoint of a segment can be $leftp(\Delta)$ of two trapezoids. (Note coincide endpoints) .
- Right endpoint of a segment can be $leftp(\Delta)$ of one trapezoid.
- #trapezoids= 3n + 1.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps



Lemma 6.2 The trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position contains at most 6n + 4 vertices and at most 3n + 1 trapezoids.

Proof.

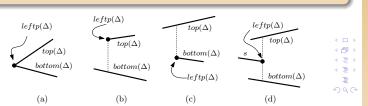
- #vertices: Bounding box+endpoints of line segments+new vertices generated by extensions= 4 + 2n + 2(2n) = 6n + 4.
- Left endpoint of a segment can be $leftp(\Delta)$ of two trapezoids. (Note coincide endpoints) .
- Right endpoint of a segment can be $leftp(\Delta)$ of one trapezoid.
- #trapezoids= 3n + 1.

Computational Geometry

Motivation

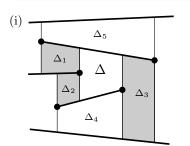
Point Location and Trapezoidal Maps

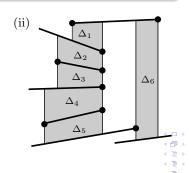
A Randomized Incremental Algorithm



Definition: Adjacent

- Two trapezoids are adjacent if they meet along a vertical edge.
- Since line segments are in general position, a trapezoid has at most 4 adjacent trapezoids.





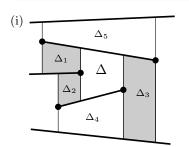
Computational Geometry

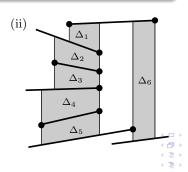
Motivation

Point Location and Trapezoidal Maps

Definition: Adjacent

- Two trapezoids are adjacent if they meet along a vertical edge.
- Since line segments are in general position, a trapezoid has at most 4 adjacent trapezoids.





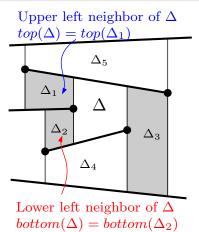
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Definition: Upper and Lower left neighbor

• If Δ' is adjacent to Δ along the left vertical of Δ :



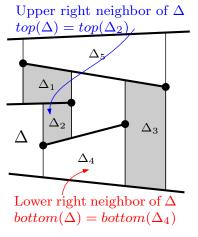
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

Definition: Upper and Lower right neighbor

• If Δ' is adjacent to Δ along the right vertical of Δ :



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

How to store a trapezoidal map:

- In a DCEL
 - Records for line segments and their endpoints
 For each trapezoid: store pointer to top, bottom, leftp
 and rightp and neighbors of the trapezoid.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

How to store a trapezoidal map:

- In a DCEL
- Specialize structure:
 Records for line segments and their endpoints
 For each trapezoid: store pointer to top, bottom, leftp
 and rightp and neighbors of the trapezoid.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Randomized Incremental Algorithm

- Randomized: See it later.
- Incremental: We add segments one by one.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Randomized Incremental Algorithm

- Randomized: See it later.
- Incremental: We add segments one by one.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Point Location Data Structure (search structure)

- Directed Acyclic Graph
- Exactly one leaf for each trapezoid
- Inner nodes have out-degree 2.
- Inner nodes: x-nodes: labeled with an endpoint.
- Inner nodes: y-nodes: labeled with a segment.
- A query point starts at the root and traverse the structure until it reaches a leaf that contains q.

Computational Geometry

Motivation

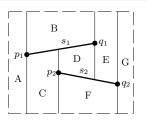
Point Location and Trapezoidal Maps

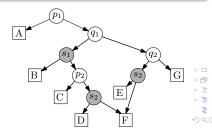
A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Point Location Data Structure (search structure)

- Directed Acyclic Graph
- Exactly one leaf for each trapezoid
- Inner nodes have out-degree 2.
- Inner nodes: x-nodes: labeled with an endpoint
- Inner nodes: y-nodes: labeled with a segment.
- A query point starts at the root and traverse the structure until it reaches a leaf that contains q.





Computational Geometry

Motivation

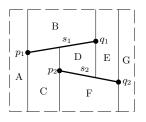
Point Location and Trapezoidal Maps

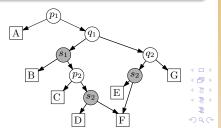
A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Point Location Data Structure (search structure)

- Directed Acyclic Graph
- Exactly one leaf for each trapezoid
- Inner nodes have out-degree 2.
- Inner nodes: x-nodes: labeled with an endpoint.
- Inner nodes: y-nodes: labeled with a segment.
- A query point starts at the root and traverse the structure until it reaches a leaf that contains q.





Computational Geometry

Motivation

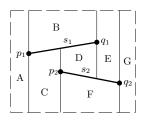
Point Location and Trapezoidal Maps

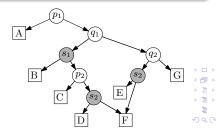
A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Point Location Data Structure (search structure)

- Directed Acyclic Graph
- Exactly one leaf for each trapezoid
- Inner nodes have out-degree 2.
- Inner nodes: x-nodes: labeled with an endpoint.
- Inner nodes: y-nodes: labeled with a segment.
- A query point starts at the root and traverse the structure until it reaches a leaf that contains q.





Computational Geometry

Motivation

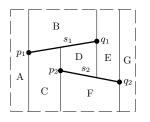
Point Location and Trapezoidal Maps

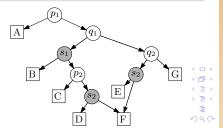
A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Point Location Data Structure (search structure)

- Directed Acyclic Graph
- Exactly one leaf for each trapezoid
- Inner nodes have out-degree 2.
- Inner nodes: x-nodes: labeled with an endpoint.
- Inner nodes: *y*-nodes: labeled with a segment.
- A query point starts at the root and traverse the structure until it reaches a leaf that contains q.





Computational Geometry

Motivation

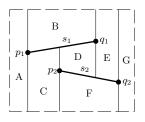
Point Location and Trapezoidal Maps

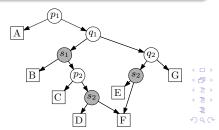
A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Point Location Data Structure (search structure)

- Directed Acyclic Graph
- Exactly one leaf for each trapezoid
- Inner nodes have out-degree 2.
- Inner nodes: x-nodes: labeled with an endpoint.
- Inner nodes: *y*-nodes: labeled with a segment.
- A query point starts at the root and traverse the structure until it reaches a leaf that contains q.





Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

The Trapezoid Construction Algorithm:

- Incremental: Add segments one-by-one and update the structure.
- Randomized: Add segments in Random orderings.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

The Trapezoid Construction Algorithm:

- Incremental: Add segments one-by-one and update the structure.
- Randomized: Add segments in Random orderings.

Algorithm TRAPEZOIDALMAP(S)

Input. A set *S* of *n* non-crossing line segments.

Output. The trapezoidal map $\mathfrak{T}(S)$ and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in a bounding box.

- Determine a bounding box R that contains all segments of S, and initialize the trapezoidal map structure T and search structure D for it.
- 2. Compute a random permutation s_1, s_2, \ldots, s_n of the elements of S.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** Find the set $\Delta_0, \Delta_1, \dots, \Delta_k$ of trapezoids in \mathcal{T} properly intersected by s_i .
- 5. Remove $\Delta_0, \Delta_1, \dots, \Delta_k$ from $\mathfrak T$ and replace them by the new trapezoids that appear because of the insertion of s_i .
- 6. Remove the leaves for $\Delta_0, \Delta_1, \dots, \Delta_k$ from \mathcal{D} , and create leaves for the new trapezoids. Link the new leaves to the existing inner nodes by adding some new inner nodes, as explained below.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Algorithm TRAPEZOIDALMAP(S)

Input. A set *S* of *n* non-crossing line segments.

Output. The trapezoidal map $\mathfrak{T}(S)$ and a search structure $\mathfrak D$ for $\mathfrak T(S)$ in a bounding box.

- 1. Determine a bounding box R that contains all segments of S, and initialize the trapezoidal map structure $\mathfrak T$ and search structure $\mathfrak D$ for it.
- 2. Compute a random permutation s_1, s_2, \dots, s_n of the elements of S.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** Find the set $\Delta_0, \Delta_1, \dots, \Delta_k$ of trapezoids in \mathcal{T} properly intersected by s_i .
- 5. Remove $\Delta_0, \Delta_1, \dots, \Delta_k$ from \mathcal{T} and replace them by the new trapezoids that appear because of the insertion of s_i .
- 6. Remove the leaves for $\Delta_0, \Delta_1, \dots, \Delta_k$ from \mathcal{D} , and create leaves for the new trapezoids. Link the new leaves to the existing inner nodes by adding some new inner nodes, as explained below.

Yazd Univ.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

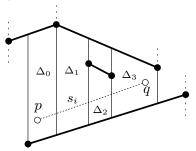
A Randomized Incremental Algorithm

Algorithm TRAPEZOIDALMAP(S)

Input. A set *S* of *n* non-crossing line segments.

Output. The trapezoidal map $\mathfrak{I}(S)$ and a search structure \mathfrak{D} for $\mathfrak{I}(S)$ in a bounding box.

- Determine a bounding box R that contains all segments of S, and initialize the trapezoidal map structure T and search structure D for it.
- 2. Compute a random permutation s_1, s_2, \dots, s_n of the elements of S.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do** Find the set $\Delta_0, \Delta_1, \dots, \Delta_k$ of trapezoids in \mathcal{T} properly intersected by s_i .
- 5. Remove $\Delta_0, \Delta_1, \dots, \Delta_k$ from \mathcal{T} and replace them by the new trapezoids that appear because of the insertion of s_i .
- 6. Remove the leaves for $\Delta_0, \Delta_1, \dots, \Delta_k$ from \mathcal{D} , and create leaves for the new trapezoids. Link the new leaves to the existing inner nodes by adding some new inner nodes, as explained below.



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

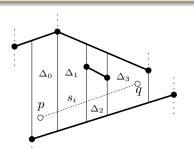
A Randomized Incremental Algorithm

< ∄ > ∄

A Randomized Incremental Algorithm

The Trapezoid Construction Algorithm:

- Δ_0 is the trapezoid that contains the left endpoint of s_i , say p.
- Δ_{j+1} is one of right neighbors of Δ_j .
- In searching p in the structure: If p lie on a vertical line: go to the right. If p lies on a segment s of a y-node: If $slope(s_i) > slope(s)$ then p is above s.



Computational Geometry

Motivation

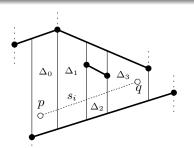
Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

The Trapezoid Construction Algorithm:

- Δ_0 is the trapezoid that contains the left endpoint of s_i , say p.
- Δ_{j+1} is one of right neighbors of Δ_j .
- In searching p in the structure: If p lie on a vertical line: go to the right. If p lies on a segment s of a y-node: If $slope(s_i) > slope(s)$ then p is above s.



Computational Geometry

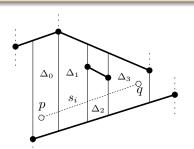
Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

The Trapezoid Construction Algorithm:

- Δ_0 is the trapezoid that contains the left endpoint of s_i , say p.
- Δ_{j+1} is one of right neighbors of Δ_j .
- In searching p in the structure:
 If p lie on a vertical line: go to the right.
 If p lies on a segment s of a y-node: If slope(s_i) > slope(s) then p is above s.



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

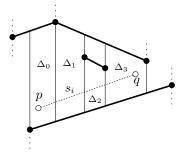
A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Algorithm FOLLOWSEGMENT($\mathcal{T}, \mathcal{D}, s_i$)

Input. A trapezoidal map \mathcal{T} , a search structure \mathcal{D} for \mathcal{T} , and a new segment s_i . *Output.* The sequence $\Delta_0, \ldots, \Delta_k$ of trapezoids intersected by s_i .

- 1. Let p and q be the left and right endpoint of s_i .
- 2. Search with p in the search structure \mathcal{D} to find Δ_0 .
- 3. $j \leftarrow 0$;
- 4. **while** *q* lies to the right of $rightp(\Delta_j)$
- 5. **do if** $rightp(\Delta_i)$ lies above s_i
- 6. **then** Let Δ_{j+1} be the lower right neighbor of Δ_j .
- 7. **else** Let Δ_{j+1} be the upper right neighbor of Δ_j .
- 8. $j \leftarrow j + 1$
- 9. **return** $\Delta_0, \Delta_1, \dots, \Delta_j$



Computational Geometry

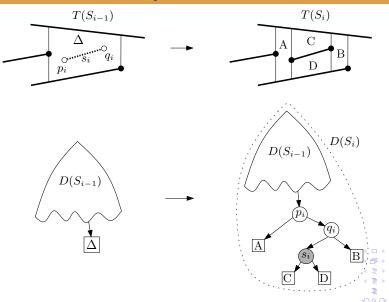
Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

< ∄ > ∄

A Randomized Incremental Algorithm



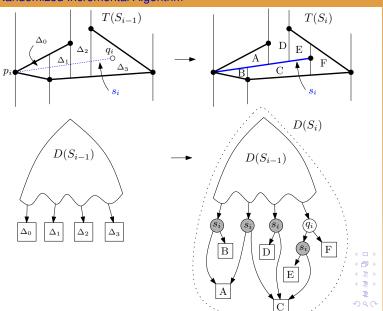
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm



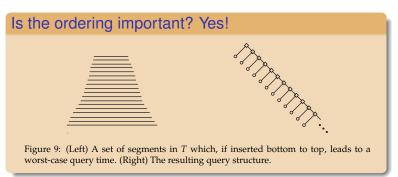
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm



Here the Random ordering helps!

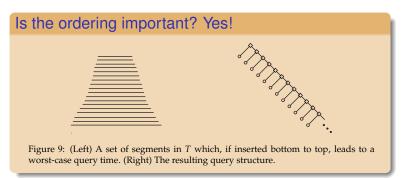
Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm



Here the Random ordering helps!

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof.

- The query Complexity: Worst case: Depends on the depth of the DAG (O(n)).
- Expected case: Average on all orders of inserting segments!
- P: the search path.
 X_i: # vertices on P that created in step i of the algorithm.
- X_i is a random variable (its value depends on the order that the algorithm adds segments).
- $|P| = \sum_{i=1} X_i$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof.

- The query Complexity: Worst case: Depends on the depth of the DAG (O(n)).
- Expected case: Average on all orders of inserting segments!
- P: the search path.
 X_i: # vertices on P that created in step i of the algorithm.
- X_i is a random variable (its value depends on the order that the algorithm adds segments).
- $|P| = \sum_{i=1}^{n} X_i$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof.

- The query Complexity: Worst case: Depends on the depth of the DAG (O(n)).
- Expected case: Average on all orders of inserting segments!
- P: the search path.
 X_i: # vertices on P that created in step i of the algorithm.
- X_i is a random variable (its value depends on the order that the algorithm adds segments).

$$|P| = \sum_{i=1} X_i$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof.

- The query Complexity: Worst case: Depends on the depth of the DAG (O(n)).
- Expected case: Average on all orders of inserting segments!
- P: the search path.
 X_i: # vertices on P that created in step i of the algorithm.
- X_i is a random variable (its value depends on the order that the algorithm adds segments).

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof.

- The query Complexity: Worst case: Depends on the depth of the DAG (O(n)).
- Expected case: Average on all orders of inserting segments!
- P: the search path.
 X_i: # vertices on P that created in step i of the algorithm.
- X_i is a random variable (its value depends on the order that the algorithm adds segments).
- $|P| = \sum_{i=1}^{n} X_i$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

$$Exp(|P|) = Exp\left(\sum_{i=1}^n X_i\right)$$

$$= \sum_{i=1}^n Exp(X_i) \ (P_i = \text{Possibility of having a node in iteration } i)$$

$$\leq \sum_{i=1}^n 3P_i \ (\text{Since } X_i \leq 3)$$

المنابع المناب

Computational Geometry

Yazd Univ

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Notation: $\Delta_q(S_i)$: the trapezoid containing q in $T(S_i)$
- $P_i = Pr[\Delta_q(S_i) \neq \Delta_q(S_{i-1})].$
- If $\Delta_q(S_i) \neq \Delta_q(S_{i-1})$, then $\Delta_q(S_i)$ is one of the trapezoids that generated in step i.
- all trapezoids △ created in iteration i are adjacent to s_i.
- the segment that is inserted in iteration i: either $top(\Delta)$ or $bottom(\Delta)$ is s_i , or $leftp(\Delta)$ or $rightp(\Delta)$ is an endpoint of s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Notation: $\Delta_q(S_i)$: the trapezoid containing q in $T(S_i)$
- $P_i = Pr[\Delta_q(S_i) \neq \Delta_q(S_{i-1})].$
- If $\Delta_q(S_i) \neq \Delta_q(S_{i-1})$, then $\Delta_q(S_i)$ is one of the trapezoids that generated in step i.
- all trapezoids Δ created in iteration i are adjacent to s_i .
- the segment that is inserted in iteration i: either $top(\Delta)$ or $bottom(\Delta)$ is s_i , or $leftp(\Delta)$ or $rightp(\Delta)$ is an endpoint of s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Notation: $\Delta_q(S_i)$: the trapezoid containing q in $T(S_i)$
- $P_i = Pr[\Delta_q(S_i) \neq \Delta_q(S_{i-1})].$
- If $\Delta_q(S_i) \neq \Delta_q(S_{i-1})$, then $\Delta_q(S_i)$ is one of the trapezoids that generated in step i.
- all trapezoids ∆ created in iteration i are adjacent to s_i.
- the segment that is inserted in iteration i: either $top(\Delta)$ or $bottom(\Delta)$ is s_i , or $leftp(\Delta)$ or $rightp(\Delta)$ is an endpoint of s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Notation: $\Delta_q(S_i)$: the trapezoid containing q in $T(S_i)$
- $P_i = Pr[\Delta_q(S_i) \neq \Delta_q(S_{i-1})].$
- If $\Delta_q(S_i) \neq \Delta_q(S_{i-1})$, then $\Delta_q(S_i)$ is one of the trapezoids that generated in step i.
- all trapezoids Δ created in iteration i are adjacent to s_i .
- the segment that is inserted in iteration i: either $top(\Delta)$ or $bottom(\Delta)$ is s_i , or $leftp(\Delta)$ or $rightp(\Delta)$ is an endpoint of s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Notation: $\Delta_q(S_i)$: the trapezoid containing q in $T(S_i)$
- $P_i = Pr[\Delta_q(S_i) \neq \Delta_q(S_{i-1})].$
- If $\Delta_q(S_i) \neq \Delta_q(S_{i-1})$, then $\Delta_q(S_i)$ is one of the trapezoids that generated in step i.
- all trapezoids Δ created in iteration i are adjacent to s_i .
- the segment that is inserted in iteration i: either $top(\Delta)$ or $bottom(\Delta)$ is s_i , or $leftp(\Delta)$ or $rightp(\Delta)$ is an endpoint of s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- For a fixed set $S_i \subset S$, $T(S_i)$, and therefore $\Delta_q(S_i)$, are uniquely defined (does not depend on the order).
- To bound the probability that the trapezoid containing q has changed due to the insertion of s_i , we use backward analysis.
- Backward Analysis: Consider $T(S_i)$ and look at the probability that $\Delta_q(S_i)$ disappears from the trapezoidal map when we remove the segment s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

What is the bound for P_i ?

- For a fixed set $S_i \subset S$, $T(S_i)$, and therefore $\Delta_q(S_i)$, are uniquely defined (does not depend on the order).
- To bound the probability that the trapezoid containing q has changed due to the insertion of s_i , we use backward analysis.
- Backward Analysis: Consider $T(S_i)$ and look at the probability that $\Delta_q(S_i)$ disappears from the trapezoidal map when we remove the segment s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- For a fixed set $S_i \subset S$, $T(S_i)$, and therefore $\Delta_q(S_i)$, are uniquely defined (does not depend on the order).
- To bound the probability that the trapezoid containing q has changed due to the insertion of s_i , we use backward analysis.
- Backward Analysis: Consider $T(S_i)$ and look at the probability that $\Delta_q(S_i)$ disappears from the trapezoidal map when we remove the segment s_i .

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Backward Analysis: Consider $T(S_i)$ and look at the probability that $\Delta_q(S_i)$ disappears from the trapezoidal map when we remove the segment s_i .
- $\Delta_q(S_i)$ disappears \iff one of $top(\Delta_q(S_i))$, $bottom(\Delta_q(S_i))$, $leftp(\Delta_q(S_i))$, or $rightp(\Delta_q(S_i))$ disappears with the removal of s_i .
- What is the probability that $top(\Delta_q(S_i))$ disappears? S_i inserted in random order, so every segment in S_i is equally likely to be s_i . So, the probability that s_i happens to be $top(\Delta_q(S_i))$ is $\frac{1}{i}$.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Backward Analysis: Consider $T(S_i)$ and look at the probability that $\Delta_q(S_i)$ disappears from the trapezoidal map when we remove the segment s_i .
- $\Delta_q(S_i)$ disappears \iff one of $top(\Delta_q(S_i))$, $bottom(\Delta_q(S_i))$, $leftp(\Delta_q(S_i))$, or $rightp(\Delta_q(S_i))$ disappears with the removal of s_i .
- What is the probability that $top(\Delta_q(S_i))$ disappears? S_i inserted in random order, so every segment in S_i is equally likely to be s_i . So, the probability that s_i happens to be $top(\Delta_q(S_i))$ is $\frac{1}{i}$.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- Backward Analysis: Consider $T(S_i)$ and look at the probability that $\Delta_q(S_i)$ disappears from the trapezoidal map when we remove the segment s_i .
- $\Delta_q(S_i)$ disappears \iff one of $top(\Delta_q(S_i))$, $bottom(\Delta_q(S_i))$, $leftp(\Delta_q(S_i))$, or $rightp(\Delta_q(S_i))$ disappears with the removal of s_i .
- What is the probability that $top(\Delta_q(S_i))$ disappears? S_i inserted in random order, so every segment in S_i is equally likely to be s_i . So, the probability that s_i happens to be $top(\Delta_q(S_i))$ is $\frac{1}{i}$.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\Im(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- What is the probability that $top(\Delta_q(S_i))$ disappears? S_i inserted in random order, so every segment in S_i is equally likely to be s_i . So, the probability that s_i happens to be $top(\Delta_q(S_i))$ is $\frac{1}{i}$.

$$P_{i} = Pr[\Delta_{q}(S_{i}) \neq \Delta_{q}(S_{i-1})]$$

$$= Pr[\Delta_{q}(S_{i}) \notin T(S_{i-1})]$$

$$\leq \frac{4}{i}.$$

Computational Geometry

Point Location and Trapezoidal Maps

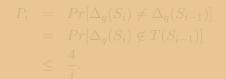
A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- What is the probability that $top(\Delta_q(S_i))$ disappears? S_i inserted in random order, so every segment in S_i is equally likely to be s_i . So, the probability that s_i happens to be $top(\Delta_q(S_i))$ is $\frac{1}{i}$.
- Same argument works for bottom, rightp, leftp.



Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

What is the bound for P_i ?

- What is the probability that $top(\Delta_q(S_i))$ disappears? S_i inserted in random order, so every segment in S_i is equally likely to be s_i . So, the probability that s_i happens to be $top(\Delta_q(S_i))$ is $\frac{1}{i}$.
- Same argument works for bottom, rightp, leftp.

$$P_{i} = Pr[\Delta_{q}(S_{i}) \neq \Delta_{q}(S_{i-1})]$$

$$= Pr[\Delta_{q}(S_{i}) \notin T(S_{i-1})]$$

$$\leq \frac{4}{i}.$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

$$Exp(|P|) = Exp\left(\sum_{i=1}^{n} X_i\right)$$

$$= \sum_{i=1}^{n} Exp(X_i)$$

$$\leq \sum_{i=1}^{n} 3P_i$$

$$\leq \sum_{i=1}^{n} \frac{12}{i} \text{ (Since } P_i \leq 4/i)$$

$$\leq 12(\ln n + 1). \text{ Done!}$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity:

- Size of D: # leaves + # internal nodes.
- # leaves= # trapezoids= O(n).
- # internal nodes: $k_i 1$ (k_i is # leaves generated in step i).
- Worst case: $k_i = O(i) \Rightarrow$ Size of $D = O(n) + \sum_{i=1}^{n} i = O(n^2)$.
- Expected Size: $O(n) + E[\sum_{i=1}^{n} (k_i 1)] = O(n) + E[\sum_{i=1}^{n} (k_i)].$

Yazd Univ.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity:

- Size of D: # leaves + # internal nodes.
- # leaves= # trapezoids= O(n).
- # internal nodes: $k_i 1$ (k_i is # leaves generated in step i).
- Worst case: $k_i = O(i) \Rightarrow$ Size of $D = O(n) + \sum_{i=1}^{n} i = O(n^2)$.
- Expected Size: $O(n) + E[\sum_{i=1}^{n} (k_i 1)] = O(n) + E[\sum_{i=1}^{n} (k_i)].$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Search Structure

10(0

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity:

- Size of D: # leaves + # internal nodes.
- # leaves= # trapezoids= O(n).
- # internal nodes: $k_i 1$ (k_i is # leaves generated in step i).
- Worst case: $k_i = O(i) \Rightarrow$ Size of $D = O(n) + \sum_{i=1}^{n} i = O(n^2)$
- Expected Size:

$$O(n) + E\left[\sum_{i=1}^{n} (k_i - 1)\right] = O(n) + E\left[\sum_{i=1}^{n} (k_i)\right]$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

earch Structure

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity:

- Size of D: # leaves + # internal nodes.
- # leaves= # trapezoids= O(n).
- # internal nodes: $k_i 1$ (k_i is # leaves generated in step i).
- Worst case: $k_i = O(i) \Rightarrow$ Size of $D = O(n) + \sum_{i=1}^{n} i = O(n^2)$.
- Expected Size:

$$O(n) + E\left[\sum_{i=1}^{n} (k_i - 1)\right] = O(n) + E\left[\sum_{i=1}^{n} (k_i)\right].$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Search Structure

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity:

- Size of *D*: # leaves + # internal nodes.
- # leaves= # trapezoids= O(n).
- # internal nodes: $k_i 1$ (k_i is # leaves generated in step i).
- Worst case: $k_i = O(i) \Rightarrow$ Size of $D = O(n) + \sum_{i=1}^{n} i = O(n^2)$.
- Expected Size:

$$O(n) + E[\sum_{i=1}^{n} (k_i - 1)] = O(n) + E[\sum_{i=1}^{n} (k_i)].$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Search Structure

) d (+

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity: (Cont.)

- Upper bound for $E(k_i)$?
- For $\Delta \in T(S_i)$ and $s \in S_i$,

$$\delta(\Delta,s) = \left\{ \begin{array}{ll} 1 & \text{if } \Delta \text{ disappears when } s \text{ is removed} \\ 0 & \text{otherwise.} \end{array} \right.$$

 Since at most 4 segments can cause disappearance of a trapezoid

$$\sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \delta(\Delta, s) \le 4|T(S_i)| = O(i).$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm Search Structure

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity: (Cont.)

- Upper bound for $E(k_i)$?
- For $\Delta \in T(S_i)$ and $s \in S_i$,

$$\delta(\Delta,s) = \left\{ \begin{array}{ll} 1 & \text{if } \Delta \text{ disappears when } s \text{ is removed.} \\ 0 & \text{otherwise.} \end{array} \right.$$

 Since at most 4 segments can cause disappearance of a trapezoid

$$\sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \delta(\Delta, s) \le 4|T(S_i)| = O(i).$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity: (Cont.)

- Upper bound for $E(k_i)$?
- For $\Delta \in T(S_i)$ and $s \in S_i$,

$$\delta(\Delta,s) = \left\{ \begin{array}{ll} 1 & \text{if } \Delta \text{ disappears when } s \text{ is removed.} \\ 0 & \text{otherwise.} \end{array} \right.$$

 Since at most 4 segments can cause disappearance of a trapezoid

$$\sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \delta(\Delta, s) \le 4|T(S_i)| = O(i).$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity: (Cont.)

- k_i is # leaves generated in step i
- Upper bound for $E(k_i)$?
- For $E(k_i)$ we take average on all cases:

$$E(k_i) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \delta(\Delta, s) \le \frac{O(i)}{i} = O(1)$$

• Size= $O(n) + \sum_{i=1}^{n} E(k_i) = O(n)$.

Yaza Univ.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Octavii Oli doloro

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm Trapezoidal Map computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity: (Cont.)

- k_i is # leaves generated in step i
- Upper bound for $E(k_i)$?
- For $E(k_i)$ we take average on all cases:

$$E(k_i) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \delta(\Delta, s) \le \frac{O(i)}{i} = O(1)$$

• Size=
$$O(n) + \sum_{i=1}^{n} E(k_i) = O(n)$$
.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Search Structure

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity: (Cont.)

- k_i is # leaves generated in step i
- Upper bound for $E(k_i)$?
- For $E(k_i)$ we take average on all cases:

$$E(k_i) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \delta(\Delta, s) \le \frac{O(i)}{i} = O(1).$$

• Size= $O(n) + \sum_{i=1}^{n} E(k_i) = O(n)$.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Search Structure

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Space Complexity: (Cont.)

- k_i is # leaves generated in step i
- Upper bound for $E(k_i)$?
- For $E(k_i)$ we take average on all cases:

$$E(k_i) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \delta(\Delta, s) \le \frac{O(i)}{i} = O(1).$$

• Size= $O(n) + \sum_{i=1}^{n} E(k_i) = O(n)$.

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathfrak{T}(S)$ of a set S of n line segments in general position and a search structure \mathfrak{D} for $\mathfrak{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Construction Time:

- Construction time: Time to insert s_i +Time to locate endpoint of $s_i = O(k_i) + O(\log i)$.
- Construction time:

$$O(1) + \sum_{i=1}^{n} (O(\log i) + O(E(k_i))) = O(n \log n)$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm Search Structure

A Randomized Incremental Algorithm

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map $\mathcal{T}(S)$ of a set S of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n\log n)$ expected time. The expected size of the search structure is O(n) and for any query point q the expected query time is $O(\log n)$.

Proof. (Cont.)

Construction Time:

- Construction time: Time to insert s_i +Time to locate endpoint of $s_i = O(k_i) + O(\log i)$.
- Construction time:

$$O(1) + \sum_{i=1}^{n} (O(\log i) + O(E(k_i))) = O(n \log n).$$

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm Search Structure

Computational Geometry

Motivation

Point Location and Trapezoidal Maps

A Randomized Incremental Algorithm

Search Structure

< **□** > < ≣ → < ≣ → \equiv

END.