
Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two
Subdivisions

1397-2

1 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

We have solved the easiest case of the map overlay
problem, where the two maps are networks
represented as collections of line segments.
In general, maps have a more complicated structure:
they are subdivisions of the plane into labeled
regions.

2 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Before we can give an algorithm for computing the
overlay of two subdivisions, we must develop a
suitable representation for a subdivision.
Storing a subdivision as a collection of line segments
is not such a good idea.
Operations like reporting the boundary of a region
would be rather complicated.
Add topological information: which segments bound
a given region, which regions are adjacent, and so
on.

3 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

edge

vertex

face

disconnected
subdivision

Complexity of a subdivision
#faces+#edges+#vertices.

4 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

incident

Complexity of a subdivision
#faces+#edges+#vertices.

4 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

What kind of queries?
What is the face containing a given point? (TOO
MUCH!)
Walking around the boundary of a given face,
Find the face from an adjacent one if we are given a
common edge,
Visit all the edges around a given vertex.

The representation that we shall discuss supports these
operations. It is called the doubly-connected edge list
(DCEL).

5 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL

DCEL contains:
a record for each edge,
a record for each vertex,
a record for each face,
plus attribute information.

6 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

−→e

Tw
in(
−→e)

v

w

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.

7 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL
DCEL contains:

a record for each vertex,
1 Coordinates(v): the coordinates of v,
2 IncidentEdge(v): a pointer to an arbitrary half-edge

that has v as its origin.
a record for each face,

1 OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

2 InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

a record for each half-edge −→e ,
1 Origin(−→e): a pointer to its origin,
2 Twin(−→e) a pointer to its twin half-edge,
3 IncidentFace(−→e): a pointer to the face that it

bounds.
4 Next(−→e) and Prev(−→e): a pointer to the next and

previous edge on the boundary of IncidentFace(−→e).

8 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL

Origin(−→e)
Twin(−→e)
N
ex
t(
−→ e
)

P
rev

(−→e
)

IncidentFace(−→e)

−→e

9 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL:Example
v1

−→e 1,1
v2

v3

v4

f1

f2

−→e 1,2

−→e
3,2

−→e
4
,2−→e

3,1

−→e 2,
1−→e 2,

2

−→ e
4
,1

10 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL

Time complexity of queries?
Walking around the boundary of a given face,
Find the face from an adjacent one if we are given a
common edge,
Visit all the edges around a given vertex.

11 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

DCEL

Time complexity of queries?
Walking around the boundary of a given face,
Find the face from an adjacent one if we are given a
common edge,
Visit all the edges around a given vertex.

11 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

=⇒

S1 S2 O(S1,S2)

Which records are (almost) the same as input in the
overlay?

vertex records (except the incident edge)
edge records that are not intersected (except some
fields)

12 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

=⇒

S1 S2 O(S1,S2)

Main Idea in computing O(S1,S2)
Copy DCEL of S1 and S2 into new DCEL (Not a Valid
DCEL).
Make the new DCEL valid.

13 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

What the algorithm should do?
Compute the intersections and add them to the
DCEL.
Update half-edge records that have intersection.
Add records for new faces and update previous ones.
(will do it later)

14 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

The algorithm is similar to the algorithm for
computing line segments intersections.

15 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

Case 1: an edge e of one subdivision passes through a
vertex v of other subdivision:

e

v

the geometric situation and
the two doubly-connected
edge lists before handling the
intersection

the doubly-connected edge
list after handling the inter-
section

16 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

Update Algorithm:
Make two new edge with origin v.
Set Twin of new edges.
Set Next() of the two new half-edges.
Set Prev() of the half-edges to which these pointers
point.

17 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

e′

e′′

Update Algorithm:
Make two new edge with origin v.
Set Twin of new edges.
Set Next() of the two new half-edges.
Set Prev() of the half-edges to which these pointers
point.

17 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

e′

e′′ e′′

e′

Update Algorithm:
Make two new edge with origin v.
Set Twin of new edges.
Set Next() of the two new half-edges.
Set Prev() of the half-edges to which these pointers
point.

17 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

e′

e′′ e′′

e′

Update Algorithm:
Make two new edge with origin v.
Set Twin of new edges.
Set Next() of the two new half-edges.
Set Prev() of the half-edges to which these pointers
point.

17 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

Updates:

half-edge Origin Twin Face Next Prev
~e1 No Change ~e′1 ? No Change
~e′1 v ~e1 ? Next(~e1)

~e2 No Change ~e′2 ? No Change
~e′2 v ~e2 ? Next(~e2)

Update Prev(Next(~e1)) and Prev(Next(~e2)) 18 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

~e1

v

~e2

Updates:

half-edge Origin Twin Face Next Prev
~e1 No Change ~e′1 ? No Change
~e′1 v ~e1 ? Next(~e1)

~e2 No Change ~e′2 ? No Change
~e′2 v ~e2 ? Next(~e2)

Update Prev(Next(~e1)) and Prev(Next(~e2)) 18 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

~e1

v

~e2

v

~e′2

~e′1

Updates:

half-edge Origin Twin Face Next Prev
~e1 No Change ~e′1 ? No Change
~e′1 v ~e1 ? Next(~e1)

~e2 No Change ~e′2 ? No Change
~e′2 v ~e2 ? Next(~e2)

Update Prev(Next(~e1)) and Prev(Next(~e2)) 18 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

e

v

~e1

v

~e2

v

~e′2

~e′1

Updates:

half-edge Origin Twin Face Next Prev
~e1 No Change ~e′1 ? No Change
~e′1 v ~e1 ? Next(~e1)

~e2 No Change ~e′2 ? No Change
~e′2 v ~e2 ? Next(~e2)

Update Prev(Next(~e1)) and Prev(Next(~e2)) 18 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

~e1

v

~e2

~ex

~ey

v

~e′2

~e′1

~es

~et

Updates: (around v)

half-edge Origin Twin Face Next Prev
~e1 No Change ~e′1 ? ~ex No Change
~e′1 v ~e1 ? Next(~e1) ~et
~e2 No Change ~e′2 ? ~ey No Change
~e′2 v ~e2 ? Next(~e2) ~es

Update Prev(~ex), Prev(~ey), Prev(~et), Prev(~es). 19 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

Fix the situation around v

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

20 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

Fix the situation around v

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

20 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

Fix the situation around v

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

20 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating half-edges

Fix the situation around v

The half-edge for e′ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from e′, with v
as its origin.
The half-edge for e′ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.
The same for e′′.
Time complexity: O(m) (m:
degree of v).

e′

e′′

first clockwise half-
edge from e′ with v as
its origin

20 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Updating Faces:
Create a face record for each f ∈ O(S1,S2).
Set OuterComponent(f) and InnerComponent(f).

21 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

faces= # outer boundaries +1 (unbounded face).
From half-edges we can construct the boundaries.
To determine weather the boundary is outer
boundary or boundary of a hole:

22 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

faces= # outer boundaries +1 (unbounded face).
From half-edges we can construct the boundaries.
To determine weather the boundary is outer
boundary or boundary of a hole:

22 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

faces= # outer boundaries +1 (unbounded face).
From half-edges we can construct the boundaries.
To determine weather the boundary is outer
boundary or boundary of a hole:

f

Leftmost vertex of cycle
22 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

23 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

23 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

23 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

23 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
Construct a graph G.
Every boundary cycle is a node in G.
One node for the imaginary outer boundary of the
unbounded face.
Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
If there is no half-edge to the left of the leftmost
vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

23 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

C1
C∞

C2

C3

C4

C6

C5 C7

C1
C3

C6
C∞

C2

C5

C4

C7

G

24 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
Updating faces

Lemma 2.5
Each connected component of the graph G corresponds
exactly to the set of cycles incident to one face.

25 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
How can we Construct G?

Constructing G
Similar to line
segment
intersection
algorithm.
Find the edge
immediately to the
left of point.
We need a pointer
from each edge to
its boundary in G.

new arc
C C′

f

C′

C

G

26 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
How can we Construct G?

Constructing G
Similar to line
segment
intersection
algorithm.
Find the edge
immediately to the
left of point.
We need a pointer
from each edge to
its boundary in G.

new arc
C C′

f

C′

C

G

26 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions
How can we Construct G?

Constructing G
Similar to line
segment
intersection
algorithm.
Find the edge
immediately to the
left of point.
We need a pointer
from each edge to
its boundary in G.

new arc
C C′

f

C′

C

G

26 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

Chapter 2
LINE SEGMENT INTERSECTION

One thing remains: each face f in the overlay must be labeled with the names of
the faces in the old subdivisions that contained it. To find these faces, consider an
arbitrary vertex v of f . If v is the intersection of an edge e1 from S1 and an edge

fv

e2 from S2 then we can decide which faces of S1 and S2 contain f by looking
at the IncidentFace() pointer of the appropriate half-edges corresponding to e1
and e2. If v is not an intersection but a vertex of, say, S1, then we only know
the face of S1 containing f . To find the face of S2 containing f , we have to
do some more work: we have to determine the face of S2 that contains v. In
other words, if we knew for each vertex of S1 in which face of S2 it lay, and
vice versa, then we could label the faces of O(S1,S2) correctly. How can we
compute this information? The solution is to apply the paradigm that has been
introduced in this chapter, plane sweep, once more. However, we won’t explain
this final step here. It is a good exercise to test your understanding of the plane
sweep approach to design the algorithm yourself. (In fact, it is not necessary to
compute this information in a separate plane sweep. It can also be done in the
sweep that computes the intersections.)

Putting everything together we get the following algorithm.

Algorithm MAPOVERLAY(S1,S2)
Input. Two planar subdivisions S1 and S2 stored in doubly-connected edge lists.
Output. The overlay of S1 and S2 stored in a doubly-connected edge list D.
1. Copy the doubly-connected edge lists for S1 and S2 to a new doubly-

connected edge list D.
2. Compute all intersections between edges from S1 and S2 with the plane

sweep algorithm of Section 2.1. In addition to the actions on T and Q

required at the event points, do the following:

Update D as explained above if the event involves edges of both S1
and S2. (This was explained for the case where an edge of S1 passes
through a vertex of S2.)

Store the half-edge immediately to the left of the event point at the
vertex in D representing it.

3. (∗ Now D is the doubly-connected edge list for O(S1,S2), except that the
information about the faces has not been computed yet. ∗)

4. Determine the boundary cycles in O(S1,S2) by traversing D.
5. Construct the graph G whose nodes correspond to boundary cycles and

whose arcs connect each hole cycle to the cycle to the left of its leftmost ver-
tex, and compute its connected components. (The information to determine
the arcs of G has been computed in line 2, second item.)

6. for each connected component in G

7. do Let C be the unique outer boundary cycle in the component and let
f denote the face bounded by the cycle. Create a face record for f ,
set OuterComponent(f) to some half-edge of C, and construct the
list InnerComponents(f) consisting of pointers to one half-edge in
each hole cycle in the component. Let the IncidentFace() pointers
of all half-edges in the cycles point to the face record of f .38

Section 2.4
BOOLEAN OPERATIONS

8. Label each face of O(S1,S2) with the names of the faces of S1 and S2
containing it, as explained above.

Theorem 2.6 Let S1 be a planar subdivision of complexity n1, let S2 be a

subdivision of complexity n2, and let n := n1 +n2. The overlay of S1 and S2
can be constructed in O(n logn+ k logn) time, where k is the complexity of the

overlay.

Proof. Copying the doubly-connected edge lists in line 1 takes O(n) time, and
the plane sweep of line 2 takes O(n logn+k logn) time by Lemma 2.3. Steps 4–
7, where we fill in the face records, takes time linear in the complexity of
O(S1,S2). (The connected components of a graph can be determined in linear
time by a simple depth first search.) Finally, labeling each face in the resulting
subdivision with the faces of the original subdivisions that contain it can be
done in O(n logn+ k logn) time.

2.4 Boolean Operations

The map overlay algorithm is a powerful instrument that can be used for various
other applications. One particular useful one is performing the Boolean opera-
tions union, intersection, and difference on two polygons P1 and P2. See Figure
2.7 for an example. Note that the output of the operations might no longer be a
polygon. It can consist of a number of polygonal regions, some with holes.

P1 P2

P1 P2 P1 P2

union

intersection difference

Figure 2.7
The Boolean operations union,
intersection and difference on two
polygons P1 and P2

To perform the Boolean operation we regard the polygons as planar maps
whose bounded faces are labeled P1 and P2, respectively. We compute the
overlay of these maps, and we extract the faces in the overlay whose labels
correspond to the particular Boolean operation we want to perform. If we want
to compute the intersection P1 ∩P2, we extract the faces in the overlay that are
labeled with P1 and P2. If we want to compute the union P1∪P2, we extract the 39

27 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Computing the Overlay of Two Subdivisions

Theorem 2.6
Let S1 be a planar subdivision of complexity n1, let S2 be
a subdivision of complexity n2, and let n := n1 + n2. The
overlay of S1 and S2 can be constructed in
O(n log n+ k log n) time, where k is the complexity of the
overlay.

28 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

Application:Boolean Operations

P1 P2

P1 P2 P1 P2

union

intersection difference

29 / 30

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

30 / 30

	Doubly Connected Edge List (DCEL)
	Computing the Overlay of Two Subdivisions

