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intersections between a segment from one set and a
segment from the other.

Given two sets of line segments, compute all

* We consider the segments to be closed.

4/28



Problem

Line segment intersection problem:

Given two sets of line segments, compute all
intersections between a segment from one set and a
segment from the other.

* We consider the segments to be closed.

Simplified version:

Given a set S of n closed segments
in the plane, report all intersection
points among the segments in S.
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@ The brute-force algorithm clearly requires O(n?)
time.
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@ The brute-force algorithm clearly requires O(n?)
time.

@ In a sense this is optimal: when each pair of
segments intersects any algorithm must take Q(n?)
time, because it has to report all intersections.

n/2 lines
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L 3 b

n/2 lines
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of intersection points.

An algorithm whose running time depends not only on the
number of segments in the input, but also on the number
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An algorithm whose running time depends not only on the
of intersection points.

number of segments in the input, but also on the number

We want an algorithm that runs faster when the number
of intersections is sub-quadratic.
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Plane sweep algorithm

y-intervals

@ Define the y-interval of a segment
to be its orthogonal projection onto
the y-axis.

@ When the y-intervals of a pair of
segments do not overlap then they
cannot intersect.

@ To find segments whose y-intervals

overlap we use a Plane sweep
algorithm.
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Plane sweep algorithm
@ We imagine sweeping a line ¢ downwards over the
plane, starting from a position above all segments.
» While we sweep the imaginary line, we keep track of
all segments intersecting it so that we can find the
pairs we need.

» The of the sweep line is the set of segments
intersecting it.
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Plane sweep algorithm
Plane sweep algorithm
@ We imagine sweeping a line ¢ downwards over the
plane, starting from a position above all segments.

@ While we sweep the imaginary line, we keep track of

all segments intersecting it so that we can find the
pairs we need.

event point

A\

sweep line
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Plane sweep algorithm

Plane sweep algorithm @
@ We imagine sweeping a line ¢ downwards over the

A,
plane, starting from a position above all segments.

Yazd Univ.
@ While we sweep the imaginary line, we keep track of Gomputational
all segments intersecting it so that we can find the Geometry
pairs we need.
Line Segment
@ The status of the sweep line is the set of segments intersecion
intersecting it.

Motivation
Problem

Plane sweep algorithm

event point




‘when the sweep line reaches an event point: |
@ If the event point is the upper endpoint of a segment,

then a new segment starts intersecting the sweep
line and must be added to the status.

lane sweep jorithm
Lemma 2.2

Lemma 2.3
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Plane sweep algorithm

()

when the sweep line reaches an event point: %,
@ If the event point is the upper endpoint of a segment, Yaza i
then a new segment starts intersecting the sweep Computational
line and must be added to the status. © iy
@ If the event point is a lower endpoint, a segment e Seament
stops intersecting the sweep line and must be il
deleted from the status. :

Problem
Plane sweep algorithm
Lemma 2.2

Lemma 2.3



Plane sweep algorithm

when the sweep line reaches an event point:

@ If the event point is the upper endpoint of a segment,
then a new segment starts intersecting the sweep
line and must be added to the status.

@ If the event point is a lower endpoint, a segment
stops intersecting the sweep line and must be
deleted from the status.

@ The algorithm tests pairs of segments for which there
is a horizontal line that intersects both segments.
(better than brute-force but still quadratic).
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Newalgorithm:
@ Status: Sorted list of segments (from left to right as
they intersect the sweep line).
@ Test

segments in the horizontal ordering for
intersection.

@ To maintain the status (sorted list), we need to take
care of event points.
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Newalgorithm:
@ Status: Sorted list of segments (from left to right as
they intersect the sweep line).

@ Test adjacent segments in the horizontal ordering for
intersection.

To maintain the status (sorted list), we need to take
care of event points.
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Plane sweep algorithm

New algorithm: @
@ Status: Sorted list of segments (from left to right as

e,
they intersect the sweep line).

Yazd Univ.
@ Test adjacent segments in the horizontal ordering for o
intersection. Geometry

@ To maintain the status (sorted list), we need to take
care of new event points.

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm
Lemma 2.2

Lemma 2.3
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Plane sweep algorithm

Do we still find all intersections?

Lemma 2.1 Let s; and s; be two non-horizontal segments
whose interiors intersect in a single point p, and assume
there is no third segment passing through p. Then there
is an event point above p where s; and s; become
adjacent and are tested for intersection.
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Plane sweep algorithm

Do we still find all intersections?

Lemma 2.1 Let s; and s; be two non-horizontal segments
whose interiors intersect in a single point p, and assume
there is no third segment passing through p. Then there
is an event point above p where s; and s; become
adjacent and are tested for intersection.
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The event point is the upper endpoint of a segment:
@ Insert the new segment in the sorted list.

@ Check for intersection between the new segment and
the segment before and after it in the sorted list.
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Plane sweep algorithm

Handling event points: @
The event point is the upper endpoint of a segment: %M’
@ Insert the new segment in the sorted list. e
@ Check for intersection between the new segment and e
the segment before and after it in the sorted list.

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm
Lemma 2.2

Lemma 2.3

= intersection
detected
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The event point is an intersection:

@ Change the order of intersected segments in the

sorted list.

@ For each intersected segment, check for intersection
between the segment and the new neighbor in the

sorted list.
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Plane sweep algorithm

Handling event points: @

The event point is an intersection: e,
g . Yazd Univ.
@ Change the order of intersected segments in the e
Sorted I|St Computational
. . . Geometry
@ For each intersected segment, check for intersection

between the segment and the new neighbor in the e Seament
sorted list.

Intersection
Motivation

Problem

Plane sweep algorithm
Lemma 2.2

Lemma 2.3




The event point is a lower endpoint of a segment:

@ Remove the segments from the sorted list.

@ check for intersection between the neighboring
segments.
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Plane sweep algorithm
Handling event points:
The event point is a lower endpoint of a segment:

@ Remove the segments from the sorted list.

@ check for intersection between the neighboring
segments.
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Plane sweep algorithm

A data structure for handling event:
We need an event queue Q such that:
@ find and removes the next event that will occur

from Q. If two event points have the same

y-coordinate, then the one with smaller z-coordinate
will be returned.
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Plane sweep algorithm

A data structure for handling event:
We need an event queue Q such that:

@ find and removes the next event that will occur
from Q. If two event points have the same

y-coordinate, then the one with smaller z-coordinate
will be returned.

@ Insert an event point in Q. An insertion must be able
to check whether an event is already present in Q.
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@ Define an order < on event points: p < ¢ if and only if
py > qy holds or p, = ¢, and p, < ¢, holds.

@ We store the event points in a balanced binary
search tree, ordered according to <.

@ Fetching the next event and inserting an event and
testing whether a given event is already present in Q
take O(logm) time, where m is the number of events
in O.
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Plane sweep algorithm
Implementation of the event queue:

@ Define an order < on event points: p < ¢ if and only if
py > gy holds or p, = ¢, and p, < ¢, holds.

@ We store the event points in a balanced binary
search tree, ordered according to <.

v
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Plane sweep algorithm

Implementation of the event queue:

@ Define an order < on event points: p < ¢ if and only if
py > gy holds or p, = ¢, and p, < ¢, holds.

@ We store the event points in a balanced binary
search tree, ordered according to <.

© Fetching the next event and inserting an event and
testing whether a given event is already present in Q

take O(logm) time, where m is the number of events
in Q.
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@ The status structure must be dynamic: segments

must be inserted into or deleted from the structure.
@ We use a

structure.

as status

© At each internal node, we store the segment from the
leaf in its subtree.
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@ The status structure must be dynamic: segments

structure.

must be inserted into or deleted from the structure.
© We use a balanced binary search tree as status

At each internal node, we store the segment from the
leaf in its subtree.
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Plane sweep algorithm

To maintain the sorted list of segments (status of the
algorithm):
@ The status structure must be dynamic: segments
must be inserted into or deleted from the structure.
© We use a balanced binary search tree as status
structure.

© At each internal node, we store the segment from the
rightmost leaf in its left subtree.
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Plane sweep algorithm

To search in 7 for the segment immediately to the
left of some point p:

@ Traverse the tree until you meet a leaf.
@ This leaf, or the leaf immediately to the left of it,
stores the segment we are searching for.

© Therefore each update and neighbor search
operation takes O(logn) time.
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Plane sweep algorithm

To search in 7 for the segment immediately to the
left of some point p:

@ Traverse the tree until you meet a leaf.
© This leaf, or the leaf immediately to the left of it,
stores the segment we are searching for.

© Therefore each update and neighbor search
operation takes O(log n) time.
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Lemma 2.3

18/28



Plane sweep algorithm @

Algorithm FINDINTERSECTIONS(S) W,
Input: A set S of line segments in the plane. Yazd Univ.
Output: The set of intersection points among the
segments in S, with for each intersection point the e
segments that contain it.
1. Initialize an empty event queue Q. Next, insert the Line Segment
segment endpoints into Q; when an upper endpoint e
is inserted, the corresponding segment should be i —
stored with it. s

2. Initialize an empty status structure 7.

3. while Q is not empty

4. Determine the next event point p in @ and
delete it.

5. HANDLEEVENTPOINT(p)

19/28



Algorithm HANDLEEVENTPOINT(p)
1. U(p)+segments whose upper endpoint is p; P ary
2. Find all segments stored in 7 that contain p; v
L(p)+segments found whose lower endpoint is p;
C(p)+segments found that contain p in their interior. Computational
if |L(p) UU(p) UC(p)| > 1 seamety
then Report p as an intersection, together with
L(p),U(p), and C(p). interseaton
Delete the segments in L(p) U C(p) from 7. Motvatn
Insert the segments in U (p) U C(p) into 7. S—
if U(p) UC(p) ==10 o
then s; and s, «<—the left and right neighbors of p in 7.
FINDNEWEVENT(s;, s, p)
0. else s'«the leftmost segment of U(p) U C(p) in T.
s;+the left neighbor of s’ in T.

Plane sweep algorithm @

Yazd Univ.

P ow

SO NGO

11. FINDNEWEVENT(s;, s, p)
12. s"«+the rightmost segment of U(p) U C(p) in T.
13. s «the right neighbor of s” in T.

14. FINDNEWEVENT(s”, s,,p)
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1

Algorithm FINDNEWEVENT (s, s,, p)

if s; and s, intersect below the sweep line, or on it
2.

and to the right of the current event point p, and the

intersection is not yet present as an event in Q

then Insert the intersection point as an event
into Q.
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Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
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Algorithm FINDINTERSECTIONS computes all intersection

points and the segments that contain it correctly.

Proof. (By induction on priority of points)
@ p: An intersection point.

DA

23/28



Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
@ p: An intersection point.

@ Induction hypothesis: All intersection points ¢ < p
have been computed correcily.
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Plane sweep algorithm

Lemma 2.2
Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
@ p: Anintersection point.

@ Induction hypothesis: All intersection points ¢ < p
have been computed correcily.

@ Claim: p is computed correctly.
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Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection 7,
points and the segments that contain it correctly. ’ vazd Univ

Plane sweep algorithm @

Computational

Proof. (By induction on priority of points) Geometry
@ p: An intersection point.

@ Induction hypothesis: All intersection points ¢ < p
have been computed correcily.
@ Claim: p is computed correctly.

@ Case 1: pis an endpoint of one or more of the
segments.
Easy!

Line Segment




Plane sweep algorithm @

Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection 7,
points and the segments that contain it correctly. ’ vazd Univ
Proof. (By induction on priority of points) ety

@ p: Anintersection point.

@ Induction hypothesis: All intersection points ¢ < p
have been computed correcily.

@ Claim: p is computed correctly.

@ Case 1: pis an endpoint of one or more of the
segments.
Easy!

@ Case 2: p is NOT an endpoint.
We show that p will be inserted into Q at some
moment.
Following the proof of Lemma 2.1.

Line Segment




Proof.

The running time of Algorithm FINDINTERSECTIONS is
O((n + I)logn), where I = # intersections.
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The running time of Algorithm FINDINTERSECTIONS is
Proof.

O((n + I)logn), where I = # intersections.

@ Constructing the event queue on the segment
endpoints: O(nlogn) time.
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The running time of Algorithm FINDINTERSECTIONS is
Proof.

O((n + I)logn), where I = # intersections.

@ Constructing the event queue on the segment
endpoints: O(nlogn) time.

@ Initializing the status structure: O(1) time.
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The running time of Algorithm FINDINTERSECTIONS is
Proof.

O((n + I)logn), where I = # intersections.

@ Constructing the event queue on the segment
endpoints: O(nlogn) time.
@ Initializing the status structure: O(1) time.

@ Deletions and insertions on Q: O(logn) time each.
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Lemma 2.3

Plane sweep algorithm @

The running time of Algorithm FINDINTERSECTIONS is 7,
O((n+ I)logn), where I = # intersections. Yazd Univ.
Proof. © Ceomety
@ Constructing the event queue on the segment
endpoints: O(nlogn) time. Line Segment
@ Initializing the status structure: O(1) time. e

@ Deletions and insertions on Q: O(logn) time each.

@ Insert, delete, and neighbor finding on 7: O(logn)
time each.

Lemma 2.3
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Lemma 2.3

Plane sweep algorithm @

The running time of Algorithm FINDINTERSECTIONS is e,
O((n + I)logn), where I = # intersections. Yazd Univ.
Proof. © Ceomety

@ Constructing the event queue on the segment
endpoints: O(nlogn) time. Line Segment

Intersection

@ Initializing the status structure: O(1) time.

Pro

Plane sweep

@ Deletions and insertions on Q: O(logn) time each.

@ Insert, delete, and neighbor finding on 7: O(logn) |
time each.

algorithm

@ #oper. for p: O(m(p)) (m(p) := card (L(p) U U(p) U C(p))
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Lemma 2.3

Plane sweep algorithm @

The running time of Algorithm FINDINTERSECTIONS is e,
O((n + I)logn), where I = # intersections. Yazd Univ.
Proof. © Ceomety

@ Constructing the event queue on the segment
endpoints: O(nlogn) time. Line Segment

Intersection

@ Initializing the status structure: O(1) time.

Pro

Plane sweep

@ Deletions and insertions on Q: O(logn) time each.

@ Insert, delete, and neighbor finding on 7: O(logn) |
time each.

@ #oper. for p: O(m(p)) (m(p) := card (L(p) U U(p) U C(p))
@ It m =3} m(p) then complexity= O(mlogn).

algorithm
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Plane sweep algorithm @

Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is e,
O((n+ I)logn), where I = # intersections. vazd Oniv.
Proof. ety
@ Constructing the event queue on the segment
endpoints: O(nlogn) time. Line Segment
@ Initializing the status structure: O(1) time.
e Deletions and insertions on Q: O(log n) time each. ez
@ Insert, delete, and neighbor finding on 7: O(logn)
time each.
@ #oper. for p: O(m(p)) (m(p) := card (L(p) U U(p) U C(p))
@ It m =3} m(p) then complexity= O(mlogn).
@ m = O(n+ k). (k : output size (points+lines)).
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Proof.

The running time of Algorithm FINDINTERSECTIONS is
O((n + I)logn), where I = # intersections.
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The running time of Algorithm FINDINTERSECTIONS is
Proof.

O((n + I)logn), where I = # intersections.

@ (Claim:) m = O(n+ I). (I : # intersections).

O(n) line segments
k € ©(n?)

Ieo(l)
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The running time of Algorithm FINDINTERSECTIONS is
Proof.

O((n+ I)logn), where I = # intersections.

@ (Claim:) m = O(n+ I). (I : # intersections).
@ Consider the segments as a planar graph.

disconnected
subdivision
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The running time of Algorithm FINDINTERSECTIONS is
Proof.

O((n + I)logn), where I = # intersections.

@ (Claim:) m = O(n + I). (I : # intersections).
@ Consider the segments as a planar graph.

@ n, : # vertices, n. : # edges, ny : #faces
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O((n + I)logn), where I = # intersections.
Proof.

The running time of Algorithm FINDINTERSECTIONS is

@ (Claim:) m = O(n + I). (I : # intersections)
@ Consider the segments as a planar graph.

@ n, : # vertices, n. : # edges, n; : #faces
@ m(p) = degree(p) = m = 3, m(p) = 2ne.
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O((n + I)logn), where I = # intersections.

The running time of Algorithm FINDINTERSECTIONS is

Proof.
@ (Claim:) m = O(n + I). (I : # intersections).
@ Consider the segments as a planar graph.
@ n, : # vertices, n. : # edges, ny : #faces
® m(p) = degree(p) = m =3, m(p) = 2ne.
@ ny, <2n+1,np < 2n./3
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The running time of Algorithm FINDINTERSECTIONS is
O((n + I)logn), where I = # intersections.

Proof.
@ (Claim:) m = O(n + I). (I : # intersections).
@ Consider the segments as a planar graph.
@ n, : # vertices, n. : # edges, ny : #faces
® m(p) = degree(p) = m =3, m(p) = 2ne.
@ n, <2n+1,ny <2n¢/3
@ Euler's Formula: n, —ne +njy > 2.

2 < ny—netng
< 2n+1—ne+2n./3
= ne<bn+3[—-6=m<12n+ 61 —12.

[m] = = =
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@ O(n + I) (size of the event queue)

@ Can be improved to O(n): only store intersection
points of pairs of segments that are currently
adjacent on the sweep line.
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@ O(n + I) (size of the event queue)

@ Can be improved to O(n): only store intersection
points of pairs of segments that are currently
adjacent on the sweep line.
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Let S be a set of n line segments in the plane. All
intersection points in S, with for each intersection point
the segments involved in it, can be reported in

O(nlogn + I'logn) time and O(n) space, where I is the
number of intersection points.
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