1397-2

A A A a

¢

o mmmo

vvovy

S

4,000

3,000

G. Ometer

b born: Aug 19, 1954
"""""""" . R salary: $3,500
o o °
° °
° °
"""""""" o
° ‘e °
e °
: °
o
: °
- . date of birth
19,500,000 19,559,999

W @ o

Pl

2/21

19,500,000

19,559,999

Lt
Q

2/21

@ Input: Aset P = {pi1,p2,...,pn} Of point on real line
(1D).

W @ o

N)
£t
Q

3/21

@ Input: Aset P = {pi1,p2,...,pn} Of point on real line
(1D).

@ Query: Given the interval [z, '], report all the point in
the interval.

W @ o

N)
Pl
Q

3/21

@ Input: Aset P = {pi1,p2,...,pn} Of point on real line
(1D).

@ Query: Given the interval [z, '], report all the point in
the interval.

@ Data Structure: Balanced Binary Search Tree

W @ o

N)
Pl
Q

3/21

@ Input: Aset P = {pi1,p2,...,pn} Of point on real line
(1D).

@ Query: Given the interval [z, '], report all the point in
the interval.

@ Data Structure: Balanced Binary Search Tree
Example:P = {3,10, 19,23, 30, 37,49, 59, 62, 70, 80, 89, 100, 105}

W @ o

N)
Pl
Q

3/21

@ Input: A set P = {pi1,p2,...,pn} Of point on real line
(1D).

@ Query: Given the interval [z, 2’|, report all the point in
the interval.

@ Data Structure: Balanced Binary Search Tree
Example:P = {3,10,19, 23,30, 37, 49, 59, 62, 70, 80, 89, 100, 105}

kD Range Trees

3/21

FINDSPLITNODE(T, x,x)
Input. A tree T and two values x and x’ with x < x'.
Output. The node v where the paths to x and x’ split, or the leaf where both

paths end.
1. v root(T)
2. while v is not a leaf and (x' < xy or x > xy)
3 doif X' < xy
4. then v < lc(v)
5 else v« re(v)
6. return v

W @ o

N)
Pl
Q

4/21

FINDSPLITNODE(T, x,x)

Input. A tree T and two values x and x’ with x < x'.

Output. The node v where the paths to x and x’ split, or the leaf where both
paths end.

1. v+ root(T)

2. while v is not a leaf and (X’ < xy or x > xy)

3 doif X' < xy

4. then v < lc(v)

5

6

else v+ re(v)
return v

¢ B o

Pl
Q

the selected subtrees 5

4/21

Algorithm 1DRANGEQUERY(T, [x : X'])

Input. A binary search tree T and a range [x : x'].
Output. All points stored in T that lie in the range.
1. Vi < FINDSPLITNODE(T, x,x')

2. if Vgl is a leaf

3. then Check if the point stored at Vg must be reported.

4 else (x Follow the path to x and report the points in subtrees right of the
path. *)

5. \ lc(vsplil)

6. while v is not a leaf

7 doif x < xy

8. then REPORTSUBTREE(rc(V))

9. V< le(v)

10. else v« re(v)

11. Check if the point stored at the leaf v must be reported.

12. Similarly, follow the path to ¥, report the points in subtrees left of

the path, and check if the point stored at the leaf where the path
ends must be reported.

o i B0

5/21

Algorithm 1DRANGEQUERY(T, [x : x'])
Input. A binary search tree T and a range [x : x'].
Output. All points stored in T that lie in the range.
Vpiit <~ FINDSPLITNODE(T, x,x')
if Vpiic is a leaf
then Check if the point stored at Vypj; must be reported.
else (x Follow the path to x and report the points in subtrees right of the

1.

2
3.
4

path.)
V< lc(vsplit)
while v is not a leaf
doif x < x,
then REPORTSUBTREE(r¢(V))
v le(v)

else v« re(v)
Check if the point stored at the leaf v must be reported.
Similarly, follow the path to ¥, report the points in subtrees left of
the path, and check if the point stored at the leaf where the path
ends must be reported.

o i B0

5/21

Algorithm 1DRANGEQUERY reports exactly those points
that lie in the query range.

W @ o

Pl

6/21

Algorithm 1DRANGEQUERY reports exactly those points
that lie in the query range.

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree, which uses O(n) storage and
has O(nlogn) construction time, such that the points in a query range can be
reported in time O(k +logn), where k is the number of reported points.

W @ o

N)
Pl
Q

6/21

og

¢
m o
&

7/21

Can we generalize the 1-dimensional structure to
2-dimension?

¢ B o

N)
£t
Q

7/21

8/21

8/21

8/21

8/21

8/21

penl}

8/21

Pl
Q

8/21

Pl
Q

8/21

Pl
Q

8/21

Pl
Q

8/21

Algorithm BUILDKDTREE(P, depth)

Input. A set of points P and the current depth depth.

Output. The root of a kd-tree storing P.

1. if P contains only one point

2 then return a leaf storing this point

3. else if depth is even

4 then Split P into two subsets with a vertical line ¢ through the
median x-coordinate of the points in P. Let P; be the set of
points to the left of £ or on ¢, and let P, be the set of points
to the right of ¢.

5. else Split P into two subsets with a horizontal line ¢ through
the median y-coordinate of the points in P. Let P; be the
set of points below £ or on ¢, and let P, be the set of points

above /.
6. Vieft <— BUILDKDTREE(P;,depth+ 1)
7. Viight <~ BUILDKDTREE(P,depth+ 1)
8. Create a node Vv storing ¢, make Vi the left child of v, and make
Viight the right child of v.
9. return v

W @ o

penl}

8/21

Algorithm BUILDKDTREE(P, depth)

Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.

1.

2
3.
4

=

9.

Time complexity: T'(n) = {

if P contains only one point
then return a leaf storing this point
else if depth is even
then Split P into two subsets with a vertical line ¢ through the
median x-coordinate of the points in P. Let P; be the set of
points to the left of £ or on ¢, and let P, be the set of points
to the right of ¢.
else Split P into two subsets with a horizontal line ¢ through
the median y-coordinate of the points in P. Let P; be the
set of points below £ or on ¢, and let P, be the set of points
above £.
Vieft <— BUILDKDTREE(P;,depth+ 1)
Viight <~ BUILDKDTREE(P,depth+ 1)
Create a node v storing ¢, make Vi the left child of v, and make
Viight the right child of v.
return v

O(1) ifn=1
O(n)+2T(3) ifn>1

32

W @ o

Pl

8/21

Algorithm BUILDKDTREE(P, depth)

Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.

1.

2
3.
4

=

9.

if P contains only one point
then return a leaf storing this point
else if depth is even
then Split P into two subsets with a vertical line ¢ through the
median x-coordinate of the points in P. Let P; be the set of
points to the left of £ or on ¢, and let P, be the set of points
to the right of /.
else Split P into two subsets with a horizontal line ¢ through
the median y-coordinate of the points in P. Let P; be the
set of points below £ or on ¢, and let P, be the set of points
above £.
Vieft < BUILDKDTREE(P;,depth+ 1)
Viight <~ BUILDKDTREE(P,depth+ 1)
Create a node Vv storing ¢, make Vi the left child of v, and make
Viight the right child of v.
return v

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-
structed in O(nlogn) time.

32

W @ o

Pl

8/21

Nodes in the tree vs. Regions in the plane

W @ o

N)
Pl
Q

9/21

Query on kd-tree

10/21

Query on kd-tree

Algorithm SEARCHKDTREE(V, R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below v that lie in the range.
if v is a leaf
then Report the point stored at v if it lies in R.
else if region(lc(v)) is fully contained in R
then REPORTSUBTREE(/c(V))
else if region(lc(v)) intersects R
then SEARCHKDTREE(/c(V),R)
if region(rc(v)) is fully contained in R
then REPORTSUBTREE(rc(V))
else if region(rc(v)) intersects R
0. then SEARCHKDTREE(rc(V),R)

SOENAUE LN~

W @ o

N)
Pl
Q

10/21

Solution 1: Store region of each node in the node.
Solution 2:

W @ o

N)
£t
Q

11/21

Solution 1: Store region of each node in the node.
Solution 2:

W @ o

£t

11/21

2D Range Searching

KD-tree-Query Algorithm

How to test whether the query range R intersects
the region corresponding to a node?

Solution 1: Store region of each node in the node.
Solution 2:

(v)
Z(V)leﬂ

region(lc(v))

region(V)

region(lc(v)) = region(v) N A(v)et

()

%,

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees
2D Range Trees

kD Range Trees

11/21

Proof.
@ traversing subtrees and reporting points: Linear time.

W @ o

N)
penl}

12/21

Proof.

@ traversing subtrees and reporting points: Linear time.

W @ o

N)
Pl
Q

12/21

Proof.
@ traversing subtrees and reporting points: Linear time.

o
2
I
2
B
i@ o

N)
Pl
Q

12/21

Proof.
@ traversing subtrees and reporting points: Linear time.

[o) it =1
Q(”)—{ 242Q(2) ifn>1

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage=

and can be built in O(nlogn) time. A rectangular range query on the kd-tree
takes O(y/n+ k) time, where k is the number of reported points.
)

Pl

12/21

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage
and can be built in O(nlogn) time. A rectangular range query on the kd-tree
takes O(/n+k) time, where k is the number of reported points.

Yes.

W @ o

Pl

13/21

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage
and can be built in O(nlogn) time. A rectangular range query on the kd-tree
takes O(/n+k) time, where k is the number of reported points.

Yes.
Time complexity: O(nlogn) construction time, O(n)

space, and O(n'~/? + k) query time

W @ o

N)
Pl

13/21

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage
and can be built in O(nlogn) time. A rectangular range query on the kd-tree
takes O(/n+k) time, where k is the number of reported points.

Yes.
Time complexity: O(nlogn) construction time, O(n)

space, and O(n'~1/? + k) query time

W @ o

N)
Pl
Q

13/21

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage
and can be built in O(nlogn) time. A rectangular range query on the kd-tree
takes O(/n+k) time, where k is the number of reported points.

Yes.
Time complexity: O(nlogn) construction time, O(n)

space, and O(n'~/4 4 k) query time

W @ o

N)
Pl
Q

13/21

Can we do the range searching faster?
Answer: Yes, but by increasing the storage complexity.
Time Complexity: O(log®n + k)

Space Complexity: O(nlogn).

W @ o

Pl

14/21

Can we do the range searching faster?
Answer: Yes, but by increasing the storage complexity.
Time Complexity: O(log®n + k)

Space Complexity: O(nlogn).

W @ o

Pl

14/21

11111

BST on
z-coordinates

Tassoc (U)
BST on
y-coordinates

@ A 2-layered data structure
@ Main tree (layer 1): BST on z-coordinates

@ Layer 2: For any internal and leaf node: a BST on
P(v)

15/21

BST on
z-coordinates

Tassoc (U)
BST on
y-coordinates

@ A 2-layered data structure

@ Main tree (layer 1): BST on z-coordinates
@ Layer 2: For any internal and leaf node: a BST on
P(v)

15/21

Algorithm BUILD2DRANGETREE(P)

Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.

1.

W

o

Construct the associated structure: Build a binary search tree T,s0c On the
set P, of y-coordinates of the points in P. Store at the leaves of Tyssoc nOt
just the y-coordinate of the points in P, but the points themselves.
if P contains only one point
then Create a leaf v storing this point, and make Ts0c the associated
structure of v.
else Split P into two subsets; one subset P contains the points with
x-coordinate less than or equal to xpig, the median x-coordinate,
and the other subset Bygy contains the points with x-coordinate
larger than xp;g.
Vieft ¢ BUILD2DRANGETREE(Pef)
Viight <~ BUILD2DRANGETREE(Fyight)
Create a node V storing xpig, make Vier the left child of v, make
Vright the right child of v, and make Ty0c the associated structure
of v.
return v

o i B0

2D Range Trees

kD Range Trees

16/21

Algorithm BUILD2DRANGETREE(P)

Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.

1. Construct the associated structure: Build a binary search tree Tygs0c On the
set P, of y-coordinates of the points in P. Store at the leaves of Tyssoc nOt
just the y-coordinate of the points in P, but the points themselves.

2. if P contains only one point

3. then Create a leaf v storing this point, and make Tyss0c the associated
structure of v.

4. else Split P into two subsets; one subset P contains the points with
x-coordinate less than or equal to xpig, the median x-coordinate,
and the other subset Bygy contains the points with x-coordinate
larger than xp;g.

5. Vieft ¢ BUILD2DRANGETREE(Pef)

6. Vright <~ BUILD2DRANGETREE(Pigh()

7. Create a node V storing xpig, make Ve the left child of v, make
Vright the right child of v, and make Ty0c the associated structure
of v.

8. returnv

Time Complexity: O(nlogn).

o i B0

2D Range Trees

kD Range Trees

16/21

Space Complexity:

Lemma 5.6 A range tree on a set of n points in the plane requires O(nlogn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of T,
the point p is stored in exactly one associated structure. Because 1-dimensional
range trees use linear storage it follows that the associated structures of all nodes
at any depth of T together use O(n) storage. The depth of T is O(logn). Hence,

the total amount of storage required is bounded by O(nlogn). H
[
P
P

W @ o

Pl
Q

17/21

1D Range Searching:

Algorithm 1DRANGEQUERY(T, [x : X'])
Input. A binary search tree T and a range [x : X'].
Output. All points stored in T that lie in the range.
Veplit <~ FINDSPLITNODE(T, x,x’)
if Vgply is a leaf
then Check if the point stored at Vgpj; must be reported.
else (x Follow the path to x and report the points in subtrees right of the

1.

2
3.
4

path. x)
V < le(Vepii)
while v is not a leaf
doif x <xy
then REPORTSUBTREE(rc(V))
V< le(v)

else v« rc(v)
Check if the point stored at the leaf v must be reported.
Similarly, follow the path to x/, report the points in subtrees left of ;,
the path, and check if the point stored at the leaf where the path -
ends must be reported. _

kD Range Trees

Pl

DA

18/21

2D Range Searching:

Algorithm 2DRANGEQUERY (T, [x: X' x [y : '])

Input. A 2-dimensional range tree T and a range [x : x'] X [y : y'].
Output. All points in T that lie in the range.

1. Vi <~ FINDSPLITNODE(T, x,x')

2. if vy is a leaf

3. then Check if the point stored at V| must be reported.

4. else (x Follow the path to x and call IDRANGEQUERY on the subtrees
right of the path. %)

5. v < le(Vgpiic)

6. while v is not a leaf

7. doif x < xy

8. then 1DRANGEQUERY (Tyssoc (rc(V)), [y : ¥'])

9. V< le(v)

10. else v« re(v)

11. Check if the point stored at v must be reported.

12. Similarly, follow the path from rc(vgyy) to x’, call IDRANGE-

QUERY with the range [y : y'] on the associated structures of sub-

[m]

=

trees left of the path, and check if the point stored at the leaf where —

the path ends must be reported.
)

Pl

(64

kD Range Trees

18/21

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes 0(log2n + k) time, where k is the number of reported points.

Proof. Ateachnode Vv in the main tree T we spend constant time to decide where
the search path continues, and we possibly call IDRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn + ky), where ky is
the number of points reported in this call. Hence, the total time we spend is

Y O(logn+ky),
v

where the summation is over all nodes in the main tree 7 that are visited. Notice
that the sum Y, ky equals k, the total number of reported points. Furthermore,
the search paths of x and x’ in the main tree T have length O(logn). Hence,
Y., O(logn) = O(log? n). The lemma follows.

W @ o

Pl

kD Range Trees

19/21

2D Range Searching

Range Trees

o« b
Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n ’./aw)
points takes O(log? n+ k) time, where k is the number of reported points. Yazd Univ.

Proof. Ateach node v in the main tree J we spend constant time to decide where Campuiiaie
the search path continues, and we possibly call IDRANGEQUERY. Theorem 5.2 Geometry
states that the time we spend in this recursive call is O(logn + ky), where ky is

the number of points reported in this call. Hence, the total time we spend is ot
otivation

Z"O(logn-i—kv)7 1D Range
\'4

Searching

i) KD-Trees
where the summation is over all nodes in the main tree T that are visited. Notice

that the sum Y, ky, equals k, the total number of reported points. Furthermore, 2D Range Trees

the search paths of x and ¥’ in the main tree T have length O(logn). Hence, kD Range Trees
Y., O(logn) = O(log? n). The lemma follows.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(nlogn) storage and can be constructed in O(nlogn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
0(105:,!2 n+k) time, where k is the number of reported points.

19/21

ot it i B

20/21

kD Range Trees

Theorem 5.9 Let P be a set of n points in d-dimensional space, where d > 2.
A range tree for P uses O(rzlogd_1 n) storage and it can be constructed in
O(nlog?='n) time. One can report the points in P that lie in a rectangular query
range in O(log? n 4 k) time, where k is the number of reported points.

T

20/21

o
pz
L

	Motivation
	1D Range Searching
	KD-Trees
	2D Range Trees
	kD Range Trees

