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POINT LOCATION AND TRAPEZOIDAL

MAPS

R Figure 6.3
A trapezoidal map

sides

A face in T(S) is bounded by a number of edges of T(S). Some of these
edges may be adjacent and collinear. We call the union of such edges a side of
the face. In other words, the sides of a face are the segments of maximal length
that are contained in the boundary of a face.

Lemma 6.1 Each face in a trapezoidal map of a set S of line segments in general

position has one or two vertical sides and exactly two non-vertical sides.

Proof. Let f be a face in T(S). We first prove that f is convex.
Because the segments in S are non-crossing, any corner of f is either an

endpoint of a segment in S, a point where a vertical extension abuts a segment
of S or an edge of R, or it is a corner of R. Due to the vertical extensions, no
corner that is a segment endpoint can have an interior angle greater than 180◦.
Moreover, any angle at a point where a vertical extension abuts a segment must
be less than or equal to 180◦ as well. Finally, the corners of R are 90◦. Hence,
f is convex—the vertical extensions have removed all non-convexities.

Because we are looking at sides of f , rather than at edges of T(S) on the
boundary of f , the convexity of f implies that it can have at most two vertical
sides. Now suppose for a contradiction that f has more than two non-vertical
sides. Then there must be two such sides that are adjacent and either both
bound f from above or both bound f from below. Because any non-vertical
side must be contained in a segment of S or in an edge of R, and the segments
are non-crossing, the two adjacent sides must meet in a segment endpoint. But
then the vertical extensions for that endpoint prevent the two sides from being
adjacent, a contradiction. Hence, f has at most two non-vertical sides.

Finally, we observe that f is bounded (since we have enclosed the whole
scene in a bounding box R), which implies that it cannot have less than two
non-vertical sides and that it must have at least one vertical side. 125

Proof.
Each face is convex: all angles are at most 180◦

Because of the convexity, each face has at most 2
vertical sides.
If there is more than two non-vertical sides, then at
least two of them must meet at a vertex which
contradict the definition of a face.
Since a face is bounded, it cannot have less than two
non-vertical sides and that it must have at least one
vertical side.
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POINT LOCATION

Lemma 6.1 shows that the trapezoidal map deserves its name: each face
is either a trapezoid or a triangle, which we can view as a trapezoid with one
degenerate edge of length zero.

∆

top(∆)

bottom(∆)

In the proof of Lemma 6.1 we observed that a non-vertical side of a trapezoid
is contained in a segment of S or in a horizontal edge of R. We denote the non-
vertical segment of S, or edge of R, bounding a trapezoid ∆ from above by
top(∆), and the one bounding it from below by bottom(∆).

By the general position assumption, a vertical side of a trapezoid either
consists of vertical extensions, or it is the vertical edge of R. More precisely,
we can distinguish five different cases for the left side and the right side of a
trapezoid ∆. The cases for the left side are as follows:
(a) It degenerates to a point, which is the common left endpoint of top(∆) and

bottom(∆).
(b) It is the lower vertical extension of the left endpoint of top(∆) that abuts

on bottom(∆).
(c) It is the upper vertical extension of the left endpoint of bottom(∆) that

abuts on top(∆).
(d) It consists of the upper and lower extension of the right endpoint p of a third

segment s. These extensions abut on top(∆) and bottom(∆), respectively.
(e) It is the left edge of R. This case occurs for a single trapezoid of T(S) only,

namely the unique leftmost trapezoid of T(S).
The first four cases are illustrated in Figure 6.4. The five cases for the right
vertical edge of ∆ are symmetrical. You should verify for yourself that the
listing above is indeed exhaustive.

Figure 6.4
Four of the five cases for the left edge

of trapezoid ∆ (a) (b) (c)

top(∆)

bottom(∆)

leftp(∆)
leftp(∆)

leftp(∆)

top(∆)

bottom(∆)

top(∆)

bottom(∆)

(d)

leftp(∆)

top(∆)

bottom(∆)

s

For every trapezoid ∆ ∈ T(S), except the leftmost one, the left vertical edge
of ∆ is, in a sense, defined by a segment endpoint p: it is either contained in
the vertical extensions of p, or—when it is degenerate—it is p itself. We will
denote the endpoint defining the left edge of ∆ by leftp(∆). As shown above,
leftp(∆) is the left endpoint of top(∆) or bottom(∆), or it is the right endpoint
of a third segment. For the unique trapezoid whose left side is the left edge of
R, we define leftp(∆) to be the lower left vertex of R. Similarly, we denote the
endpoint that defines the right vertical edge of ∆ by rightp(∆). Notice that ∆ is
uniquely determined by top(∆), bottom(∆), leftp(∆), and rightp(∆). Therefore
we will sometimes say that ∆ is defined by these segments and endpoints.

The trapezoidal map of the edges of a subdivision is a refinement of that
subdivision. It is not clear, however, why point location in a trapezoidal map126

(a) (b) (c)

top(∆)

bottom(∆)

leftp(∆)

(d)

s

leftp(∆)

leftp(∆)

leftp(∆)

top(∆)

top(∆)

top(∆)

bottom(∆)

bottom(∆)

bottom(∆)
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Section 6.1
POINT LOCATION AND TRAPEZOIDAL

MAPS

should be any easier than point location in a general subdivision. But before
we come to this in the next section, let’s first verify that the complexity of the
trapezoidal map is not too much larger than the number of segments in the set
defining it.

Lemma 6.2 The trapezoidal map T(S) of a set S of n line segments in general

position contains at most 6n+4 vertices and at most 3n+1 trapezoids.

Proof. A vertex of T(S) is either a vertex of R, an endpoint of a segment in S,
or else the point where the vertical extension starting in an endpoint abuts on
another segment or on the boundary of R. Since every endpoint of a segment
induces two vertical extensions—one upwards, one downwards—this implies
that the total number of vertices is bounded by 4+2n+2(2n) = 6n+4.

A bound on the number of trapezoids follows from Euler’s formula and the
bound on the number of vertices. Here we give a direct proof, using the point
leftp(∆). Recall that each trapezoid has such a point leftp(∆). This point is the
endpoint of one of the n segments, or is the lower left corner of R. By looking
at the five cases for the left side of a trapezoid, we find that the lower left corner
of R plays this role for exactly one trapezoid, a right endpoint of a segment can
play this role for at most one trapezoid, and a left endpoint of a segment can be
the leftp(∆) of at most two different trapezoids. (Since endpoints can coincide,
a point in the plane can be leftp(∆) for many trapezoids. However, if in case (a)
we consider leftp(∆) to be the left endpoint of bottom(∆), then the left endpoint
of a segment s can be leftp(∆) for only two trapezoids, one above s and one
below s.) It follows that the total number of trapezoids is at most 3n+1.

We call two trapezoids ∆ and ∆′ adjacent if they meet along a vertical edge.
In Figure 6.5(i), for example, trapezoid ∆ is adjacent to ∆1, ∆2, and ∆3, but not
to ∆4 and ∆5. Because the set of line segments is in general position, a trapezoid
has at most four adjacent trapezoids. If the set is not in general position, a
trapezoid can have an arbitrary number of adjacent trapezoids, as illustrated in
Figure 6.5(ii). Let ∆′ be a trapezoid that is adjacent to ∆ along the left vertical

(i) (ii)

∆

∆1

∆2

∆3

∆4

∆5

∆
∆1

∆2 ∆3

∆4

∆5

∆6

Figure 6.5
Trapezoids adjacent to ∆ are shaded

edge of ∆. Then either top(∆) = top(∆′) or bottom(∆) = bottom(∆′). In the first
case we call ∆′ the upper left neighbor of ∆, and in the second case ∆′ is the
lower left neighbor of ∆. So the trapezoid in Figure 6.4(b) has a bottom left
neighbor but no top left neighbor, the trapezoid in Figure 6.4(c) has a top left
neighbor but no bottom left neighbor, and the trapezoid in Figure 6.4(d) has both
a top left neighbor and a bottom left neighbor. The trapezoid in Figure 6.4(a) 127

Proof.
#vertices: Bounding box+endpoints of line
segments+new vertices generated by extensions=
4 + 2n+ 2(2n) = 6n+ 4.
Left endpoint of a segment can be leftp(∆) of two
trapezoids. (Note coincide endpoints) .
Right endpoint of a segment can be leftp(∆) of one
trapezoid.
#trapezoids= 3n+ 1.

R
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trapezoidal map is not too much larger than the number of segments in the set
defining it.

Lemma 6.2 The trapezoidal map T(S) of a set S of n line segments in general

position contains at most 6n+4 vertices and at most 3n+1 trapezoids.

Proof. A vertex of T(S) is either a vertex of R, an endpoint of a segment in S,
or else the point where the vertical extension starting in an endpoint abuts on
another segment or on the boundary of R. Since every endpoint of a segment
induces two vertical extensions—one upwards, one downwards—this implies
that the total number of vertices is bounded by 4+2n+2(2n) = 6n+4.

A bound on the number of trapezoids follows from Euler’s formula and the
bound on the number of vertices. Here we give a direct proof, using the point
leftp(∆). Recall that each trapezoid has such a point leftp(∆). This point is the
endpoint of one of the n segments, or is the lower left corner of R. By looking
at the five cases for the left side of a trapezoid, we find that the lower left corner
of R plays this role for exactly one trapezoid, a right endpoint of a segment can
play this role for at most one trapezoid, and a left endpoint of a segment can be
the leftp(∆) of at most two different trapezoids. (Since endpoints can coincide,
a point in the plane can be leftp(∆) for many trapezoids. However, if in case (a)
we consider leftp(∆) to be the left endpoint of bottom(∆), then the left endpoint
of a segment s can be leftp(∆) for only two trapezoids, one above s and one
below s.) It follows that the total number of trapezoids is at most 3n+1.

We call two trapezoids ∆ and ∆′ adjacent if they meet along a vertical edge.
In Figure 6.5(i), for example, trapezoid ∆ is adjacent to ∆1, ∆2, and ∆3, but not
to ∆4 and ∆5. Because the set of line segments is in general position, a trapezoid
has at most four adjacent trapezoids. If the set is not in general position, a
trapezoid can have an arbitrary number of adjacent trapezoids, as illustrated in
Figure 6.5(ii). Let ∆′ be a trapezoid that is adjacent to ∆ along the left vertical
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Figure 6.5
Trapezoids adjacent to ∆ are shaded

edge of ∆. Then either top(∆) = top(∆′) or bottom(∆) = bottom(∆′). In the first
case we call ∆′ the upper left neighbor of ∆, and in the second case ∆′ is the
lower left neighbor of ∆. So the trapezoid in Figure 6.4(b) has a bottom left
neighbor but no top left neighbor, the trapezoid in Figure 6.4(c) has a top left
neighbor but no bottom left neighbor, and the trapezoid in Figure 6.4(d) has both
a top left neighbor and a bottom left neighbor. The trapezoid in Figure 6.4(a) 127

Proof.
#vertices: Bounding box+endpoints of line
segments+new vertices generated by extensions=
4 + 2n+ 2(2n) = 6n+ 4.
Left endpoint of a segment can be leftp(∆) of two
trapezoids. (Note coincide endpoints) .
Right endpoint of a segment can be leftp(∆) of one
trapezoid.
#trapezoids= 3n+ 1.
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Definition: Upper and Lower left neighbor
If ∆′ is adjacent to ∆ along the left vertical of ∆:

∆1
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∆

Upper left neighbor of ∆
top(∆) = top(∆1)

Lower left neighbor of ∆
bottom(∆) = bottom(∆2)
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Definition: Upper and Lower right neighbor
If ∆′ is adjacent to ∆ along the right vertical of ∆:

∆1

∆2 ∆3
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∆5

∆

Upper right neighbor of ∆
top(∆) = top(∆2)

Lower right neighbor of ∆
bottom(∆) = bottom(∆4)
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Specialize structure:
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Point Location Data Structure (search structure)
Directed Acyclic Graph
Exactly one leaf for each trapezoid
Inner nodes have out-degree 2.
Inner nodes: x-nodes: labeled with an endpoint.
Inner nodes: y-nodes: labeled with a segment.
A query point starts at the root and traverse the
structure until it reaches a leaf that contains q.
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The Trapezoid Construction Algorithm:
Incremental: Add segments one-by-one and update
the structure.
Randomized: Add segments in Random orderings.
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The Trapezoid Construction Algorithm:
Incremental: Add segments one-by-one and update
the structure.
Randomized: Add segments in Random orderings.

Algorithm TRAPEZOIDALMAP(S)
Input. A set S of n non-crossing line segments.
Output. The trapezoidal map T(S) and a search structure D for T(S) in a bounding box.
1. Determine a bounding box R that contains all segments of S, and initialize the trapezoidal

map structure T and search structure D for it.
2. Compute a random permutation s1,s2, . . . ,sn of the elements of S.
3. for i← 1 to n
4. do Find the set ∆0,∆1, . . . ,∆k of trapezoids in T properly intersected by si.
5. Remove ∆0,∆1, . . . ,∆k from T and replace them by the new trapezoids that appear

because of the insertion of si.
6. Remove the leaves for ∆0,∆1, . . . ,∆k from D, and create leaves for the new trape-

zoids. Link the new leaves to the existing inner nodes by adding some new inner
nodes, as explained below.

28
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The Trapezoid Construction Algorithm:
∆0 is the trapezoid that contains the left endpoint of
si, say p.
∆j+1 is one of right neighbors of ∆j .
In searching p in the structure:
If p lie on a vertical line: go to the right.
If p lies on a segment s of a y-node: If
slope(si) > slope(s) then p is above s.
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Algorithm FOLLOWSEGMENT(T,D,si)
Input. A trapezoidal map T, a search structure D for T, and a new segment si.
Output. The sequence ∆0, . . . ,∆k of trapezoids intersected by si.
1. Let p and q be the left and right endpoint of si.
2. Search with p in the search structure D to find ∆0.
3. j← 0;
4. while q lies to the right of rightp(∆ j)
5. do if rightp(∆ j) lies above si
6. then Let ∆ j+1 be the lower right neighbor of ∆ j.
7. else Let ∆ j+1 be the upper right neighbor of ∆ j.
8. j← j+1
9. return ∆0,∆1, . . . ,∆ j
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Is the ordering important? Yes!

6 CS268: 6

Figure 8: A segment with just one thread abutting on it.

Figure 9: (Left) A set of segments in T which, if inserted bottom to top, leads to a
worst-case query time. (Right) The resulting query structure.

Randomized analysis of running time

Let e1, e2, . . . , en be a random ordering of the segments of S, and let
Si = {e1, e2, . . . , ei} (a prefix of S), for 0 6 i 6 n.

Lemma 1. The expected cost of tracing ei through T(Si−1) is 6 4.

Proof: Define the degree of a segment in a partitioning, deg(e, T(S)), as the number
of vertical threads that abut upon e (e ∈ S).

Then
∑

e∈Si

deg(e, T(Si)) 6 4i (1)

This is because each thread (there are 6 2i of them) hits 6 2 segments. So for a
“random” ei, the expected degree E(deg(ei, T(Si))) is at most 4. ¤

Now, recall that Hn = ∑n
i=1

1
i = Θ(log n).

Here the Random ordering helps!
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Section 6.2
A RANDOMIZED INCREMENTAL

ALGORITHM

correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof.
The query Complexity: Worst case: Depends on the
depth of the DAG (O(n)).
Expected case: Average on all orders of inserting
segments!
P : the search path.
Xi: # vertices on P that created in step i of the
algorithm.
Xi is a random variable (its value depends on the
order that the algorithm adds segments).
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof.
The query Complexity: Worst case: Depends on the
depth of the DAG (O(n)).
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof.
The query Complexity: Worst case: Depends on the
depth of the DAG (O(n)).
Expected case: Average on all orders of inserting
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)

Exp(|P |) = Exp

(
n∑

i=1

Xi

)

=

n∑
i=1

Exp(Xi) (Pi = Possibility of having a node in iteration i)

≤
n∑

i=1

3Pi (Since Xi ≤ 3)
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Notation: ∆q(Si): the trapezoid containing q in T (Si)

Pi = Pr[∆q(Si) 6= ∆q(Si−1)].
If ∆q(Si) 6= ∆q(Si−1), then ∆q(Si) is one of the
trapezoids that generated in step i.
all trapezoids ∆ created in iteration i are adjacent
to si.
the segment that is inserted in iteration i: either
top(∆) or bottom(∆) is si, or leftp(∆) or rightp(∆) is
an endpoint of si.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Notation: ∆q(Si): the trapezoid containing q in T (Si)

Pi = Pr[∆q(Si) 6= ∆q(Si−1)].
If ∆q(Si) 6= ∆q(Si−1), then ∆q(Si) is one of the
trapezoids that generated in step i.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Notation: ∆q(Si): the trapezoid containing q in T (Si)

Pi = Pr[∆q(Si) 6= ∆q(Si−1)].
If ∆q(Si) 6= ∆q(Si−1), then ∆q(Si) is one of the
trapezoids that generated in step i.
all trapezoids ∆ created in iteration i are adjacent
to si.
the segment that is inserted in iteration i: either
top(∆) or bottom(∆) is si, or leftp(∆) or rightp(∆) is
an endpoint of si.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Notation: ∆q(Si): the trapezoid containing q in T (Si)

Pi = Pr[∆q(Si) 6= ∆q(Si−1)].
If ∆q(Si) 6= ∆q(Si−1), then ∆q(Si) is one of the
trapezoids that generated in step i.
all trapezoids ∆ created in iteration i are adjacent
to si.
the segment that is inserted in iteration i: either
top(∆) or bottom(∆) is si, or leftp(∆) or rightp(∆) is
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Notation: ∆q(Si): the trapezoid containing q in T (Si)

Pi = Pr[∆q(Si) 6= ∆q(Si−1)].
If ∆q(Si) 6= ∆q(Si−1), then ∆q(Si) is one of the
trapezoids that generated in step i.
all trapezoids ∆ created in iteration i are adjacent
to si.
the segment that is inserted in iteration i: either
top(∆) or bottom(∆) is si, or leftp(∆) or rightp(∆) is
an endpoint of si.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

For a fixed set Si ⊂ S, T (Si), and therefore ∆q(Si),
are uniquely defined (does not depend on the order).
To bound the probability that the trapezoid containing
q has changed due to the insertion of si, we use
backward analysis.
Backward Analysis: Consider T (Si) and look at the
probability that ∆q(Si) disappears from the
trapezoidal map when we remove the segment si.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

For a fixed set Si ⊂ S, T (Si), and therefore ∆q(Si),
are uniquely defined (does not depend on the order).
To bound the probability that the trapezoid containing
q has changed due to the insertion of si, we use
backward analysis.
Backward Analysis: Consider T (Si) and look at the
probability that ∆q(Si) disappears from the
trapezoidal map when we remove the segment si.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

For a fixed set Si ⊂ S, T (Si), and therefore ∆q(Si),
are uniquely defined (does not depend on the order).
To bound the probability that the trapezoid containing
q has changed due to the insertion of si, we use
backward analysis.
Backward Analysis: Consider T (Si) and look at the
probability that ∆q(Si) disappears from the
trapezoidal map when we remove the segment si.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Backward Analysis: Consider T (Si) and look at the
probability that ∆q(Si) disappears from the
trapezoidal map when we remove the segment si.
∆q(Si) disappears ⇐⇒ one of top(∆q(Si)),
bottom(∆q(Si)), leftp(∆q(Si)), or rightp(∆q(Si))
disappears with the removal of si.
What is the probability that top(∆q(Si)) disappears?
Si inserted in random order, so every segment in Si
is equally likely to be si. So, the probability that si
happens to be top(∆q(Si)) is 1

i .
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Backward Analysis: Consider T (Si) and look at the
probability that ∆q(Si) disappears from the
trapezoidal map when we remove the segment si.
∆q(Si) disappears ⇐⇒ one of top(∆q(Si)),
bottom(∆q(Si)), leftp(∆q(Si)), or rightp(∆q(Si))
disappears with the removal of si.
What is the probability that top(∆q(Si)) disappears?
Si inserted in random order, so every segment in Si
is equally likely to be si. So, the probability that si
happens to be top(∆q(Si)) is 1

i .
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

Backward Analysis: Consider T (Si) and look at the
probability that ∆q(Si) disappears from the
trapezoidal map when we remove the segment si.
∆q(Si) disappears ⇐⇒ one of top(∆q(Si)),
bottom(∆q(Si)), leftp(∆q(Si)), or rightp(∆q(Si))
disappears with the removal of si.
What is the probability that top(∆q(Si)) disappears?
Si inserted in random order, so every segment in Si
is equally likely to be si. So, the probability that si
happens to be top(∆q(Si)) is 1
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

What is the probability that top(∆q(Si)) disappears?
Si inserted in random order, so every segment in Si
is equally likely to be si. So, the probability that si
happens to be top(∆q(Si)) is 1

i .
Same argument works for bottom, rightp, leftp.

Pi = Pr[∆q(Si) 6= ∆q(Si−1)]

= Pr[∆q(Si) 6∈ T (Si−1)]

≤ 4

i
.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

What is the probability that top(∆q(Si)) disappears?
Si inserted in random order, so every segment in Si
is equally likely to be si. So, the probability that si
happens to be top(∆q(Si)) is 1

i .
Same argument works for bottom, rightp, leftp.

Pi = Pr[∆q(Si) 6= ∆q(Si−1)]

= Pr[∆q(Si) 6∈ T (Si−1)]

≤ 4

i
.
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
What is the bound for Pi?

What is the probability that top(∆q(Si)) disappears?
Si inserted in random order, so every segment in Si
is equally likely to be si. So, the probability that si
happens to be top(∆q(Si)) is 1

i .
Same argument works for bottom, rightp, leftp.

Pi = Pr[∆q(Si) 6= ∆q(Si−1)]

= Pr[∆q(Si) 6∈ T (Si−1)]

≤ 4
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)

Exp(|P |) = Exp

(
n∑

i=1

Xi

)

=

n∑
i=1

Exp(Xi)

≤
n∑

i=1

3Pi

≤
n∑

i=1

12

i
(Since Pi ≤ 4/i)

≤ 12(lnn+ 1). Done!
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity:

Size of D: # leaves + # internal nodes.
# leaves= # trapezoids= O(n).
# internal nodes: ki − 1 (ki is # leaves generated in
step i).
Worst case: ki = O(i)⇒

Size of D = O(n) +
∑n

i=1 i = O(n2).
Expected Size:
O(n) + E [

∑n
i=1(ki − 1)] = O(n) + E [

∑n
i=1(ki)].
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity:

Size of D: # leaves + # internal nodes.
# leaves= # trapezoids= O(n).
# internal nodes: ki − 1 (ki is # leaves generated in
step i).
Worst case: ki = O(i)⇒

Size of D = O(n) +
∑n

i=1 i = O(n2).
Expected Size:
O(n) + E [

∑n
i=1(ki − 1)] = O(n) + E [

∑n
i=1(ki)].
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity:

Size of D: # leaves + # internal nodes.
# leaves= # trapezoids= O(n).
# internal nodes: ki − 1 (ki is # leaves generated in
step i).
Worst case: ki = O(i)⇒

Size of D = O(n) +
∑n

i=1 i = O(n2).
Expected Size:
O(n) + E [

∑n
i=1(ki − 1)] = O(n) + E [

∑n
i=1(ki)].
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity:

Size of D: # leaves + # internal nodes.
# leaves= # trapezoids= O(n).
# internal nodes: ki − 1 (ki is # leaves generated in
step i).
Worst case: ki = O(i)⇒

Size of D = O(n) +
∑n

i=1 i = O(n2).
Expected Size:
O(n) + E [

∑n
i=1(ki − 1)] = O(n) + E [

∑n
i=1(ki)].
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity:

Size of D: # leaves + # internal nodes.
# leaves= # trapezoids= O(n).
# internal nodes: ki − 1 (ki is # leaves generated in
step i).
Worst case: ki = O(i)⇒

Size of D = O(n) +
∑n

i=1 i = O(n2).
Expected Size:
O(n) + E [

∑n
i=1(ki − 1)] = O(n) + E [

∑n
i=1(ki)].
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity: (Cont.)

Upper bound for E(ki)?
For ∆ ∈ T (Si) and s ∈ Si,

δ(∆, s) =

{
1 if ∆ disappears when s is removed.
0 otherwise.

Since at most 4 segments can cause disappearance
of a trapezoid∑

s∈Si

∑
∆∈T (Si)

δ(∆, s) ≤ 4|T (Si)| = O(i).
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity: (Cont.)

Upper bound for E(ki)?
For ∆ ∈ T (Si) and s ∈ Si,

δ(∆, s) =

{
1 if ∆ disappears when s is removed.
0 otherwise.

Since at most 4 segments can cause disappearance
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity: (Cont.)

Upper bound for E(ki)?
For ∆ ∈ T (Si) and s ∈ Si,

δ(∆, s) =

{
1 if ∆ disappears when s is removed.
0 otherwise.

Since at most 4 segments can cause disappearance
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity: (Cont.)

ki is # leaves generated in step i
Upper bound for E(ki)?
For E(ki) we take average on all cases:

E(ki) =
1

i

∑
s∈Si

∑
∆∈T (Si)

δ(∆, s) ≤ O(i)

i
= O(1).

Size= O(n) +
∑n

i=1E(ki) = O(n).
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity: (Cont.)
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.

We have finished the description of the algorithm that constructs T(s) and,
at the same time, builds a search structure D for it. The correctness of the
algorithm follows directly from the loop invariant (stated just after Algorithm
TRAPEZOIDALMAP), so it remains to analyze its performance.

The order in which we treat the segments has considerable influence on the
resulting search structure D and on the running time of the algorithm itself. For
some cases the resulting search structure has quadratic size and linear search
time, but for other permutations of the same set of segments the resulting search
structure is much better. As in Chapter 4, we haven’t tried to determine a
good sequence; we simply took a random insertion sequence. This means that
the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
permutation, a different search structure will result. The expected size of D is
the average of the sizes of all these n! search structures. Finally, the expected
query time for a point q is the average of the query time for point q, over all n!
search structures. (Notice that this not the same as the average of the maximum
query time for the search structure. Proving a bound on this quantity is a bit
more technical, so we defer that to Section 6.4.)

Theorem 6.3 Algorithm TRAPEZOIDALMAP computes the trapezoidal map

T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Space Complexity: (Cont.)

ki is # leaves generated in step i
Upper bound for E(ki)?
For E(ki) we take average on all cases:

E(ki) =
1

i

∑
s∈Si

∑
∆∈T (Si)

δ(∆, s) ≤ O(i)

i
= O(1).

Size= O(n) +
∑n

i=1E(ki) = O(n).
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correct new leaves. Notice that, due to the fact that we have merged trapezoids
stemming from different trapezoids of T, there can be several incoming edges
for a new trapezoid. Figure 6.8 illustrates this.
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the analysis will be probabilistic: we shall look at the expected performance
of the algorithm and of the search structure. Perhaps it’s not quite clear yet
what the term “expected” means in this context. Consider a fixed set S of n
non-crossing line segments. TRAPEZOIDALMAP computes a search structure
D for T(S). This structure depends on the permutation chosen in line 2. Since
there are n! possible permutations of n objects, there are n! possible ways in
which the algorithm can proceed. The expected running time of the algorithm
is the average of the running time, taken over all n! permutations. For each
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T(S) of a set S of n line segments in general position and a search structure D

for T(S) in O(n logn) expected time. The expected size of the search structure

is O(n) and for any query point q the expected query time is O(logn).

Proof. As noted earlier, the correctness of the algorithm follows directly from
the loop invariant, so we concentrate on the performance analysis.

We start with the query time of the search structure D. Let q be a fixed
query point. As the query time for q is linear in the length of the path in D that
is traversed when querying with q, it suffices to bound the path length. A simple
case analysis shows that the depth of D (that is, the maximum path length)
increases by at most 3 in every iteration of the algorithm. Hence, 3n is an upper
bound on the query time for q. This bound is the best possible worst-case bound
over all possible insertion orders for S. We are not so much interested in the
worst-case case behavior, however, but in the expected behavior: we want to
bound the average query time for q with respect to the n! possible insertion
orders.

Consider the path traversed by the query for q in D. Every node on this path
was created at some iteration of the algorithm. Let Xi, for 1 � i � n, denote 133

Proof. (Cont.)
Construction Time:

Construction time: Time to insert si+Time to locate
endpoint of si = O(ki) +O(log i).
Construction time:
O(1) +

∑n
i=1 (O(log i) +O(E(ki))) = O(n log n).
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