
Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

Orthogonal Range Searching

1397-2

1 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

Motivation:
Querying a Database

5 Orthogonal Range Searching
Querying a Database

At first sight it seems that databases have little to do with geometry. Nevertheless,
many types of questions—from now on called queries—about data in a database
can be interpreted geometrically. To this end we transform records in a database
into points in a multi-dimensional space, and we transform the queries about
the records into queries on this set of points. Let’s demonstrate this with an
example.

date of birth

salary

19,500,000 19,559,999

3,000

4,000

G. Ometer
born: Aug 19, 1954
salary: $3,500

Figure 5.1
Interpreting a database query
geometrically

Consider a database for personnel administration. In such a database the
name, address, date of birth, salary, and so on, of each employee are stored. A
typical query one may want to perform is to report all employees born between
1950 and 1955 who earn between $3,000 and $4,000 a month. To formulate
this as a geometric problem we represent each employee by a point in the
plane. The first coordinate of the point is the date of birth, represented by the
integer 10,000× year+ 100×month+ day, and the second coordinate is the
monthly salary. With the point we also store the other information we have
about the employee, such as name and address. The database query asking
for all employees born between 1950 and 1955 who earn between $3,000 and 95

2 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

Motivation:
Querying a Database

Chapter 5
ORTHOGONAL RANGE SEARCHING

$4,000 transforms into the following geometric query: report all points whose
first coordinate lies between 19,500,000 and 19,559,999, and whose second
coordinate lies between 3,000 and 4,000. In other words, we want to report all
the points inside an axis-parallel query rectangle—see Figure 5.1.

What if we also have information about the number of children of each
employee, and we would like to be able to ask queries like “report all employees
born between 1950 and 1955 who earn between $3,000 and $4,000 a month and
have between two and four children”? In this case we represent each employee
by a point in 3-dimensional space: the first coordinate represents the date of
birth, the second coordinate the salary, and the third coordinate the number of
children. To answer the query we now have to report all points inside the axis-
parallel box [19,500,000 : 19,559,999]×[3,000 : 4,000]×[2 : 4]. In general, if

19,500,000 19,559,999

3,000

4,000

2

4

we are interested in answering queries on d fields of the records in our database,
we transform the records to points in d-dimensional space. A query asking to
report all records whose fields lie between specified values then transforms to
a query asking for all points inside a d-dimensional axis-parallel box. Such a
query is called a rectangular range query, or an orthogonal range query, in
computational geometry. In this chapter we shall study data structures for such
queries.

5.1 1-Dimensional Range Searching

Before we try to tackle the 2- or higher-dimensional rectangular range searching
problem, let’s have a look at the 1-dimensional version. The data we are given
is a set of points in 1-dimensional space—in other words, a set of real numbers.
A query asks for the points inside a 1-dimensional query rectangle—in other
words, an interval [x : x′].

Let P := {p1, p2, . . . , pn} be the given set of points on the real line. We can
solve the 1-dimensional range searching problem efficiently using a well-known
data structure: a balanced binary search tree T. (A solution that uses an array is
also possible. This solution does not generalize to higher dimensions, however,
nor does it allow for efficient updates on P.) The leaves of T store the points
of P and the internal nodes of T store splitting values to guide the search. We
denote the splitting value stored at a node ν by xν . We assume that the left
subtree of a node ν contains all the points smaller than or equal to xν , and that
the right subtree contains all the points strictly greater than xν .

To report the points in a query range [x : x′] we proceed as follows. We
search with x and x′ in T. Let µ and µ ′ be the two leaves where the searches
end, respectively. Then the points in the interval [x : x′] are the ones stored in the
leaves in between µ and µ ′ plus, possibly, the point stored at µ and the point
stored at µ ′. When we search with the interval [18 : 77] in the tree of Figure 5.2,
for instance, we have to report all the points stored in the dark grey leaves, plus
the point stored in the leaf µ . How can we find the leaves in between µ and
µ ′? As Figure 5.2 already suggests, they are the leaves of certain subtrees in
between the search paths to µ and µ ′. (In Figure 5.2, these subtrees are dark96

2 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Input: A set P = {p1, p2, . . . , pn} of point on real line
(1D).
Query: Given the interval [x, x′], report all the point in
the interval.
Data Structure: Balanced Binary Search Tree

3 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Input: A set P = {p1, p2, . . . , pn} of point on real line
(1D).
Query: Given the interval [x, x′], report all the point in
the interval.
Data Structure: Balanced Binary Search Tree

3 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Input: A set P = {p1, p2, . . . , pn} of point on real line
(1D).
Query: Given the interval [x, x′], report all the point in
the interval.
Data Structure: Balanced Binary Search Tree

3 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Input: A set P = {p1, p2, . . . , pn} of point on real line
(1D).
Query: Given the interval [x, x′], report all the point in
the interval.
Data Structure: Balanced Binary Search Tree

Example:P = {3, 10, 19, 23, 30, 37, 49, 59, 62, 70, 80, 89, 100, 105}

3 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Input: A set P = {p1, p2, . . . , pn} of point on real line
(1D).
Query: Given the interval [x, x′], report all the point in
the interval.
Data Structure: Balanced Binary Search Tree

Example:P = {3, 10, 19, 23, 30, 37, 49, 59, 62, 70, 80, 89, 100, 105}

3 10 19 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 10523

3 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes ν in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node νsplit where the paths to x and x′ split. This is done with the following
subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a
node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)
3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x′ and we
report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : x′].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported. 97

4 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes ν in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node νsplit where the paths to x and x′ split. This is done with the following
subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a
node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)
3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x′ and we
report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : x′].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported. 97

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes ν in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node νsplit where the paths to x and x′ split. This is done with the following
subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a
node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)
3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x′ and we
report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : x′].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported. 97

4 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes ν in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node νsplit where the paths to x and x′ split. This is done with the following
subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a
node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)
3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x′ and we
report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : x′].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported. 97

Chapter 5
ORTHOGONAL RANGE SEARCHING

4. else (∗ Follow the path to x and report the points in subtrees right of the
path. ∗)

5. ν ← lc(νsplit)
6. while ν is not a leaf
7. do if x � xν
8. then REPORTSUBTREE(rc(ν))
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at the leaf ν must be reported.
12. Similarly, follow the path to x′, report the points in subtrees left of

the path, and check if the point stored at the leaf where the path
ends must be reported.

We first prove the correctness of the algorithm.

Lemma 5.1 Algorithm 1DRANGEQUERY reports exactly those points that lie

in the query range.

Proof. We first show that any reported point p lies in the query range. If p is
stored at the leaf where the path to x or to x′ ends, then p is tested explicitly for
inclusion in the query range. Otherwise, p is reported in a call to REPORTSUB-
TREE. Assume this call was made when we followed the path to x. Let ν be the
node on the path such that p was reported in the call REPORTSUBTREE(rc(ν)).
Since ν and, hence, rc(ν) lie in the left subtree of νsplit, we have p � xνsplit .
Because the search path of x′ goes right at νsplit this means that p < x′. On the
other hand, the search path of x goes left at ν and p is in the right subtree of ν ,
so x < p. It follows that p ∈ [x : x′]. The proof that p lies in the range when it is
reported while following the path to x′ is symmetrical.

It remains to prove that any point p in the range is reported. Let µ be the
leaf where p is stored, and let ν be the lowest ancestor of µ that is visited by the
query algorithm. We claim that ν = µ , which implies that p is reported. Assume
for a contradiction that ν �= µ . Observe that ν cannot be a node visited in a call
to REPORTSUBTREE, because all descendants of such a node are visited. Hence,
ν is either on the search path to x, or on the search path to x′, or both. Because
all three cases are similar, we only consider the third case. Assume first that µ
is in the left subtree of ν . Then the search path of x goes right at ν (otherwise ν
would not be the lowest visited ancestor). But this implies that p < x. Similarly,
if µ is in the right subtree of ν , then the path of x′ goes left at ν , and p > x′. In
both cases, the assumption that p lies in the range is contradicted.

We now turn our attention to the performance of the data structure. Because
it is a balanced binary search tree, it uses O(n) storage and it can be built in
O(n logn) time. What about the query time? In the worst case all the points
could be in the query range. In this case the query time will be Θ(n), which
seems bad. Indeed, we do not need any data structure to achieve Θ(n) query
time; simply checking all the points against the query range leads to the same
result. On the other hand, a query time of Θ(n) cannot be avoided when we
have to report all the points. Therefore we shall give a more refined analysis98

5 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes ν in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node νsplit where the paths to x and x′ split. This is done with the following
subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a
node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)
3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x′ and we
report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : x′].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported. 97

Chapter 5
ORTHOGONAL RANGE SEARCHING

4. else (∗ Follow the path to x and report the points in subtrees right of the
path. ∗)

5. ν ← lc(νsplit)
6. while ν is not a leaf
7. do if x � xν
8. then REPORTSUBTREE(rc(ν))
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at the leaf ν must be reported.
12. Similarly, follow the path to x′, report the points in subtrees left of

the path, and check if the point stored at the leaf where the path
ends must be reported.

We first prove the correctness of the algorithm.

Lemma 5.1 Algorithm 1DRANGEQUERY reports exactly those points that lie

in the query range.

Proof. We first show that any reported point p lies in the query range. If p is
stored at the leaf where the path to x or to x′ ends, then p is tested explicitly for
inclusion in the query range. Otherwise, p is reported in a call to REPORTSUB-
TREE. Assume this call was made when we followed the path to x. Let ν be the
node on the path such that p was reported in the call REPORTSUBTREE(rc(ν)).
Since ν and, hence, rc(ν) lie in the left subtree of νsplit, we have p � xνsplit .
Because the search path of x′ goes right at νsplit this means that p < x′. On the
other hand, the search path of x goes left at ν and p is in the right subtree of ν ,
so x < p. It follows that p ∈ [x : x′]. The proof that p lies in the range when it is
reported while following the path to x′ is symmetrical.

It remains to prove that any point p in the range is reported. Let µ be the
leaf where p is stored, and let ν be the lowest ancestor of µ that is visited by the
query algorithm. We claim that ν = µ , which implies that p is reported. Assume
for a contradiction that ν �= µ . Observe that ν cannot be a node visited in a call
to REPORTSUBTREE, because all descendants of such a node are visited. Hence,
ν is either on the search path to x, or on the search path to x′, or both. Because
all three cases are similar, we only consider the third case. Assume first that µ
is in the left subtree of ν . Then the search path of x goes right at ν (otherwise ν
would not be the lowest visited ancestor). But this implies that p < x. Similarly,
if µ is in the right subtree of ν , then the path of x′ goes left at ν , and p > x′. In
both cases, the assumption that p lies in the range is contradicted.

We now turn our attention to the performance of the data structure. Because
it is a balanced binary search tree, it uses O(n) storage and it can be built in
O(n logn) time. What about the query time? In the worst case all the points
could be in the query range. In this case the query time will be Θ(n), which
seems bad. Indeed, we do not need any data structure to achieve Θ(n) query
time; simply checking all the points against the query range leads to the same
result. On the other hand, a query time of Θ(n) cannot be avoided when we
have to report all the points. Therefore we shall give a more refined analysis98

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes ν in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node νsplit where the paths to x and x′ split. This is done with the following
subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a
node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)
3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x′ and we
report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : x′].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported. 97

5 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Lemma 5.1
Algorithm 1DRANGEQUERY reports exactly those points
that lie in the query range.

6 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

1D Range Searching

Lemma 5.1
Algorithm 1DRANGEQUERY reports exactly those points
that lie in the query range.

Section 5.2
KD-TREES

of the query time. The refined analysis takes not only n, the number of points
in the set P, into account, but also k, the number of reported points. In other
words, we will show that the query algorithm is output-sensitive, a concept we
already encountered in Chapter 2.

Recall that the time spent in a call to REPORTSUBTREE is linear in the
number of reported points. Hence, the total time spent in all such calls is O(k).
The remaining nodes that are visited are nodes on the search path of x or x′.
Because T is balanced, these paths have length O(logn). The time we spend
at each node is O(1), so the total time spent in these nodes is O(logn), which
gives a query time of O(logn+ k).

The following theorem summarizes the results for 1-dimensional range
searching:

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree, which uses O(n) storage and

has O(n logn) construction time, such that the points in a query range can be

reported in time O(k+ logn), where k is the number of reported points.

5.2 Kd-Trees

Now let’s go to the 2-dimensional rectangular range searching problem. Let
P be a set of n points in the plane. In the remainder of this section we assume
that no two points in P have the same x-coordinate, and no two points have the
same y-coordinate. This restriction is not very realistic, especially not if the
points represent employees and the coordinates are things like salary or number
of children. Fortunately, the restriction can be overcome with a nice trick that
we describe in Section 5.5.

A 2-dimensional rectangular range query on P asks for the points from P lying
inside a query rectangle [x : x′]× [y : y′]. A point p := (px, py) lies inside this
rectangle if and only if

px ∈ [x : x′] and py ∈ [y : y′].

We could say that a 2-dimensional rectangular range query is composed of two x px x′

y

y′

py
p

1-dimensional sub-queries, one on the x-coordinate of the points and one on the
y-coordinate.

In the previous section we saw a data structure for 1-dimensional range
queries. How can we generalize this structure—which was just a binary search
tree—to 2-dimensional range queries? Let’s consider the following recursive
definition of the binary search tree: the set of (1-dimensional) points is split into
two subsets of roughly equal size; one subset contains the points smaller than or
equal to the splitting value, the other subset contains the points larger than the
splitting value. The splitting value is stored at the root, and the two subsets are
stored recursively in the two subtrees.

In the 2-dimensional case each point has two values that are important:
its x- and its y-coordinate. Therefore we first split on x-coordinate, next on 99

6 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching

Section 5.2
KD-TREES

of the query time. The refined analysis takes not only n, the number of points
in the set P, into account, but also k, the number of reported points. In other
words, we will show that the query algorithm is output-sensitive, a concept we
already encountered in Chapter 2.

Recall that the time spent in a call to REPORTSUBTREE is linear in the
number of reported points. Hence, the total time spent in all such calls is O(k).
The remaining nodes that are visited are nodes on the search path of x or x′.
Because T is balanced, these paths have length O(logn). The time we spend
at each node is O(1), so the total time spent in these nodes is O(logn), which
gives a query time of O(logn+ k).

The following theorem summarizes the results for 1-dimensional range
searching:

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree, which uses O(n) storage and

has O(n logn) construction time, such that the points in a query range can be

reported in time O(k+ logn), where k is the number of reported points.

5.2 Kd-Trees

Now let’s go to the 2-dimensional rectangular range searching problem. Let
P be a set of n points in the plane. In the remainder of this section we assume
that no two points in P have the same x-coordinate, and no two points have the
same y-coordinate. This restriction is not very realistic, especially not if the
points represent employees and the coordinates are things like salary or number
of children. Fortunately, the restriction can be overcome with a nice trick that
we describe in Section 5.5.

A 2-dimensional rectangular range query on P asks for the points from P lying
inside a query rectangle [x : x′]× [y : y′]. A point p := (px, py) lies inside this
rectangle if and only if

px ∈ [x : x′] and py ∈ [y : y′].

We could say that a 2-dimensional rectangular range query is composed of two x px x′

y

y′

py
p

1-dimensional sub-queries, one on the x-coordinate of the points and one on the
y-coordinate.

In the previous section we saw a data structure for 1-dimensional range
queries. How can we generalize this structure—which was just a binary search
tree—to 2-dimensional range queries? Let’s consider the following recursive
definition of the binary search tree: the set of (1-dimensional) points is split into
two subsets of roughly equal size; one subset contains the points smaller than or
equal to the splitting value, the other subset contains the points larger than the
splitting value. The splitting value is stored at the root, and the two subsets are
stored recursively in the two subtrees.

In the 2-dimensional case each point has two values that are important:
its x- and its y-coordinate. Therefore we first split on x-coordinate, next on 99

Can we generalize the 1-dimensional structure to
2-dimension?

7 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching

Section 5.2
KD-TREES

of the query time. The refined analysis takes not only n, the number of points
in the set P, into account, but also k, the number of reported points. In other
words, we will show that the query algorithm is output-sensitive, a concept we
already encountered in Chapter 2.

Recall that the time spent in a call to REPORTSUBTREE is linear in the
number of reported points. Hence, the total time spent in all such calls is O(k).
The remaining nodes that are visited are nodes on the search path of x or x′.
Because T is balanced, these paths have length O(logn). The time we spend
at each node is O(1), so the total time spent in these nodes is O(logn), which
gives a query time of O(logn+ k).

The following theorem summarizes the results for 1-dimensional range
searching:

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree, which uses O(n) storage and

has O(n logn) construction time, such that the points in a query range can be

reported in time O(k+ logn), where k is the number of reported points.

5.2 Kd-Trees

Now let’s go to the 2-dimensional rectangular range searching problem. Let
P be a set of n points in the plane. In the remainder of this section we assume
that no two points in P have the same x-coordinate, and no two points have the
same y-coordinate. This restriction is not very realistic, especially not if the
points represent employees and the coordinates are things like salary or number
of children. Fortunately, the restriction can be overcome with a nice trick that
we describe in Section 5.5.

A 2-dimensional rectangular range query on P asks for the points from P lying
inside a query rectangle [x : x′]× [y : y′]. A point p := (px, py) lies inside this
rectangle if and only if

px ∈ [x : x′] and py ∈ [y : y′].

We could say that a 2-dimensional rectangular range query is composed of two x px x′

y

y′

py
p

1-dimensional sub-queries, one on the x-coordinate of the points and one on the
y-coordinate.

In the previous section we saw a data structure for 1-dimensional range
queries. How can we generalize this structure—which was just a binary search
tree—to 2-dimensional range queries? Let’s consider the following recursive
definition of the binary search tree: the set of (1-dimensional) points is split into
two subsets of roughly equal size; one subset contains the points smaller than or
equal to the splitting value, the other subset contains the points larger than the
splitting value. The splitting value is stored at the root, and the two subsets are
stored recursively in the two subtrees.

In the 2-dimensional case each point has two values that are important:
its x- and its y-coordinate. Therefore we first split on x-coordinate, next on 99

Can we generalize the 1-dimensional structure to
2-dimension?

7 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1 `1

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`2

`1

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`2

`1

`3

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`4

`4

`2

`1

p3

`3

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`4

`5

`4

`2

`1

`5

p3 p4 p5

`3

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`4

`5

`6

`4

`2

`1

`5

p3 p4 p5 p8

`6

`3

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`4

`5

`6

`7

`4

`2

`1

`5

p3 p4 p5 p8 p9 p10

`7`6

`3

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`4

`5

`6

`7

`8

p1 p2

`8

`4

`2

`1

`5

p3 p4 p5 p8 p9 p10

`7`6

`3

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`1

`2

`3

`4

`5

`6

`7

`8

`9

p1 p2

`8

`4

`2

`1

`5

p3 p4 p5

p6 p7

p8 p9 p10

`7`6

`9

`3

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

Chapter 5
ORTHOGONAL RANGE SEARCHING

y-coordinate, then again on x-coordinate, and so on. More precisely, the process
is as follows. At the root we split the set P with a vertical line � into two subsets
of roughly equal size. The splitting line is stored at the root. Pleft, the subset of
points to the left or on the splitting line, is stored in the left subtree, and Pright,
the subset to the right of it, is stored in the right subtree. At the left child of the

�

Pleft Pright

root we split Pleft into two subsets with a horizontal line; the points below or on
it are stored in the left subtree of the left child, and the points above it are stored
in the right subtree. The left child itself stores the splitting line. Similarly, the
set Pright is split with a horizontal line into two subsets, which are stored in the
left and right subtree of the right child. At the grandchildren of the root, we
split again with a vertical line. In general, we split with a vertical line at nodes
whose depth is even, and we split with a horizontal line at nodes whose depth is
odd. Figure 5.3 illustrates how the splitting is done and what the corresponding
binary tree looks like. A tree like this is called a kd-tree. Originally, the name

Figure 5.3
A kd-tree: on the left the way the plane

is subdivided and on the right the
corresponding binary tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

�1

�2

�3

�4

�5

�6

�7

�8

�9

p1 p2

�8

�4

�2

�1

�5

p3 p4 p5

p6 p7

p8 p9 p10

�7�6

�9

�3

stood for k-dimensional tree; the tree we described above would be a 2d-tree.
Nowadays, the original meaning is lost, and what used to be called a 2d-tree is
now called a 2-dimensional kd-tree.

We can construct a kd-tree with the recursive procedure described below.
This procedure has two parameters: a set of points and an integer. The first
parameter is the set for which we want to build the kd-tree; initially this is the
set P. The second parameter is depth of recursion or, in other words, the depth
of the root of the subtree that the recursive call constructs. The depth parameter
is zero at the first call. The depth is important because, as explained above,
it determines whether we must split with a vertical or a horizontal line. The
procedure returns the root of the kd-tree.

Algorithm BUILDKDTREE(P,depth)
Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P into two subsets with a vertical line � through the

median x-coordinate of the points in P. Let P1 be the set of100
Section 5.2
KD-TREES

points to the left of � or on �, and let P2 be the set of points
to the right of �.

5. else Split P into two subsets with a horizontal line � through
the median y-coordinate of the points in P. Let P1 be the
set of points below � or on �, and let P2 be the set of points
above �.

6. νleft ← BUILDKDTREE(P1,depth+1)
7. νright ← BUILDKDTREE(P2,depth+1)
8. Create a node ν storing �, make νleft the left child of ν , and make

νright the right child of ν .
9. return ν

The algorithm uses the convention that the point on the splitting line—the one
determining the median x- or y-coordinate—belongs to the subset to the left of,
or below, the splitting line. For this to work correctly, the median of a set of n
numbers should be defined as the �n/2�-th smallest number. This means that
the median of two values is the smaller one, which ensures that the algorithm
terminates.

Before we come to the query algorithm, let’s analyze the construction time
of a 2-dimensional kd-tree. The most expensive step that is performed at every
recursive call is finding the splitting line. This requires determining the median
x-coordinate or the median y-coordinate, depending on whether the depth is
even or odd. Median finding can be done in linear time. Linear time median
finding algorithms, however, are rather complicated. A better approach is to
presort the set of points both on x- and on y-coordinate. The parameter set P is
now passed to the procedure in the form of two sorted lists, one on x-coordinate
and one on y-coordinate. Given the two sorted lists, it is easy to find the median
x-coordinate (when the depth is even) or the median y-coordinate (when the
depth is odd) in linear time. It is also easy to construct the sorted lists for the
two recursive calls in linear time from the given lists. Hence, the building time
T (n) satisfies the recurrence

T (n) =

{
O(1), if n = 1,
O(n)+2T (�n/2�), if n > 1,

which solves to O(n logn). This bound subsumes the time we spend for presort-
ing the points on x- and y-coordinate.

To bound the amount of storage we note that each leaf in the kd-tree stores
a distinct point of P. Hence, there are n leaves. Because a kd-tree is a binary
tree, and every leaf and internal node uses O(1) storage, this implies that the
total amount of storage is O(n). This leads to the following lemma.

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-

structed in O(n logn) time.

We now turn to the query algorithm. The splitting line stored at the root
partitions the plane into two half-planes. The points in the left half-plane are
stored in the left subtree, and the points in the right half-plane are stored in the 101

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

Chapter 5
ORTHOGONAL RANGE SEARCHING

y-coordinate, then again on x-coordinate, and so on. More precisely, the process
is as follows. At the root we split the set P with a vertical line � into two subsets
of roughly equal size. The splitting line is stored at the root. Pleft, the subset of
points to the left or on the splitting line, is stored in the left subtree, and Pright,
the subset to the right of it, is stored in the right subtree. At the left child of the

�

Pleft Pright

root we split Pleft into two subsets with a horizontal line; the points below or on
it are stored in the left subtree of the left child, and the points above it are stored
in the right subtree. The left child itself stores the splitting line. Similarly, the
set Pright is split with a horizontal line into two subsets, which are stored in the
left and right subtree of the right child. At the grandchildren of the root, we
split again with a vertical line. In general, we split with a vertical line at nodes
whose depth is even, and we split with a horizontal line at nodes whose depth is
odd. Figure 5.3 illustrates how the splitting is done and what the corresponding
binary tree looks like. A tree like this is called a kd-tree. Originally, the name

Figure 5.3
A kd-tree: on the left the way the plane

is subdivided and on the right the
corresponding binary tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

�1

�2

�3

�4

�5

�6

�7

�8

�9

p1 p2

�8

�4

�2

�1

�5

p3 p4 p5

p6 p7

p8 p9 p10

�7�6

�9

�3

stood for k-dimensional tree; the tree we described above would be a 2d-tree.
Nowadays, the original meaning is lost, and what used to be called a 2d-tree is
now called a 2-dimensional kd-tree.

We can construct a kd-tree with the recursive procedure described below.
This procedure has two parameters: a set of points and an integer. The first
parameter is the set for which we want to build the kd-tree; initially this is the
set P. The second parameter is depth of recursion or, in other words, the depth
of the root of the subtree that the recursive call constructs. The depth parameter
is zero at the first call. The depth is important because, as explained above,
it determines whether we must split with a vertical or a horizontal line. The
procedure returns the root of the kd-tree.

Algorithm BUILDKDTREE(P,depth)
Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P into two subsets with a vertical line � through the

median x-coordinate of the points in P. Let P1 be the set of100
Section 5.2
KD-TREES

points to the left of � or on �, and let P2 be the set of points
to the right of �.

5. else Split P into two subsets with a horizontal line � through
the median y-coordinate of the points in P. Let P1 be the
set of points below � or on �, and let P2 be the set of points
above �.

6. νleft ← BUILDKDTREE(P1,depth+1)
7. νright ← BUILDKDTREE(P2,depth+1)
8. Create a node ν storing �, make νleft the left child of ν , and make

νright the right child of ν .
9. return ν

The algorithm uses the convention that the point on the splitting line—the one
determining the median x- or y-coordinate—belongs to the subset to the left of,
or below, the splitting line. For this to work correctly, the median of a set of n
numbers should be defined as the �n/2�-th smallest number. This means that
the median of two values is the smaller one, which ensures that the algorithm
terminates.

Before we come to the query algorithm, let’s analyze the construction time
of a 2-dimensional kd-tree. The most expensive step that is performed at every
recursive call is finding the splitting line. This requires determining the median
x-coordinate or the median y-coordinate, depending on whether the depth is
even or odd. Median finding can be done in linear time. Linear time median
finding algorithms, however, are rather complicated. A better approach is to
presort the set of points both on x- and on y-coordinate. The parameter set P is
now passed to the procedure in the form of two sorted lists, one on x-coordinate
and one on y-coordinate. Given the two sorted lists, it is easy to find the median
x-coordinate (when the depth is even) or the median y-coordinate (when the
depth is odd) in linear time. It is also easy to construct the sorted lists for the
two recursive calls in linear time from the given lists. Hence, the building time
T (n) satisfies the recurrence

T (n) =

{
O(1), if n = 1,
O(n)+2T (�n/2�), if n > 1,

which solves to O(n logn). This bound subsumes the time we spend for presort-
ing the points on x- and y-coordinate.

To bound the amount of storage we note that each leaf in the kd-tree stores
a distinct point of P. Hence, there are n leaves. Because a kd-tree is a binary
tree, and every leaf and internal node uses O(1) storage, this implies that the
total amount of storage is O(n). This leads to the following lemma.

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-

structed in O(n logn) time.

We now turn to the query algorithm. The splitting line stored at the root
partitions the plane into two half-planes. The points in the left half-plane are
stored in the left subtree, and the points in the right half-plane are stored in the 101

Time complexity: T (n) =
{

O(1) if n = 1
O(n) + 2T (n2) if n > 1

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree

Chapter 5
ORTHOGONAL RANGE SEARCHING

y-coordinate, then again on x-coordinate, and so on. More precisely, the process
is as follows. At the root we split the set P with a vertical line � into two subsets
of roughly equal size. The splitting line is stored at the root. Pleft, the subset of
points to the left or on the splitting line, is stored in the left subtree, and Pright,
the subset to the right of it, is stored in the right subtree. At the left child of the

�

Pleft Pright

root we split Pleft into two subsets with a horizontal line; the points below or on
it are stored in the left subtree of the left child, and the points above it are stored
in the right subtree. The left child itself stores the splitting line. Similarly, the
set Pright is split with a horizontal line into two subsets, which are stored in the
left and right subtree of the right child. At the grandchildren of the root, we
split again with a vertical line. In general, we split with a vertical line at nodes
whose depth is even, and we split with a horizontal line at nodes whose depth is
odd. Figure 5.3 illustrates how the splitting is done and what the corresponding
binary tree looks like. A tree like this is called a kd-tree. Originally, the name

Figure 5.3
A kd-tree: on the left the way the plane

is subdivided and on the right the
corresponding binary tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

�1

�2

�3

�4

�5

�6

�7

�8

�9

p1 p2

�8

�4

�2

�1

�5

p3 p4 p5

p6 p7

p8 p9 p10

�7�6

�9

�3

stood for k-dimensional tree; the tree we described above would be a 2d-tree.
Nowadays, the original meaning is lost, and what used to be called a 2d-tree is
now called a 2-dimensional kd-tree.

We can construct a kd-tree with the recursive procedure described below.
This procedure has two parameters: a set of points and an integer. The first
parameter is the set for which we want to build the kd-tree; initially this is the
set P. The second parameter is depth of recursion or, in other words, the depth
of the root of the subtree that the recursive call constructs. The depth parameter
is zero at the first call. The depth is important because, as explained above,
it determines whether we must split with a vertical or a horizontal line. The
procedure returns the root of the kd-tree.

Algorithm BUILDKDTREE(P,depth)
Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P into two subsets with a vertical line � through the

median x-coordinate of the points in P. Let P1 be the set of100
Section 5.2
KD-TREES

points to the left of � or on �, and let P2 be the set of points
to the right of �.

5. else Split P into two subsets with a horizontal line � through
the median y-coordinate of the points in P. Let P1 be the
set of points below � or on �, and let P2 be the set of points
above �.

6. νleft ← BUILDKDTREE(P1,depth+1)
7. νright ← BUILDKDTREE(P2,depth+1)
8. Create a node ν storing �, make νleft the left child of ν , and make

νright the right child of ν .
9. return ν

The algorithm uses the convention that the point on the splitting line—the one
determining the median x- or y-coordinate—belongs to the subset to the left of,
or below, the splitting line. For this to work correctly, the median of a set of n
numbers should be defined as the �n/2�-th smallest number. This means that
the median of two values is the smaller one, which ensures that the algorithm
terminates.

Before we come to the query algorithm, let’s analyze the construction time
of a 2-dimensional kd-tree. The most expensive step that is performed at every
recursive call is finding the splitting line. This requires determining the median
x-coordinate or the median y-coordinate, depending on whether the depth is
even or odd. Median finding can be done in linear time. Linear time median
finding algorithms, however, are rather complicated. A better approach is to
presort the set of points both on x- and on y-coordinate. The parameter set P is
now passed to the procedure in the form of two sorted lists, one on x-coordinate
and one on y-coordinate. Given the two sorted lists, it is easy to find the median
x-coordinate (when the depth is even) or the median y-coordinate (when the
depth is odd) in linear time. It is also easy to construct the sorted lists for the
two recursive calls in linear time from the given lists. Hence, the building time
T (n) satisfies the recurrence

T (n) =

{
O(1), if n = 1,
O(n)+2T (�n/2�), if n > 1,

which solves to O(n logn). This bound subsumes the time we spend for presort-
ing the points on x- and y-coordinate.

To bound the amount of storage we note that each leaf in the kd-tree stores
a distinct point of P. Hence, there are n leaves. Because a kd-tree is a binary
tree, and every leaf and internal node uses O(1) storage, this implies that the
total amount of storage is O(n). This leads to the following lemma.

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-

structed in O(n logn) time.

We now turn to the query algorithm. The splitting line stored at the root
partitions the plane into two half-planes. The points in the left half-plane are
stored in the left subtree, and the points in the right half-plane are stored in the 101

Section 5.2
KD-TREES

points to the left of � or on �, and let P2 be the set of points
to the right of �.

5. else Split P into two subsets with a horizontal line � through
the median y-coordinate of the points in P. Let P1 be the
set of points below � or on �, and let P2 be the set of points
above �.

6. νleft ← BUILDKDTREE(P1,depth+1)
7. νright ← BUILDKDTREE(P2,depth+1)
8. Create a node ν storing �, make νleft the left child of ν , and make

νright the right child of ν .
9. return ν

The algorithm uses the convention that the point on the splitting line—the one
determining the median x- or y-coordinate—belongs to the subset to the left of,
or below, the splitting line. For this to work correctly, the median of a set of n
numbers should be defined as the �n/2�-th smallest number. This means that
the median of two values is the smaller one, which ensures that the algorithm
terminates.

Before we come to the query algorithm, let’s analyze the construction time
of a 2-dimensional kd-tree. The most expensive step that is performed at every
recursive call is finding the splitting line. This requires determining the median
x-coordinate or the median y-coordinate, depending on whether the depth is
even or odd. Median finding can be done in linear time. Linear time median
finding algorithms, however, are rather complicated. A better approach is to
presort the set of points both on x- and on y-coordinate. The parameter set P is
now passed to the procedure in the form of two sorted lists, one on x-coordinate
and one on y-coordinate. Given the two sorted lists, it is easy to find the median
x-coordinate (when the depth is even) or the median y-coordinate (when the
depth is odd) in linear time. It is also easy to construct the sorted lists for the
two recursive calls in linear time from the given lists. Hence, the building time
T (n) satisfies the recurrence

T (n) =

{
O(1), if n = 1,
O(n)+2T (�n/2�), if n > 1,

which solves to O(n logn). This bound subsumes the time we spend for presort-
ing the points on x- and y-coordinate.

To bound the amount of storage we note that each leaf in the kd-tree stores
a distinct point of P. Hence, there are n leaves. Because a kd-tree is a binary
tree, and every leaf and internal node uses O(1) storage, this implies that the
total amount of storage is O(n). This leads to the following lemma.

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-

structed in O(n logn) time.

We now turn to the query algorithm. The splitting line stored at the root
partitions the plane into two half-planes. The points in the left half-plane are
stored in the left subtree, and the points in the right half-plane are stored in the 101

8 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Nodes in the tree vs. Regions in the plane

Chapter 5
ORTHOGONAL RANGE SEARCHING

right subtree. In a sense, the left child of the root corresponds to the left half-
plane and the right child corresponds to the right half-plane. (The convention
used in BUILDKDTREE that the point on the splitting line belongs to the left
subset implies that the left half-plane is closed to the right and the right half-
plane is open to the left.) The other nodes in a kd-tree correspond to a region
of the plane as well. The left child of the left child of the root, for instance,
corresponds to the region bounded to the right by the splitting line stored at
the root and bounded from above by the line stored at the left child of the root.
In general, the region corresponding to a node ν is a rectangle, which can be
unbounded on one or more sides. It is bounded by splitting lines stored at
ancestors of ν—see Figure 5.4. We denote the region corresponding to a node

Figure 5.4
Correspondence between nodes in a

kd-tree and regions in the plane

�1

�2

�3

ν

region(ν)

�3

�2

�1

ν by region(ν). The region of the root of a kd-tree is simply the whole plane.
Observe that a point is stored in the subtree rooted at a node ν if and only if it
lies in region(ν). For instance, the subtree of the node ν in Figure 5.4 stores
the points indicated as black dots. Therefore we have to search the subtree
rooted at ν only if the query rectangle intersects region(ν). This observation
leads to the following query algorithm: we traverse the kd-tree, but visit only
nodes whose region is intersected by the query rectangle. When a region is
fully contained in the query rectangle, we can report all the points stored in
its subtree. When the traversal reaches a leaf, we have to check whether the
point stored at the leaf is contained in the query region and, if so, report it.
Figure 5.5 illustrates the query algorithm. (Note that the kd-tree of Figure 5.5
could not have been constructed by Algorithm BUILDKDTREE; the median
wasn’t always chosen as the split value.) The grey nodes are visited when we
query with the grey rectangle. The node marked with a star corresponds to a
region that is completely contained in the query rectangle; in the figure this
rectangular region is shown darker. Hence, the dark grey subtree rooted at this
node is traversed and all points stored in it are reported. The other leaves that are
visited correspond to regions that are only partially inside the query rectangle.
Hence, the points stored in them must be tested for inclusion in the query range;
this results in points p6 and p11 being reported, and points p3, p12, and p13 not
being reported. The query algorithm is described by the following recursive102

9 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Query on kd-tree

Section 5.2
KD-TREES

*p1 p2

p2

p1

p3
p3 p4

p4
p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11
p11

p12

p12 p13

p13

Figure 5.5
A query on a kd-tree

procedure, which takes as arguments the root of a kd-tree and the query range R.
It uses a subroutine REPORTSUBTREE(ν), which traverses the subtree rooted
at a node ν and reports all the points stored at its leaves. Recall that lc(ν) and
rc(ν) denote the left and right child of a node ν , respectively.

Algorithm SEARCHKDTREE(ν ,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below ν that lie in the range.
1. if ν is a leaf
2. then Report the point stored at ν if it lies in R.
3. else if region(lc(ν)) is fully contained in R
4. then REPORTSUBTREE(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SEARCHKDTREE(lc(ν),R)
7. if region(rc(ν)) is fully contained in R
8. then REPORTSUBTREE(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SEARCHKDTREE(rc(ν),R)

The main test the query algorithm performs is whether the query range R
intersects the region corresponding to some node ν . To be able to do this test
we can compute region(ν) for all nodes ν during the preprocessing phase and
store it, but this is not necessary: one can maintain the current region through
the recursive calls using the lines stored in the internal nodes. For instance, the
region corresponding to the left child of a node ν at even depth can be computed
from region(ν) as follows:

region(ν)

�(ν)

region(lc(ν))

�(ν)left

region(lc(ν)) = region(ν)∩ �(ν)left,

where �(ν) is the splitting line stored at ν , and �(ν)left is the half-plane to the
left of and including �(ν). 103

10 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Query on kd-tree

Section 5.2
KD-TREES

*p1 p2

p2

p1

p3
p3 p4

p4
p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11
p11

p12

p12 p13

p13

Figure 5.5
A query on a kd-tree

procedure, which takes as arguments the root of a kd-tree and the query range R.
It uses a subroutine REPORTSUBTREE(ν), which traverses the subtree rooted
at a node ν and reports all the points stored at its leaves. Recall that lc(ν) and
rc(ν) denote the left and right child of a node ν , respectively.

Algorithm SEARCHKDTREE(ν ,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below ν that lie in the range.
1. if ν is a leaf
2. then Report the point stored at ν if it lies in R.
3. else if region(lc(ν)) is fully contained in R
4. then REPORTSUBTREE(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SEARCHKDTREE(lc(ν),R)
7. if region(rc(ν)) is fully contained in R
8. then REPORTSUBTREE(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SEARCHKDTREE(rc(ν),R)

The main test the query algorithm performs is whether the query range R
intersects the region corresponding to some node ν . To be able to do this test
we can compute region(ν) for all nodes ν during the preprocessing phase and
store it, but this is not necessary: one can maintain the current region through
the recursive calls using the lines stored in the internal nodes. For instance, the
region corresponding to the left child of a node ν at even depth can be computed
from region(ν) as follows:

region(ν)

�(ν)

region(lc(ν))

�(ν)left

region(lc(ν)) = region(ν)∩ �(ν)left,

where �(ν) is the splitting line stored at ν , and �(ν)left is the half-plane to the
left of and including �(ν). 103

10 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

How to test whether the query range R intersects
the region corresponding to a node?
Solution 1: Store region of each node in the node.
Solution 2:

11 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

How to test whether the query range R intersects
the region corresponding to a node?
Solution 1: Store region of each node in the node.
Solution 2:

11 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

How to test whether the query range R intersects
the region corresponding to a node?
Solution 1: Store region of each node in the node.
Solution 2:

Section 5.2
KD-TREES

*p1 p2

p2

p1

p3
p3 p4

p4
p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11
p11

p12

p12 p13

p13

Figure 5.5
A query on a kd-tree

procedure, which takes as arguments the root of a kd-tree and the query range R.
It uses a subroutine REPORTSUBTREE(ν), which traverses the subtree rooted
at a node ν and reports all the points stored at its leaves. Recall that lc(ν) and
rc(ν) denote the left and right child of a node ν , respectively.

Algorithm SEARCHKDTREE(ν ,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below ν that lie in the range.
1. if ν is a leaf
2. then Report the point stored at ν if it lies in R.
3. else if region(lc(ν)) is fully contained in R
4. then REPORTSUBTREE(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SEARCHKDTREE(lc(ν),R)
7. if region(rc(ν)) is fully contained in R
8. then REPORTSUBTREE(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SEARCHKDTREE(rc(ν),R)

The main test the query algorithm performs is whether the query range R
intersects the region corresponding to some node ν . To be able to do this test
we can compute region(ν) for all nodes ν during the preprocessing phase and
store it, but this is not necessary: one can maintain the current region through
the recursive calls using the lines stored in the internal nodes. For instance, the
region corresponding to the left child of a node ν at even depth can be computed
from region(ν) as follows:

region(ν)

�(ν)

region(lc(ν))

�(ν)left

region(lc(ν)) = region(ν)∩ �(ν)left,

where �(ν) is the splitting line stored at ν , and �(ν)left is the half-plane to the
left of and including �(ν). 103

Section 5.2
KD-TREES

*p1 p2

p2

p1

p3
p3 p4

p4
p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11
p11

p12

p12 p13

p13

Figure 5.5
A query on a kd-tree

procedure, which takes as arguments the root of a kd-tree and the query range R.
It uses a subroutine REPORTSUBTREE(ν), which traverses the subtree rooted
at a node ν and reports all the points stored at its leaves. Recall that lc(ν) and
rc(ν) denote the left and right child of a node ν , respectively.

Algorithm SEARCHKDTREE(ν ,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below ν that lie in the range.
1. if ν is a leaf
2. then Report the point stored at ν if it lies in R.
3. else if region(lc(ν)) is fully contained in R
4. then REPORTSUBTREE(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SEARCHKDTREE(lc(ν),R)
7. if region(rc(ν)) is fully contained in R
8. then REPORTSUBTREE(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SEARCHKDTREE(rc(ν),R)

The main test the query algorithm performs is whether the query range R
intersects the region corresponding to some node ν . To be able to do this test
we can compute region(ν) for all nodes ν during the preprocessing phase and
store it, but this is not necessary: one can maintain the current region through
the recursive calls using the lines stored in the internal nodes. For instance, the
region corresponding to the left child of a node ν at even depth can be computed
from region(ν) as follows:

region(ν)

�(ν)

region(lc(ν))

�(ν)left

region(lc(ν)) = region(ν)∩ �(ν)left,

where �(ν) is the splitting line stored at ν , and �(ν)left is the half-plane to the
left of and including �(ν). 10311 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range
R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node ν , the query
range properly intersects region(ν), that is, region(ν) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(ν). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting
line stored at the root of the kd-tree. The line � intersects either the region to
the left of �(root(T)) or the region to the right of �(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line � intersects for instance region(lc(root(T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most ��n/2�/2�= �n/4� points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, � intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,
2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line
intersects O(

√
n) regions in a kd-tree. In a similar way one can prove that the104

Proof.
traversing subtrees and reporting points: Linear time.

12 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range
R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node ν , the query
range properly intersects region(ν), that is, region(ν) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(ν). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting
line stored at the root of the kd-tree. The line � intersects either the region to
the left of �(root(T)) or the region to the right of �(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line � intersects for instance region(lc(root(T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most ��n/2�/2�= �n/4� points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, � intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,
2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line
intersects O(

√
n) regions in a kd-tree. In a similar way one can prove that the104

Proof.
traversing subtrees and reporting points: Linear time.

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range
R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node ν , the query
range properly intersects region(ν), that is, region(ν) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(ν). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting
line stored at the root of the kd-tree. The line � intersects either the region to
the left of �(root(T)) or the region to the right of �(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line � intersects for instance region(lc(root(T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most ��n/2�/2�= �n/4� points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, � intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,
2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line
intersects O(

√
n) regions in a kd-tree. In a similar way one can prove that the104

Q(n) =

{
O(1) if n = 1
2 + 2Q(n4) if n > 1

12 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range
R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node ν , the query
range properly intersects region(ν), that is, region(ν) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(ν). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting
line stored at the root of the kd-tree. The line � intersects either the region to
the left of �(root(T)) or the region to the right of �(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line � intersects for instance region(lc(root(T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most ��n/2�/2�= �n/4� points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, � intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,
2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line
intersects O(

√
n) regions in a kd-tree. In a similar way one can prove that the104

Proof.
traversing subtrees and reporting points: Linear time.

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range
R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node ν , the query
range properly intersects region(ν), that is, region(ν) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(ν). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting
line stored at the root of the kd-tree. The line � intersects either the region to
the left of �(root(T)) or the region to the right of �(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line � intersects for instance region(lc(root(T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most ��n/2�/2�= �n/4� points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, � intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,
2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line
intersects O(

√
n) regions in a kd-tree. In a similar way one can prove that the104

Q(n) =

{
O(1) if n = 1
2 + 2Q(n4) if n > 1

Q(n) = O(
√
n)

12 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range
R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node ν , the query
range properly intersects region(ν), that is, region(ν) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(ν). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting
line stored at the root of the kd-tree. The line � intersects either the region to
the left of �(root(T)) or the region to the right of �(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line � intersects for instance region(lc(root(T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most ��n/2�/2�= �n/4� points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, � intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,
2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line
intersects O(

√
n) regions in a kd-tree. In a similar way one can prove that the104

Proof.
traversing subtrees and reporting points: Linear time.

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range
R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node ν , the query
range properly intersects region(ν), that is, region(ν) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(ν). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting
line stored at the root of the kd-tree. The line � intersects either the region to
the left of �(root(T)) or the region to the right of �(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line � intersects for instance region(lc(root(T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most ��n/2�/2�= �n/4� points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, � intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,
2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line
intersects O(

√
n) regions in a kd-tree. In a similar way one can prove that the104

Q(n) =

{
O(1) if n = 1
2 + 2Q(n4) if n > 1

Section 5.3
RANGE TREES

total number of regions intersected by a horizontal line is O(
√

n). The total
number of regions intersected by the boundary of a rectangular query range is
bounded by O(

√
n) as well.

The analysis of the query time that we gave above is rather pessimistic: we
bounded the number of regions intersecting an edge of the query rectangle by the
number of regions intersecting the line through it. In many practical situations
the range will be small. As a result, the edges are short and will intersect much
fewer regions. For example, when we search with a range [x : x]×[y : y]—this
query effectively asks whether the point (x,y) is in the set—the query time is
bounded by O(logn).

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage

and can be built in O(n logn) time. A rectangular range query on the kd-tree

takes O(
√

n+ k) time, where k is the number of reported points.

Kd-trees can also be used for point sets in 3- or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the x1-axis. In other words, at the root the point set is partitioned
based on the first coordinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on the third coordinate,
and so on, until at depth d − 1 we partition on the last coordinate. At depth
d we start all over again, partitioning on first coordinate. The recursion stops
when there is only one point left, which is then stored at a leaf. Because a
d-dimensional kd-tree for a set of n points is a binary tree with n leaves, it uses
O(n) storage. The construction time is O(n logn). (As usual, we assume d to
be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The
query algorithm visits those nodes whose regions are properly intersected by
the query range, and traverses subtrees (to report the points stored in the leaves)
that are rooted at nodes whose region is fully contained in the query range. It
can be shown that the query time is bounded by O(n1−1/d + k).

5.3 Range Trees

Kd-trees, which were described in the previous section, have O(
√

n+ k) query
time. So when the number of reported points is small, the query time is relatively
high. In this section we shall describe another data structure for rectangular
range queries, the range tree, which has a better query time, namely O(log2 n+
k). The price we have to pay for this improvement is an increase in storage from
O(n) for kd-trees to O(n logn) for range trees.

As we observed before, a 2-dimensional range query is essentially composed of
two 1-dimensional sub-queries, one on the x-coordinate of the points and one 105

12 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Section 5.3
RANGE TREES

total number of regions intersected by a horizontal line is O(
√

n). The total
number of regions intersected by the boundary of a rectangular query range is
bounded by O(

√
n) as well.

The analysis of the query time that we gave above is rather pessimistic: we
bounded the number of regions intersecting an edge of the query rectangle by the
number of regions intersecting the line through it. In many practical situations
the range will be small. As a result, the edges are short and will intersect much
fewer regions. For example, when we search with a range [x : x]×[y : y]—this
query effectively asks whether the point (x,y) is in the set—the query time is
bounded by O(logn).

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage

and can be built in O(n logn) time. A rectangular range query on the kd-tree

takes O(
√

n+ k) time, where k is the number of reported points.

Kd-trees can also be used for point sets in 3- or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the x1-axis. In other words, at the root the point set is partitioned
based on the first coordinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on the third coordinate,
and so on, until at depth d − 1 we partition on the last coordinate. At depth
d we start all over again, partitioning on first coordinate. The recursion stops
when there is only one point left, which is then stored at a leaf. Because a
d-dimensional kd-tree for a set of n points is a binary tree with n leaves, it uses
O(n) storage. The construction time is O(n logn). (As usual, we assume d to
be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The
query algorithm visits those nodes whose regions are properly intersected by
the query range, and traverses subtrees (to report the points stored in the leaves)
that are rooted at nodes whose region is fully contained in the query range. It
can be shown that the query time is bounded by O(n1−1/d + k).

5.3 Range Trees

Kd-trees, which were described in the previous section, have O(
√

n+ k) query
time. So when the number of reported points is small, the query time is relatively
high. In this section we shall describe another data structure for rectangular
range queries, the range tree, which has a better query time, namely O(log2 n+
k). The price we have to pay for this improvement is an increase in storage from
O(n) for kd-trees to O(n logn) for range trees.

As we observed before, a 2-dimensional range query is essentially composed of
two 1-dimensional sub-queries, one on the x-coordinate of the points and one 105

Can we generalize the results to d-dimension?
Yes.
Time complexity: O(n log n) construction time, O(n)
space, and O(n1−1/d + k) query time

13 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Section 5.3
RANGE TREES

total number of regions intersected by a horizontal line is O(
√

n). The total
number of regions intersected by the boundary of a rectangular query range is
bounded by O(

√
n) as well.

The analysis of the query time that we gave above is rather pessimistic: we
bounded the number of regions intersecting an edge of the query rectangle by the
number of regions intersecting the line through it. In many practical situations
the range will be small. As a result, the edges are short and will intersect much
fewer regions. For example, when we search with a range [x : x]×[y : y]—this
query effectively asks whether the point (x,y) is in the set—the query time is
bounded by O(logn).

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage

and can be built in O(n logn) time. A rectangular range query on the kd-tree

takes O(
√

n+ k) time, where k is the number of reported points.

Kd-trees can also be used for point sets in 3- or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the x1-axis. In other words, at the root the point set is partitioned
based on the first coordinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on the third coordinate,
and so on, until at depth d − 1 we partition on the last coordinate. At depth
d we start all over again, partitioning on first coordinate. The recursion stops
when there is only one point left, which is then stored at a leaf. Because a
d-dimensional kd-tree for a set of n points is a binary tree with n leaves, it uses
O(n) storage. The construction time is O(n logn). (As usual, we assume d to
be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The
query algorithm visits those nodes whose regions are properly intersected by
the query range, and traverses subtrees (to report the points stored in the leaves)
that are rooted at nodes whose region is fully contained in the query range. It
can be shown that the query time is bounded by O(n1−1/d + k).

5.3 Range Trees

Kd-trees, which were described in the previous section, have O(
√

n+ k) query
time. So when the number of reported points is small, the query time is relatively
high. In this section we shall describe another data structure for rectangular
range queries, the range tree, which has a better query time, namely O(log2 n+
k). The price we have to pay for this improvement is an increase in storage from
O(n) for kd-trees to O(n logn) for range trees.

As we observed before, a 2-dimensional range query is essentially composed of
two 1-dimensional sub-queries, one on the x-coordinate of the points and one 105

Can we generalize the results to d-dimension?
Yes.
Time complexity: O(n log n) construction time, O(n)
space, and O(n1−1/d + k) query time

13 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Section 5.3
RANGE TREES

total number of regions intersected by a horizontal line is O(
√

n). The total
number of regions intersected by the boundary of a rectangular query range is
bounded by O(

√
n) as well.

The analysis of the query time that we gave above is rather pessimistic: we
bounded the number of regions intersecting an edge of the query rectangle by the
number of regions intersecting the line through it. In many practical situations
the range will be small. As a result, the edges are short and will intersect much
fewer regions. For example, when we search with a range [x : x]×[y : y]—this
query effectively asks whether the point (x,y) is in the set—the query time is
bounded by O(logn).

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage

and can be built in O(n logn) time. A rectangular range query on the kd-tree

takes O(
√

n+ k) time, where k is the number of reported points.

Kd-trees can also be used for point sets in 3- or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the x1-axis. In other words, at the root the point set is partitioned
based on the first coordinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on the third coordinate,
and so on, until at depth d − 1 we partition on the last coordinate. At depth
d we start all over again, partitioning on first coordinate. The recursion stops
when there is only one point left, which is then stored at a leaf. Because a
d-dimensional kd-tree for a set of n points is a binary tree with n leaves, it uses
O(n) storage. The construction time is O(n logn). (As usual, we assume d to
be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The
query algorithm visits those nodes whose regions are properly intersected by
the query range, and traverses subtrees (to report the points stored in the leaves)
that are rooted at nodes whose region is fully contained in the query range. It
can be shown that the query time is bounded by O(n1−1/d + k).

5.3 Range Trees

Kd-trees, which were described in the previous section, have O(
√

n+ k) query
time. So when the number of reported points is small, the query time is relatively
high. In this section we shall describe another data structure for rectangular
range queries, the range tree, which has a better query time, namely O(log2 n+
k). The price we have to pay for this improvement is an increase in storage from
O(n) for kd-trees to O(n logn) for range trees.

As we observed before, a 2-dimensional range query is essentially composed of
two 1-dimensional sub-queries, one on the x-coordinate of the points and one 105

Can we generalize the results to d-dimension?
Yes.
Time complexity: O(n log n) construction time, O(n)
space, and O(n1−1/d + k) query time

13 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
KD-tree-Query Algorithm

Section 5.3
RANGE TREES

total number of regions intersected by a horizontal line is O(
√

n). The total
number of regions intersected by the boundary of a rectangular query range is
bounded by O(

√
n) as well.

The analysis of the query time that we gave above is rather pessimistic: we
bounded the number of regions intersecting an edge of the query rectangle by the
number of regions intersecting the line through it. In many practical situations
the range will be small. As a result, the edges are short and will intersect much
fewer regions. For example, when we search with a range [x : x]×[y : y]—this
query effectively asks whether the point (x,y) is in the set—the query time is
bounded by O(logn).

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage

and can be built in O(n logn) time. A rectangular range query on the kd-tree

takes O(
√

n+ k) time, where k is the number of reported points.

Kd-trees can also be used for point sets in 3- or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the x1-axis. In other words, at the root the point set is partitioned
based on the first coordinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on the third coordinate,
and so on, until at depth d − 1 we partition on the last coordinate. At depth
d we start all over again, partitioning on first coordinate. The recursion stops
when there is only one point left, which is then stored at a leaf. Because a
d-dimensional kd-tree for a set of n points is a binary tree with n leaves, it uses
O(n) storage. The construction time is O(n logn). (As usual, we assume d to
be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The
query algorithm visits those nodes whose regions are properly intersected by
the query range, and traverses subtrees (to report the points stored in the leaves)
that are rooted at nodes whose region is fully contained in the query range. It
can be shown that the query time is bounded by O(n1−1/d + k).

5.3 Range Trees

Kd-trees, which were described in the previous section, have O(
√

n+ k) query
time. So when the number of reported points is small, the query time is relatively
high. In this section we shall describe another data structure for rectangular
range queries, the range tree, which has a better query time, namely O(log2 n+
k). The price we have to pay for this improvement is an increase in storage from
O(n) for kd-trees to O(n logn) for range trees.

As we observed before, a 2-dimensional range query is essentially composed of
two 1-dimensional sub-queries, one on the x-coordinate of the points and one 105

Can we generalize the results to d-dimension?
Yes.
Time complexity: O(n log n) construction time, O(n)
space, and O(n1−1/d + k) query time

13 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees

Question:
Can we do the range searching faster?
Answer: Yes, but by increasing the storage complexity.
Time Complexity: O(log2 n+ k)
Space Complexity: O(n log n).

14 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees

Question:
Can we do the range searching faster?
Answer: Yes, but by increasing the storage complexity.
Time Complexity: O(log2 n+ k)
Space Complexity: O(n log n).

14 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees

vsplit

µ µ′

Range tree
A 2-layered data structure
Main tree (layer 1): BST on x-coordinates
Layer 2: For any internal and leaf node: a BST on
P (v)

15 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees

T

Tassoc(v)

BST on
x-coordinates

v

P (v)

BST on
y-coordinates

P (v)

Range tree
A 2-layered data structure
Main tree (layer 1): BST on x-coordinates
Layer 2: For any internal and leaf node: a BST on
P (v)

15 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees

T

Tassoc(v)

BST on
x-coordinates

v

P (v)

BST on
y-coordinates

P (v)

Range tree
A 2-layered data structure
Main tree (layer 1): BST on x-coordinates
Layer 2: For any internal and leaf node: a BST on
P (v)

15 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees- Building the DS

Section 5.3
RANGE TREES

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree
on y-coordinates

binary search tree on
x-coordinates

Figure 5.6
A 2-dimensional range tree

returns the root of a 2-dimensional range tree T of P. As in the previous section,
we assume that no two points have the same x- or y-coordinate. We shall get rid
of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.
1. Construct the associated structure: Build a binary search tree Tassoc on the

set Py of y-coordinates of the points in P. Store at the leaves of Tassoc not
just the y-coordinate of the points in Py, but the points themselves.

2. if P contains only one point
3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .
4. else Split P into two subsets; one subset Pleft contains the points with

x-coordinate less than or equal to xmid, the median x-coordinate,
and the other subset Pright contains the points with x-coordinate
larger than xmid.

5. νleft ← BUILD2DRANGETREE(Pleft)
6. νright ← BUILD2DRANGETREE(Pright)
7. Create a node ν storing xmid, make νleft the left child of ν , make

νright the right child of ν , and make Tassoc the associated structure
of ν .

8. return ν

Note that in the leaves of the associated structures we do not just store the
y-coordinate of the points but the points themselves. This is important because,
when searching the associated structures, we need to report the points and not
just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(n logn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, 107

16 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees- Building the DS

Section 5.3
RANGE TREES

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree
on y-coordinates

binary search tree on
x-coordinates

Figure 5.6
A 2-dimensional range tree

returns the root of a 2-dimensional range tree T of P. As in the previous section,
we assume that no two points have the same x- or y-coordinate. We shall get rid
of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.
1. Construct the associated structure: Build a binary search tree Tassoc on the

set Py of y-coordinates of the points in P. Store at the leaves of Tassoc not
just the y-coordinate of the points in Py, but the points themselves.

2. if P contains only one point
3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .
4. else Split P into two subsets; one subset Pleft contains the points with

x-coordinate less than or equal to xmid, the median x-coordinate,
and the other subset Pright contains the points with x-coordinate
larger than xmid.

5. νleft ← BUILD2DRANGETREE(Pleft)
6. νright ← BUILD2DRANGETREE(Pright)
7. Create a node ν storing xmid, make νleft the left child of ν , make

νright the right child of ν , and make Tassoc the associated structure
of ν .

8. return ν

Note that in the leaves of the associated structures we do not just store the
y-coordinate of the points but the points themselves. This is important because,
when searching the associated structures, we need to report the points and not
just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(n logn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, 107

Time Complexity: O(n log n).
16 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees- Building the DS

Space Complexity:

Section 5.3
RANGE TREES

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree
on y-coordinates

binary search tree on
x-coordinates

Figure 5.6
A 2-dimensional range tree

returns the root of a 2-dimensional range tree T of P. As in the previous section,
we assume that no two points have the same x- or y-coordinate. We shall get rid
of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.
1. Construct the associated structure: Build a binary search tree Tassoc on the

set Py of y-coordinates of the points in P. Store at the leaves of Tassoc not
just the y-coordinate of the points in Py, but the points themselves.

2. if P contains only one point
3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .
4. else Split P into two subsets; one subset Pleft contains the points with

x-coordinate less than or equal to xmid, the median x-coordinate,
and the other subset Pright contains the points with x-coordinate
larger than xmid.

5. νleft ← BUILD2DRANGETREE(Pleft)
6. νright ← BUILD2DRANGETREE(Pright)
7. Create a node ν storing xmid, make νleft the left child of ν , make

νright the right child of ν , and make Tassoc the associated structure
of ν .

8. return ν

Note that in the leaves of the associated structures we do not just store the
y-coordinate of the points but the points themselves. This is important because,
when searching the associated structures, we need to report the points and not
just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(n logn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, 107

Chapter 5
ORTHOGONAL RANGE SEARCHING

the point p is stored in exactly one associated structure. Because 1-dimensional
range trees use linear storage it follows that the associated structures of all nodes
at any depth of T together use O(n) storage. The depth of T is O(logn). Hence,
the total amount of storage required is bounded by O(n logn).

p

p

p

p

Algorithm BUILD2DRANGETREE as it is described will not result in the
optimal construction time of O(n logn). To obtain this we have to be a bit
careful. Constructing a binary search tree on an unsorted set of n keys takes
O(n logn) time. This means that constructing the associated structure in line 1
would take O(n logn) time. But we can do better if the points in Py are presorted
on y-coordinate; then the binary search tree can be constructed bottom-up in
linear time. During the construction algorithm we therefore maintain the set of
points in two lists, one sorted on x-coordinate and one sorted on y-coordinate.
This way the time we spend at a node in the main tree T is linear in the size of
its canonical subset. This implies that the total construction time is the same as
the amount of storage, namely O(n logn). Since the presorting takes O(n logn)
time as well, the total construction time is again O(n logn).

The query algorithm first selects O(logn) canonical subsets that together contain
the points whose x-coordinate lie in the range [x : x′]. This can be done with
the 1-dimensional query algorithm. Of those subsets, we then report the points
whose y-coordinate lie in the range [y : y′]. For this we also use the 1-dimensional
query algorithm; this time it is applied to the associated structures that store the
selected canonical subsets. Thus the query algorithm is virtually the same as
the 1-dimensional query algorithm 1DRANGEQUERY; the only difference is
that calls to REPORTSUBTREE are replaced by calls to 1DRANGEQUERY.

Algorithm 2DRANGEQUERY(T, [x : x′]× [y : y′])
Input. A 2-dimensional range tree T and a range [x : x′]× [y : y′].
Output. All points in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported.
4. else (∗ Follow the path to x and call 1DRANGEQUERY on the subtrees

right of the path. ∗)
5. ν ← lc(νsplit)
6. while ν is not a leaf
7. do if x � xν
8. then 1DRANGEQUERY(Tassoc(rc(ν)), [y : y′])
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at ν must be reported.
12. Similarly, follow the path from rc(νsplit) to x′, call 1DRANGE-

QUERY with the range [y : y′] on the associated structures of sub-
trees left of the path, and check if the point stored at the leaf where
the path ends must be reported.

108

p

p

p

p
17 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees- Range Queries

1D Range Searching:

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes ν in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node νsplit where the paths to x and x′ split. This is done with the following
subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a
node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.
1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)
3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x′ and we
report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : x′].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported. 97

Chapter 5
ORTHOGONAL RANGE SEARCHING

4. else (∗ Follow the path to x and report the points in subtrees right of the
path. ∗)

5. ν ← lc(νsplit)
6. while ν is not a leaf
7. do if x � xν
8. then REPORTSUBTREE(rc(ν))
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at the leaf ν must be reported.
12. Similarly, follow the path to x′, report the points in subtrees left of

the path, and check if the point stored at the leaf where the path
ends must be reported.

We first prove the correctness of the algorithm.

Lemma 5.1 Algorithm 1DRANGEQUERY reports exactly those points that lie

in the query range.

Proof. We first show that any reported point p lies in the query range. If p is
stored at the leaf where the path to x or to x′ ends, then p is tested explicitly for
inclusion in the query range. Otherwise, p is reported in a call to REPORTSUB-
TREE. Assume this call was made when we followed the path to x. Let ν be the
node on the path such that p was reported in the call REPORTSUBTREE(rc(ν)).
Since ν and, hence, rc(ν) lie in the left subtree of νsplit, we have p � xνsplit .
Because the search path of x′ goes right at νsplit this means that p < x′. On the
other hand, the search path of x goes left at ν and p is in the right subtree of ν ,
so x < p. It follows that p ∈ [x : x′]. The proof that p lies in the range when it is
reported while following the path to x′ is symmetrical.

It remains to prove that any point p in the range is reported. Let µ be the
leaf where p is stored, and let ν be the lowest ancestor of µ that is visited by the
query algorithm. We claim that ν = µ , which implies that p is reported. Assume
for a contradiction that ν �= µ . Observe that ν cannot be a node visited in a call
to REPORTSUBTREE, because all descendants of such a node are visited. Hence,
ν is either on the search path to x, or on the search path to x′, or both. Because
all three cases are similar, we only consider the third case. Assume first that µ
is in the left subtree of ν . Then the search path of x goes right at ν (otherwise ν
would not be the lowest visited ancestor). But this implies that p < x. Similarly,
if µ is in the right subtree of ν , then the path of x′ goes left at ν , and p > x′. In
both cases, the assumption that p lies in the range is contradicted.

We now turn our attention to the performance of the data structure. Because
it is a balanced binary search tree, it uses O(n) storage and it can be built in
O(n logn) time. What about the query time? In the worst case all the points
could be in the query range. In this case the query time will be Θ(n), which
seems bad. Indeed, we do not need any data structure to achieve Θ(n) query
time; simply checking all the points against the query range leads to the same
result. On the other hand, a query time of Θ(n) cannot be avoided when we
have to report all the points. Therefore we shall give a more refined analysis98

18 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees- Range Queries

2D Range Searching:

Chapter 5
ORTHOGONAL RANGE SEARCHING

the point p is stored in exactly one associated structure. Because 1-dimensional
range trees use linear storage it follows that the associated structures of all nodes
at any depth of T together use O(n) storage. The depth of T is O(logn). Hence,
the total amount of storage required is bounded by O(n logn).

p

p

p

p

Algorithm BUILD2DRANGETREE as it is described will not result in the
optimal construction time of O(n logn). To obtain this we have to be a bit
careful. Constructing a binary search tree on an unsorted set of n keys takes
O(n logn) time. This means that constructing the associated structure in line 1
would take O(n logn) time. But we can do better if the points in Py are presorted
on y-coordinate; then the binary search tree can be constructed bottom-up in
linear time. During the construction algorithm we therefore maintain the set of
points in two lists, one sorted on x-coordinate and one sorted on y-coordinate.
This way the time we spend at a node in the main tree T is linear in the size of
its canonical subset. This implies that the total construction time is the same as
the amount of storage, namely O(n logn). Since the presorting takes O(n logn)
time as well, the total construction time is again O(n logn).

The query algorithm first selects O(logn) canonical subsets that together contain
the points whose x-coordinate lie in the range [x : x′]. This can be done with
the 1-dimensional query algorithm. Of those subsets, we then report the points
whose y-coordinate lie in the range [y : y′]. For this we also use the 1-dimensional
query algorithm; this time it is applied to the associated structures that store the
selected canonical subsets. Thus the query algorithm is virtually the same as
the 1-dimensional query algorithm 1DRANGEQUERY; the only difference is
that calls to REPORTSUBTREE are replaced by calls to 1DRANGEQUERY.

Algorithm 2DRANGEQUERY(T, [x : x′]× [y : y′])
Input. A 2-dimensional range tree T and a range [x : x′]× [y : y′].
Output. All points in T that lie in the range.
1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf
3. then Check if the point stored at νsplit must be reported.
4. else (∗ Follow the path to x and call 1DRANGEQUERY on the subtrees

right of the path. ∗)
5. ν ← lc(νsplit)
6. while ν is not a leaf
7. do if x � xν
8. then 1DRANGEQUERY(Tassoc(rc(ν)), [y : y′])
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at ν must be reported.
12. Similarly, follow the path from rc(νsplit) to x′, call 1DRANGE-

QUERY with the range [y : y′] on the associated structures of sub-
trees left of the path, and check if the point stored at the leaf where
the path ends must be reported.

108
18 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses

O(n logn) storage and can be constructed in O(n logn) time. By querying this

range tree one can report the points in P that lie in a rectangular query range in

O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109

19 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

2D Range Searching
Range Trees

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses

O(n logn) storage and can be constructed in O(n logn) time. By querying this

range tree one can report the points in P that lie in a rectangular query range in

O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses

O(n logn) storage and can be constructed in O(n logn) time. By querying this

range tree one can report the points in P that lie in a rectangular query range in

O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109

19 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

Higher-Dimensional Range Searching

20 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

Higher-Dimensional Range Searching

Chapter 5
ORTHOGONAL RANGE SEARCHING

O(logn) canonical subsets. This means there are O(log2 n) canonical subsets
in the second-level structures in total. Together, they contain all points whose
first and second coordinate lie in the correct ranges. The third-level structures
storing these canonical subsets are then queried with the range for the third
coordinate, and so on, until we reach the 1-dimensional trees. In these trees we
find the points whose last coordinate lies in the correct range and report them.
This approach leads to the following result.

Theorem 5.9 Let P be a set of n points in d-dimensional space, where d � 2.

A range tree for P uses O(n logd−1 n) storage and it can be constructed in

O(n logd−1 n) time. One can report the points in P that lie in a rectangular query

range in O(logd n+ k) time, where k is the number of reported points.

Proof. Let Td(n) denote the construction time for a range tree on a set of n points
in d-dimensional space. By Theorem 5.8 we know that T2(n) = O(n logn). The
construction of a d-dimensional range tree consists of building a balanced binary
search tree, which takes time O(n logn), and the construction of associated
structures. At the nodes at any depth of the first-level tree, each point is stored
in exactly one associated structure. The time required to build all associated
structures of the nodes at some depth is O(Td−1(n)), the time required to build
the associated structure of the root. This follows because the building time is at
least linear. Hence, the total construction time satisfies

Td(n) = O(n logn)+O(logn) ·Td−1(n).

Since T2(n) = O(n logn), this recurrence solves to O(n logd−1 n). The bound
on the amount of storage follows in the same way.

Let Qd(n) denote the time spent in querying a d-dimensional range tree on
n points, not counting the time to report points. Querying the d-dimensional
range tree involves searching in a first-level tree, which takes time O(logn), and
querying a logarithmic number of (d −1)-dimensional range trees. Hence,

Qd(n) = O(logn)+O(logn) ·Qd−1(n),

where Q2(n) = O(log2 n). This recurrence easily solves to Qd(n) = O(logd n).
We still have to add the time needed to report points, which is bounded by O(k).
The bound on the query time follows.

As in the 2-dimensional case, the query time can be improved by a logarith-
mic factor—see Section 5.6.

5.5 General Sets of Points

Until now we imposed the restriction that no two points have equal x- or y-
coordinate, which is highly unrealistic. Fortunately, this is easy to remedy. The
crucial observation is that we never assumed the coordinate values to be real
numbers. We only need that they come from a totally ordered universe, so that110

20 / 21

Yazd Univ.

Computational
Geometry

Motivation

1D Range
Searching

KD-Trees

2D Range Trees

kD Range Trees

END.

21 / 21

	Motivation
	1D Range Searching
	KD-Trees
	2D Range Trees
	kD Range Trees

