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@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.
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@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.
@ Question: How many cameras do we need to guard
a simple polygon?
Answer: Depends on the polygon.

¢ B o

Star-shaped

Convex

N)
Pl
Q

3/38



@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.

@ Question: How many cameras do we need to guard
a simple polygon?
Answer: Depends on the polygon.

@ One solution: Decompose the polygon to parts which
are simple to guard. T

Partitioning a Polygon into
Monotone Pieces
Triangulating a Monotone
Polygon
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@ diagonals:
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@ diagonals:
@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting

diagonals.
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Triangulating Polygons

Definitions
@ diagonals: Yazd Univ.
@ Triangulation: A decomposition of a polygon into
. . . . Computational
triangles by a maximal set of non-intersecting Geometry
diagonals.
The Art Gallery
Problem

Guarding and
Triangulations

Computing
triangulation

Partitioning a Polygon into
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Triangulating a Monotone
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@ diagonals:
@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting

diagonals.

Computing
triangulation
Partitioning a Polygon into
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@ Guarding after triangulation:
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Triangulating Polygons

Definitions

@ Guarding after triangulation:
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@ Guarding after triangulation:
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@ Guarding after triangulation:
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Questions:
@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any
triangulation of a simple polygon with n vertices consists
of exactly n — 2 triangles.

Proof. By induction.
Base Case: n = 3 (Obvious)
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Questions:
@ Does a triangulation always exist?

@ How many triangles can there be in a triangulation? ;”ﬁ/f’
v az niv.

Theorem 31 Computational
Geometry

Every simple polygon admits a triangulation, and any

triangulation of a simple polygon with n vertices consists The Art Gallery

H Probl
of exactly n — 2 triangles. ) oo
- Triangulations
PrOOf. By induction. Computing
Base Case: n = 3 (Obvious) B
Case 1: Neighbors of v make

Polygon

a diagonal.
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Questions:
@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any
triangulation of a simple polygon with n vertices consists
of exactly n — 2 triangles.

Proof. By induction.

Base Case: n = 3 (Obvious)
Case 1: Neighbors of v make
a diagonal.

Case 2: Otherwise. Leftmost verte
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Questions:
@ Does a triangulation always exist?

@ How many triangles can there be in a triangulation? 5
Yazd Univ.

Theorem 31 Computational
Geometry

Every simple polygon admits a triangulation, and any

triangulation of a gimple polygon with n vertices consists e At Gallery
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@ 7p: Atriangulation of a simple polygon P.
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@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.
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Guarding a triangulated polygon

@ 7p: A triangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in .S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.
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Guarding a triangulated polygon

@ 7Tp: A triangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.

@ In a 3-coloring of Tp, every triangle has a blue, a red,
and a black vertex. Hence, if we place cameras at all
red vertices, we have guarded the whole polygon.
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Guarding a triangulated polygon

@ 7Tp: A triangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.

@ In a 3-coloring of Tp, every triangle has a blue, a red,
and a black vertex. Hence, if we place cameras at all
red vertices, we have guarded the whole polygon.

@ By choosing the smallest color class to place the

cameras, we can guard P using at most [n/3]
cameras.
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Does a 3-coloring always exist?
Dual graph:

@ This graph G(7p) has a node for every triangle in 7p. e,
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@ This graph G(7p) has a node for every triangle in 7p.

@ There is an arc between two nodes v and p if t(v)
and ¢(u) share a diagonal.

@ G(Tp) is a tree.
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@ This graph G(7p) has a node for every triangle in 7p.

@ There is an arc between two nodes v and p if t(v)
and ¢(u) share a diagonal.

@ G(Tp)is atree.
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Does a 3-coloring always exist?
For 3-coloring:

@ Traverse the dual graph (DFS). 5K,
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@ Traverse the dual graph (DFS).
@ Invariant: so far everything is nice.
@ Start from any node of G(7p); color the vertices.

@ When we reach a node v in G, coming from node .

Only one vertex of ¢(v) remains to be colored.
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@ Traverse the dual graph (DFS).
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@ Start from any node of G(7p); color the vertices.

@ When we reach a node v in G, coming from node .
Only one vertex of ¢(v) remains to be colored.
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@ Traverse the dual graph (DFS).
@ Invariant: so far everything is nice.
@ Start from any node of G(7p); color the vertices.

@ When we reach a node v in G, coming from node .
Only one vertex of ¢(v) remains to be colored.
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Art Gallery Theorem

Theorem 3.2 (Art Gallery Theorem)

For a simple polygon with n vertices, |n/3] cameras are
occasionally necessary and always sulfficient to have

every point in the polygon visible from at least one of the
cameras.

Ln/gj prongs
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How to compute a triangulation in O(n logn) time.

Therefore:

Let P be a simple polygon with n vertices. A set of |n/3]
camera positions in P such that any point inside P is
visible from at least one of the cameras can be computed
in O(nlogn) time.

riangulating a Monotone

Polygon
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How can we compute a triangulation of a given polygon? J
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Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a

diagonal, each takes O(n) time. Time complexity:
O(n?).
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Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a
diagonal, each takes O(n) time. Time complexity:
O(n?).

@ A better naive algorithm: find an ear in O(n) time,
then recurse. Total time: O(n?).
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Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a

diagonal, each takes O(n) time. Time complexity:
O(n?).

@ A better naive algorithm: find an ear in O(n) time,
then recurse. Total time: O(n?).

@ First non-trivial algorithm: O(nlogn) (1978).
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Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a
diagonal, each takes O(n) time. Time complexity:
O(n?).

@ A better naive algorithm: find an ear in O(n) time,
then recurse. Total time: O(n?).

@ First non-trivial algorithm: O(nlogn) (1978).

@ A long series of papers and algorithms in 80s until

Chazelle produced an optimal O(n) algorithm in
1991.
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Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a
diagonal, each takes O(n) time. Time complexity:
O(n?).

@ A better naive algorithm: find an ear in O(n) time,
then recurse. Total time: O(n?).

@ First non-trivial algorithm: O(nlogn) (1978).
@ A long series of papers and algorithms in 80s until

Chazelle produced an optimal O(n) algorithm in
1991.

@ Linear time algorithm insanely complicated; there are
randomized, expected linear time that are more
accessible.
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Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a
diagonal, each takes O(n) time. Time complexity:
O(n?).

@ A better naive algorithm: find an ear in O(n) time,
then recurse. Total time: O(n?).

@ First non-trivial algorithm: O(nlogn) (1978).

@ A long series of papers and algorithms in 80s until
Chazelle produced an optimal O(n) algorithm in
1991.

@ Linear time algorithm insanely complicated; there are
randomized, expected linear time that are more
accessible.

@ Here we present a O(nlogn) algorithm.
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@ Partition polygon into monotone polygons.
© Triangulate each monotone piece.
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P is called monotone w. r. t. £ if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a
point, or empty).
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
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/ y—axis

W @ o

N)
£t
Q

15/38



P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).

y—axis

W @ o

N)
£t
Q

15/38
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).
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P is called monotone w. r. t. £ if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a
point, or empty).

@ A point p is below another point ¢ if p, < g, Or p, = qy |z e
and p; > q,.
@ pis above ¢ if py > g, Of py = gy and p, < g,.
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V10

V11

V13

O =start vertex
B —end vertex
o =regular vertex

A =split vertex

v —=merge vertex

o mwo @ o
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If P has no split or merge vertices then it is y-monotone. I

Proof. Assume P is not y-monotone. We show that it has
an split or merge vertex.
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If P has no split or merge vertices then it is y-monotone. I

Proof. Assume P is not y-monotone. We show that it has
an split or merge vertex.
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Partition P into monotone pieces

Lemma 3.4 4,
If P has no split or merge vertices then it is y-monotone. Vered Wit

Proof. Assume P is not y-monotone. We show that it has e
an split or merge vertex.

The Art Gallery
Problem

Guarding and
Triangulations

a .
(a) et split vertex

Computing
triangulation

Partitioning a Polygon into
Monotone Pieces
Triangulating a Monotone
Polygon

\
merge vertex_ s o -

By Lemma 3.4, P has been partitioned into y-monotone
pieces once we get rid of its split and merge vertices.
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@ A sweep line algorithm.
@ Events: all the points

@ Goal: To add diagonals
from each split vertex to
a vertex lying above it.
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@ A sweep line algorithm.
@ Events: all the points

@ Goal: To add diagonals
from each split vertex to
a vertex lying above it.

@ helper(e;): Lowest
vertex above the sweep
line s. t. the horizontal
segment connecting the
vertex to e, lies inside P.
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@ A sweep line algorithm.
@ Events: all the points

@ Goal: To add diagonals
from each split vertex to
a vertex lying above it.
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Polygon
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Removing split/merge vertices:

Removing split vertices:
@ A sweep line algorithm.
@ Events: all the points

@ Goal: To add diagonals
from each split vertex to
a vertex lying above it.

@ helper(e;): Lowest
vertex above the sweep
line s. t. the horizontal
segment connecting the
vertex to e; lies inside P.
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Removing split/merge vertices:

Removing split vertices:
@ A sweep line algorithm.
@ Events: all the points

@ Goal: To add diagonals
from each split vertex to
a vertex lying above it.

@ helper(e;): Lowest
vertex above the sweep
line s. t. the horizontal
segment connecting the
vertex to e; lies inside P.

@ Connect split vertices to
the helper of the edge to
their left.
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@ Connect each merge vertex to the highest vertex
below the sweep line in between ¢; and e;..
@ But we do not know the point.

@ When we reach a vertex v,,, that replaces the helper
of e;, then this is the vertex we are looking for.
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@ Connect each merge vertex to the highest vertex
below the sweep line in between ¢; and e;..

@ But we do not know the point.

@ When we reach a vertex v, that replaces the helper
of e;, then this is the vertex we are looking for.
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Removing split/merge vertices:
Removing merge vertices:
@ Connect each merge vertex to the highest vertex
below the sweep line in between e; and ey.
@ But we do not know the point.

@ When we reach a vertex v,, that replaces the helper
of e;, then this is the vertex we are looking for.

diagonal will be added
when the sweep line
reaches v,,.
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Data Structure:

For this approach, we need to find the edge to the left of

each vertex. To do that: Zﬁ’
@ We store the edges of P intersecting the sweep line Gomputational
in the leaves of a dynamic binary search tree 7. Geomelry
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Data Structure: @
For this approach, we need to find the edge to the left of

each vertex. To do that: By

Yazd Univ.
@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. Geometry

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.
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Data Structure: @
For this approach, we need to find the edge to the left of

each vertex. To do that: By

Yazd Univ.

@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. SE2ELy

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.
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Data Structure:

For this approach, we need to find the edge to the left of
each vertex. To do that:

@ We store the edges of P intersecting the sweep line
in the leaves of a dynamic binary search tree 7.

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.

© With each edge in T we store its helper.

© We store P in DCEL form and make changes such
that it remains valid.
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Make Monotone Algorithm:

Algorithm MAKEMONOTONE (P )
Input: A simple polygon P stored in a DCEL D.
Output: A partitioning of P into monotone subpolygons,

1.

> W

stored in D.
Construct a priority queue Q on the vertices of P,
using their y-coordinates as priority. If two points
have the same y-coordinate, the one with smaller
x-coordinate has higher priority.
Initialize an empty binary search tree 7.
while Q is not empty
Remove the vertex v; with the highest priority
from Q.
Call the appropriate procedure to handle the
vertex, depending on its type.
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Algorithm HANDLESTARTVERTEX (v;)
1. Inserte; in T and set helper(e;) to v;.
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Algorithm HANDLEENDVERTEX (v;)

1. if helper(e;—1) is a merge vertex

2. then Insert the diagonal connecting v; to
helper(e;—1) in D.

3. Delete e¢;_; from T.

Monotone Pieces

Triangulating a Monotone
Polygon
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Algorithm HANDLESPLITVERTEX (v;)

1. Search in T to find the edge e; directly left of v;.

2. Insert the diagonal connecting v; to helper(e;) in D.
3.  helper(e;) < vj.

4. Inserte; in T and set helper(e;) to v;.

Us V3
U L]

Monotone Pieces

Triangulating a Monotone
Polygon
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Algorithm HANDLEMERGEVERTEX (v;)

Nookrwh =

if helper(e;—1) is a merge vertex
then Insert the diag. v; to helper(e;—1) in D.
Delete e;—; from 7.
Search in 7 to find e; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diag. v; to helper(e;) in D.
helper(e;) < v;.

riangulating a Monotone
Polygon
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Algorithm HANDLEREGULARVERTEX(v;)
if the interior of P lies to the right of v;
then if helper(e;—1) is a merge vertex
then Insert the diag. v; to helper(e;—1) in D.
Delete e;—; from 7.
Insert e; in 7 and set helper(e;) to v;.
else Search in 7 to find e; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diag. v; to helper(e;) i |n D
helper(e;) + v;

©CONOO AWM~
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Lemma 3.5
Algorithm MAKEMONOTONE adds a set of

non-intersecting diagonals that partitions P into %,
monotone subpolygons. Yazd Univ.
Proof. (For split vertices) (other cases are similar) Campuizieie

Geometry

@ No vertex inside R.
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Lemma 3.5

Algorithm MAKEMONOTONE adds a set of

non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No vertex inside R.

@ No intersection between v;v,,, and edges of P.
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monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No vertex inside R.

@ No intersection between v;v,,, and edges of P.
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non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No vertex inside R.

@ No intersection between v;v,,, and edges of P.
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Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No vertex inside R.
@ No intersection between v;v,, and edges of P.
@ No intersection between v;v,,, and previous diag.

R is empty, endpoints of previously added edges:

above v;.
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@ Constructing the priority queue Q: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:
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@ Constructing the priority queue Q: O(n) time.

@ Initializing 7: O(1) time.
@ To handle an event, we perform:
one operation on @: O(logn) time.
at most one query on 7: O(logn) time.
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@ Constructing the priority queue Q: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.

at most one query on 7: O(logn) time.
one insertion, and one deletion on 7: O(logn) time.

Monotone Pieces

Triangulating a Monotone
Polygon
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@ Constructing the priority queue Q: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.
© at most one query on 7: O(logn) time.

Partitioning a Polygon into
Monotone Pieces
Triangulating a Monotone
Polygon
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Running time/ Space complexity

Running time:

@ Constructing the priority queue @: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.

@ at most one query on 7: O(logn) time.

© one insertion, and one deletion on 7: O(log n) time.
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Running time/ Space complexity

Running time:

@ Constructing the priority queue @: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.

@ at most one query on 7: O(logn) time.

© one insertion, and one deletion on 7: O(log n) time.

©Q we insert at most two diagonals into D: O(1) time.
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Running time/ Space complexity

Running time:

@ Constructing the priority queue @: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.

@ at most one query on 7: O(logn) time.

© one insertion, and one deletion on 7: O(log n) time.

©Q we insert at most two diagonals into D: O(1) time.

Space Complexity:

The amount of storage used by the algorithm is clearly
linear: every vertex is stored at most once in @), and
every edge is stored at most once in 7.

()

%,

Yazd Univ.

Computational
Geometry

The Art Gallery
Problem

Guarding and
Triangulations
Computing
triangulation

Partitioning a Polygon into
Monotone Pieces

Triangulating a Monotone
Polygon

28/38



A simple polygon with n vertices can be partitioned into
y-monotone polygons in O(nlogn) time with an algorithm
that uses O(n) storage.
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Triangulating a Monotone Polygon
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Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of

decreasing y-coordinate. (Left to right for points with
same y-coordinate).
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Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of
decreasing y-coordinate. (Left to right for points with
same y-coordinate).

@ The algorithm requires a stack S as auxiliary data

structure. It keeps the points that handled but might
need more diagonals.
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Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of

decreasing y-coordinate. (Left to right for points with
same y-coordinate).

@ The algorithm requires a stack S as auxiliary data

structure. It keeps the points that handled but might
need more diagonals.

© When we handle a vertex we add as many diagonals
from this vertex to vertices on the stack as possible.
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Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of

decreasing y-coordinate. (Left to right for points with
same y-coordinate).

@ The algorithm requires a stack S as auxiliary data

structure. It keeps the points that handled but might
need more diagonals.

© When we handle a vertex we add as many diagonals
from this vertex to vertices on the stack as possible.

© Algorithm invariant: the part of P that still needs to
be triangulated, and lies above the last vertex that
has been encountered so far, looks like a funnel
turned upside down.
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Triangulating a Monotone Polygon

Algorithm TRIANGULATEMONOTONEPOLYGON(P)

1.

o0k wh

© ® N

10.

Merge the vertices on the left &right chain of P into one
sequence, sorted on decreasing y-coordinate. Let u1, ..., u,
denote the sorted sequence.
Initialize an empty stack S, and push w1 and usz onto it.
forj« 3ton—1
if u; and the vertex on top of S are on different chains
then Pop all vertices from S.
Insert into D a diagonal from wu; to each popped
vertex, except the last one.
Push uw;_; and u; onto S.
else Pop one vertex from S.
Pop the other vertices from S as long as the
diagonals from u; to them are inside P . Insert
these diagonals into D. Push the last vertex that
has been popped back onto S.
Push u; onto S.

11. Add diagonals from u,, to all stack vertices except the first and

the last one.
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Triangulating a Monotone Polygon

Algorithm TRIANGULATEMONOTONEPOLYGON(P)

1. Merge the vertices on the left &right chain of P into one
sequence, sorted on decreasing y-coordinate. Let u1, ..., u,
denote the sorted sequence.

2. Initialize an empty stack S, and push w1 and us onto it.

3. forj«+3ton—1

4. if u; and the vertex on top of S are on different chains

5. then Pop all vertices from S.

6. Insert into D a diagonal from wu; to each popped
vertex, except the last one.

7. Push uw;_; and u; onto S.

8. else Pop one vertex from S.

9. Pop the other vertices from S as long as the
diagonals from u; to them are inside P . Insert
these diagonals into D. Push the last vertex that
has been popped back onto S.

10. Push u; onto S.

11. Add diagonals from u,, to all stack vertices except the first and

the last one.

Time Complexity: Step 1: O(n), Step 2: O(1).
Steps 3-10: O(n)
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A simple polygon with n vertices can be triangulated in
O(nlogn) time with an algorithm that uses O(n) storage.
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A planar subdivision with n vertices in total can be
triangulated in O(nlogn) time with an algorithm that uses

O(n) storage.
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Generalizing to any planar subdivision

Theorem 3.9

A planar subdivision with n vertices in total can be

triangulated in O(n logn) time with an algorithm that uses
O(n) storage.
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