

Computational Geometry

Line Segment Intersection

Line Segment

Intersection Motivation

1393-1

Motivation

Thematic Map Overlay

Computational Geometry

Line Segment Intersection

Motivation

Motivation

Thematic Map Overlay

grizzly bear

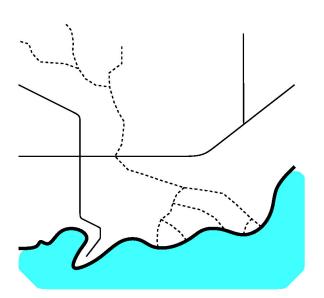
Computational Geometry

Line Segment

Motivation

Motivation

Thematic Map Overlay



Computational Geometry

Line Segment Intersection

Motivation

Problem

Line segment intersection problem:

Given two sets of line segments, compute all intersections between a segment from one set and a segment from the other.

* We consider the segments to be closed.

Simplified version:

Given a set S of n closed segments n the plane, report all intersection points among the segments in S.

Computational Geometry

Line Segment Intersection

iotivation

Problem

Problem

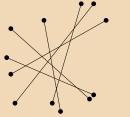
Line segment intersection problem:

Given two sets of line segments, compute all intersections between a segment from one set and a segment from the other.

* We consider the segments to be closed.

Simplified version:

Given a set S of n closed segments in the plane, report all intersection points among the segments in S.



Computational Geometry

Line Seament

Problem

1st algorithm

- The brute-force algorithm clearly requires $\mathcal{O}(n^2)$ time.
- In a sense this is optimal: when each pair of segments intersects any algorithm must take $\Omega(n^2)$ time, because it has to report all intersections.

Computational Geometry

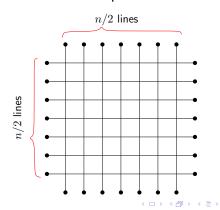
Line Segment Intersection

Problem

Plane sweep algorithm Lemma 2.2 Lemma 2.3

1st algorithm

- The brute-force algorithm clearly requires $\mathcal{O}(n^2)$ time.
- In a sense this is optimal: when each pair of segments intersects any algorithm must take $\Omega(n^2)$ time, because it has to report all intersections.



Computational Geometry

Line Segment Intersection

Problem

Problem

Output sensitive algorithm

Definition:

An algorithm whose running time depends not only on the number of segments in the input, but also on the number of intersection points.

We want an algorithm that runs faster when the number of intersections is sub-quadratic.

Computational Geometry

Line Segment Intersection

Problem

roblem

Output sensitive algorithm

Definition:

An algorithm whose running time depends not only on the number of segments in the input, but also on the number of intersection points.

In our case:

We want an algorithm that runs faster when the number of intersections is sub-quadratic.

Computational Geometry

Line Segment Intersection

Problem

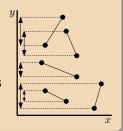
Problem

Plane sweep algorithm emma 2.2

Lemma 2.3

y-intervals

- Define the *y*-interval of a segment to be its orthogonal projection onto the *y*-axis.
- When the y-intervals of a pair of segments do not overlap then they cannot intersect.
- To find segments whose y-intervals overlap we use a Plane sweep algorithm.



Computational Geometry

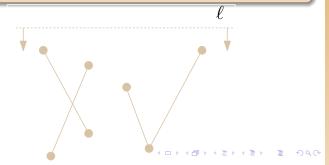
Line Segment Intersection Motivation Problem Plane sweep algorithm

Plane sweep algorithm

- We imagine sweeping a line ℓ downwards over the plane, starting from a position above all segments.
- While we sweep the imaginary line, we keep track of all segments intersecting it so that we can find the pairs we need.
- The status of the sweep line is the set of segments intersecting it.

Computational Geometry

Line Segment Intersection Motivation Problem



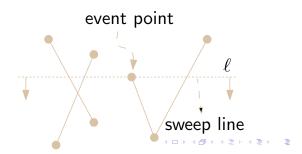
Plane sweep algorithm

- We imagine sweeping a line ℓ downwards over the plane, starting from a position above all segments.
- While we sweep the imaginary line, we keep track of all segments intersecting it so that we can find the pairs we need.
- The status of the sweep line is the set of segments intersecting it.

Computational Geometry

Line Segment Intersection Motivation

Problem



Plane sweep algorithm

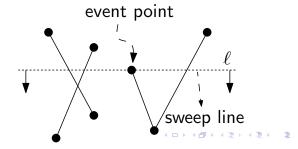
- We imagine sweeping a line ℓ downwards over the plane, starting from a position above all segments.
- While we sweep the imaginary line, we keep track of all segments intersecting it so that we can find the pairs we need.
- The status of the sweep line is the set of segments intersecting it.

Computational Geometry

Line Segment Intersection

Motivation Problem

Plane sweep algorithm



when the sweep line reaches an event point:

- If the event point is the upper endpoint of a segment, then a new segment starts intersecting the sweep line and must be added to the status.
- If the event point is a lower endpoint, a segment stops intersecting the sweep line and must be deleted from the status.
- The algorithm tests pairs of segments for which there is a horizontal line that intersects both segments. (better than brute-force but still quadratic).

Computational Geometry

Line Segment Intersection

Motivation Problem

when the sweep line reaches an event point:

- If the event point is the upper endpoint of a segment, then a new segment starts intersecting the sweep line and must be added to the status.
- If the event point is a lower endpoint, a segment stops intersecting the sweep line and must be deleted from the status.
- The algorithm tests pairs of segments for which there is a horizontal line that intersects both segments. (better than brute-force but still quadratic).

Computational Geometry

Line Segment Intersection

Motivation Problem

when the sweep line reaches an event point:

- If the event point is the upper endpoint of a segment, then a new segment starts intersecting the sweep line and must be added to the status.
- If the event point is a lower endpoint, a segment stops intersecting the sweep line and must be deleted from the status.
- The algorithm tests pairs of segments for which there is a horizontal line that intersects both segments. (better than brute-force but still quadratic).

Computational Geometry

Line Segment Intersection

Motivation Problem

Problem
Plane sweep algorithm

New algorithm:

- Status: Sorted list of segments (from left to right as they intersect the sweep line).
- Test adjacent segments in the horizontal ordering for intersection.
- To maintain the status (sorted list), we need to take care of new event points.

Computational Geometry

Line Segment Intersection Motivation

Problem
Plane sweep algorithm
Lemma 2.2

New algorithm:

- Status: Sorted list of segments (from left to right as they intersect the sweep line).
- Test adjacent segments in the horizontal ordering for intersection.
- To maintain the status (sorted list), we need to take care of new event points.

Computational Geometry

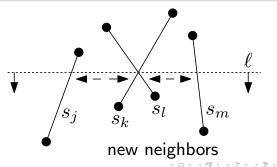
Line Segment Intersection Motivation Problem

Plane sweep algorithm Lemma 2.2

.emma 2.2 .emma 2.3

New algorithm:

- Status: Sorted list of segments (from left to right as they intersect the sweep line).
- Test adjacent segments in the horizontal ordering for intersection.
- To maintain the status (sorted list), we need to take care of new event points.



Computational Geometry

Line Segment Intersection

Problem

Do we still find all intersections?

Lemma 2.1 Let s_i and s_j be two non-horizontal segments whose interiors intersect in a single point p, and assume there is no third segment passing through p. Then there is an event point above p where s_i and s_i become adjacent and are tested for intersection.

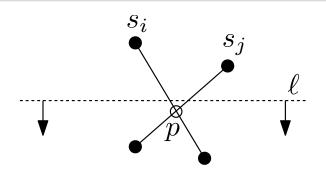
Computational Geometry

Line Seament

Plane sweep algorithm

Do we still find all intersections?

Lemma 2.1 Let s_i and s_j be two non-horizontal segments whose interiors intersect in a single point p, and assume there is no third segment passing through p. Then there is an event point above p where s_i and s_i become adjacent and are tested for intersection.



Computational Geometry

Line Seament Plane sweep algorithm

Handling event points:

The event point is the upper endpoint of a segment:

- Insert the new segment in the sorted list.
- Check for intersection between the new segment and the segment before and after it in the sorted list.

Computational Geometry

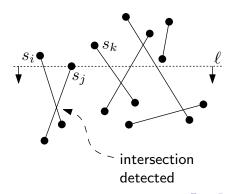
Line Segment Intersection Motivation

Problem
Plane sweep algorithm

Handling event points:

The event point is the upper endpoint of a segment:

- Insert the new segment in the sorted list.
- Check for intersection between the new segment and the segment before and after it in the sorted list.



Computational Geometry

Line Seament Plane sweep algorithm

Handling event points:

The event point is an intersection:

- Change the order of intersected segments in the sorted list.
- For each intersected segment, check for intersection between the segment and the new neighbor in the sorted list.

Computational Geometry

Line Segment Intersection

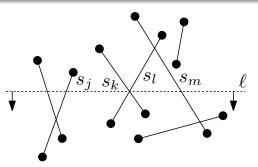
Problem

Problem
Plane sweep algorithm

Handling event points:

The event point is an intersection:

- Change the order of intersected segments in the sorted list.
- For each intersected segment, check for intersection between the segment and the new neighbor in the sorted list.



Computational Geometry

Line Segment Intersection

Problem

Handling event points:

The event point is a lower endpoint of a segment:

- Remove the segments from the sorted list.
- check for intersection between the neighboring segments.

Computational Geometry

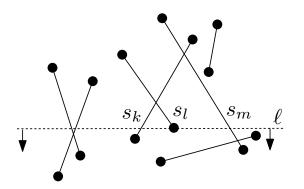
Line Segment Intersection Motivation

Problem

Handling event points:

The event point is a lower endpoint of a segment:

- Remove the segments from the sorted list.
- check for intersection between the neighboring segments.



Computational Geometry

Line Segment Intersection Motivation Problem Plane sweep algorithm

Plane sweep algorithm Lemma 2.2 Lemma 2.3

A data structure for handling event:

We need an event queue Q such that:

- find and removes the next event that will occur from Q. If two event points have the same y-coordinate, then the one with smaller x-coordinate will be returned.
- 2 Insert an event point in Q. An insertion must be able to check whether an event is already present in Q.

Computational Geometry

Line Segment Intersection

roblem

Plane sweep algorithm

A data structure for handling event:

We need an event queue Q such that:

- find and removes the next event that will occur from Q. If two event points have the same y-coordinate, then the one with smaller x-coordinate will be returned.
- 2 Insert an event point in Q. An insertion must be able to check whether an event is already present in Q.

Computational Geometry

Line Segment Intersection

roblem

Plane sweep algorithm

Implementation of the event queue:

- Define an order \prec on event points: $p \prec q$ if and only if $p_y > q_y$ holds or $p_y = q_y$ and $p_x < q_x$ holds.
- We store the event points in a balanced binary search tree, ordered according to ≺.
- **3** Fetching the next event and inserting an event and testing whether a given event is already present in \mathcal{Q} take $\mathcal{O}(\log m)$ time, where m is the number of events in \mathcal{O} .

Computational Geometry

Line Segment Intersection Motivation Problem

Plane sweep algorithm Lemma 2.2

Implementation of the event queue:

- ① Define an order \prec on event points: $p \prec q$ if and only if $p_y > q_y$ holds or $p_y = q_y$ and $p_x < q_x$ holds.
- We store the event points in a balanced binary search tree, ordered according to ≺.
- **9** Fetching the next event and inserting an event and testing whether a given event is already present in \mathcal{Q} take $\mathcal{O}(\log m)$ time, where m is the number of events in \mathcal{O} .

Computational Geometry

Line Segment Intersection Motivation

Plane sweep algorithm

Implementation of the event queue:

- ① Define an order \prec on event points: $p \prec q$ if and only if $p_y > q_y$ holds or $p_y = q_y$ and $p_x < q_x$ holds.
- We store the event points in a balanced binary search tree, ordered according to ≺.
- **3** Fetching the next event and inserting an event and testing whether a given event is already present in \mathcal{Q} take $\mathcal{O}(\log m)$ time, where m is the number of events in \mathcal{Q} .

Computational Geometry

Line Segment Intersection

Problem

Plane sweep algorithm

To maintain the sorted list of segments (status of the algorithm):

- The status structure must be dynamic: segments must be inserted into or deleted from the structure.
- We use a balanced binary search tree as status structure.
- At each internal node, we store the segment from the rightmost leaf in its left subtree.

Computational Geometry

Line Segment Intersection Motivation

roblem

To maintain the sorted list of segments (status of the algorithm):

- The status structure must be dynamic: segments must be inserted into or deleted from the structure.
- We use a balanced binary search tree as status structure.
- At each internal node, we store the segment from the rightmost leaf in its left subtree.

Computational Geometry

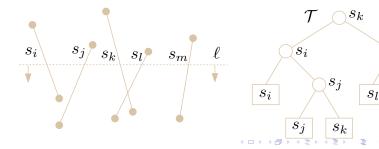
Line Segment Intersection Motivation Problem

Plane sweep algorithm

Lemma 2.2 Lemma 2.3

 S_1

 s_m



To maintain the sorted list of segments (status of the algorithm):

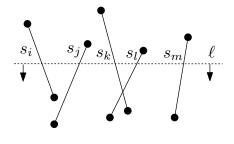
- The status structure must be dynamic: segments must be inserted into or deleted from the structure.
- We use a balanced binary search tree as status structure.
- At each internal node, we store the segment from the rightmost leaf in its left subtree.

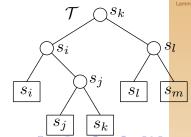
Computational Geometry

Line Segment Intersection

Motivation Problem

Plane sweep algorithm





To search in \mathcal{T} for the segment immediately to the left of some point p:

- Traverse the tree until you meet a leaf.
- This leaf, or the leaf immediately to the left of it, stores the segment we are searching for.
- Therefore each update and neighbor search operation takes $\mathcal{O}(\log n)$ time.

Computational Geometry

Line Segment Intersection

Motivation Problem

Plane sweep algorithm

To search in \mathcal{T} for the segment immediately to the left of some point p:

- Traverse the tree until you meet a leaf.
- 2 This leaf, or the leaf immediately to the left of it, stores the segment we are searching for.
- 3 Therefore each update and neighbor search operation takes $\mathcal{O}(\log n)$ time.

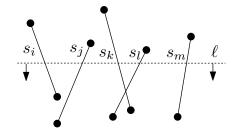
Computational Geometry

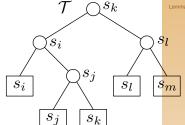
Line Segment Intersection

Motivation Problem

Plane sweep algorithm

Lemma 2.2 Lemma 2.3





Algorithm FINDINTERSECTIONS(S)

Input: A set S of line segments in the plane.

Output: The set of intersection points among the segments in *S*, with for each intersection point the segments that contain it.

- 1. Initialize an empty event queue \mathcal{Q} . Next, insert the segment endpoints into \mathcal{Q} ; when an upper endpoint is inserted, the corresponding segment should be stored with it.
- 2. Initialize an empty status structure \mathcal{T} .
- 3. **while** Q is not empty
- 4. Determine the next event point p in Q and delete it.
- 5. HANDLEEVENTPOINT(p)

Computational Geometry

Line Segment Intersection Motivation Problem Plane sweep algorithm

Algorithm HANDLEEVENTPOINT(p)

- 1. $U(p)\leftarrow$ segments whose upper endpoint is p;
- 2. Find all segments stored in \mathcal{T} that contain p; $L(p)\leftarrow$ segments found whose lower endpoint is p; $C(p)\leftarrow$ segments found that contain p in their interior.
- 3. **if** $|L(p) \cup U(p) \cup C(p)| > 1$
- 4. **then** Report p as an intersection, together with L(p), U(p), and C(p).
- 5. Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} .
- 6. Insert the segments in $U(p) \cup C(p)$ into \mathcal{T} .
- 7. if $U(p) \cup C(p) == \emptyset$
- 8. **then** s_l and $s_r \leftarrow$ the left and right neighbors of p in T.
- 9. FINDNEWEVENT (s_l, s_r, p)
- 10. **else** $s' \leftarrow$ the leftmost segment of $U(p) \cup C(p)$ in \mathcal{T} . $s_l \leftarrow$ the left neighbor of s' in \mathcal{T} .
- 11. FINDNEWEVENT (s_l, s', p)
- 12. $s'' \leftarrow$ the rightmost segment of $U(p) \cup C(p)$ in \mathcal{T} .
- 13. $s_r \leftarrow$ the right neighbor of s'' in \mathcal{T} .
- 14. FINDNEWEVENT (s'', s_r, p)

Computational Geometry

Line Segment Intersection Motivation Problem

Plane sweep algorithm Lemma 2.2

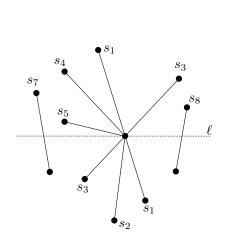
Algorithm FINDNEWEVENT (s_l, s_r, p)

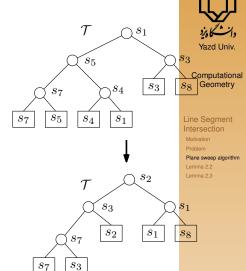
- 1. **if** s_l and s_r intersect below the sweep line, or on it and to the right of the current event point p, and the intersection is not yet present as an event in \mathcal{Q}
- 2. **then** Insert the intersection point as an event into Q.

Computational Geometry

Line Segment Intersection Motivation Problem

Problem
Plane sweep algorithm
Lemma 2.2





Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection points and the segments that contain it correctly.

Proof. (By induction on priority of points)

- p: An intersection point.
- Induction hypothesis: All intersection points q ≺ p have been computed correctly.
- Claim: p is computed correctly.
- Case 1: p is an endpoint of one or more of the segments.Easy!
- Case 2: p is NOT an endpoint.
 We show that p will be inserted into Q at some moment.
 Following the proof of Lemma 2.1.

Computational Geometry

Line Segment Intersection Motivation

Problem

Plane sweep al

Lemma 2.2 Lemma 2.3

Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection points and the segments that contain it correctly.

Proof. (By induction on priority of points)

- p: An intersection point.
- Induction hypothesis: All intersection points q ≺ p have been computed correctly.
- Claim: p is computed correctly.
- Case 1: p is an endpoint of one or more of the segments.
 Easy!
- Case 2: p is NOT an endpoint.
 We show that p will be inserted into Q at some moment.
 Following the proof of Lemma 2.1.

Computational Geometry

Line Segment Intersection Motivation

Problem

Plane sweep algo

Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection points and the segments that contain it correctly.

Proof. (By induction on priority of points)

- p: An intersection point.
- Induction hypothesis: All intersection points q ≺ p have been computed correctly.
- Claim: *p* is computed correctly.
- Case 1: p is an endpoint of one or more of the segments.
 Easy!
- Case 2: p is NOT an endpoint.
 We show that p will be inserted into Q at some moment.
 Following the proof of Lemma 2.1.

Computational Geometry

Line Segment Intersection

> Motivation Problem

Problem Plane sween

Lemma 2.2 Lemma 2.3

Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection points and the segments that contain it correctly.

Proof. (By induction on priority of points)

- p: An intersection point.
- Induction hypothesis: All intersection points q ≺ p have been computed correctly.
- Claim: p is computed correctly.
- Case 1: p is an endpoint of one or more of the segments.
 Easy!
- Case 2: p is NOT an endpoint.
 We show that p will be inserted into Q at some moment.
 Following the proof of Lemma 2.1.

Computational Geometry

Line Segment Intersection

Problem

Problem Plane sweep

Lemma 2.2

23/28

Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection points and the segments that contain it correctly.

Proof. (By induction on priority of points)

- p: An intersection point.
- Induction hypothesis: All intersection points q ≺ p have been computed correctly.
- Claim: p is computed correctly.
- Case 1: p is an endpoint of one or more of the segments.
 Easy!
- Case 2: p is NOT an endpoint.
 We show that p will be inserted into Q at some moment.
 Following the proof of Lemma 2.1.

Computational Geometry

Line Segment Intersection Motivation

Problem

Plane sweep alg

Lemma 2.2 Lemma 2.3

Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection points and the segments that contain it correctly.

Proof. (By induction on priority of points)

- p: An intersection point.
- Induction hypothesis: All intersection points q < p have been computed correctly.
- Claim: p is computed correctly.
- Case 1: p is an endpoint of one or more of the segments.
 Easy!
- Case 2: p is NOT an endpoint.
 We show that p will be inserted into Q at some moment.
 Following the proof of Lemma 2.1.

Computational Geometry

Line Segment Intersection Motivation Problem

Lemma 2.2 Lemma 2.3

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $O(n \log n)$ time.
- Initializing the status structure: $\mathcal{O}(1)$ time.
- Deletions and insertions on \mathcal{Q} : $\mathcal{O}(\log n)$ time each
- Insert, delete, and neighbor finding on \mathcal{T} : $\mathcal{O}(\log n)$ time each.
- ullet #oper. for p: $\mathcal{O}ig(m(p)ig)$ $(m(p):= \mathrm{card}\ (L(p)\cup U(p)\cup C(p))$
- If $m = \sum_{p} m(p)$ then complexity= $\mathcal{O}(m \log n)$.
- $m = \mathcal{O}(n+k)$. (k : output size (points+lines)).

Computational Geometry

Line Segment Intersection

Problem

roblem

Plane sweep algorithm emma 2.2

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $\mathcal{O}(n \log n)$ time.

Computational Geometry

Line Seament

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $O(n \log n)$ time.
- Initializing the status structure: $\mathcal{O}(1)$ time.
- Deletions and insertions on \mathcal{Q} : $\mathcal{O}(\log n)$ time each.
- Insert, delete, and neighbor finding on \mathcal{T} : $\mathcal{O}(\log n)$ time each.
- ullet #oper. for p: $\mathcal{O}ig(m(p)ig)$ $(m(p) := \operatorname{card} (L(p) \cup U(p) \cup C(p))$
- If $m = \sum_{p} m(p)$ then complexity= $\mathcal{O}(m \log n)$.
- $m = \mathcal{O}(n+k)$. (k : output size (points+lines)).

Computational Geometry

Line Segment Intersection

notivation Problem

Problem

Plane sweep algorithm Lemma 2.2

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $O(n \log n)$ time.
- Initializing the status structure: $\mathcal{O}(1)$ time.
- Deletions and insertions on \mathcal{Q} : $\mathcal{O}(\log n)$ time each.
- Insert, delete, and neighbor finding on \mathcal{T} : $\mathcal{O}(\log n)$ time each.
- ullet #oper. for p: $\mathcal{O}ig(m(p)ig)$ $(m(p):=\operatorname{card}(L(p)\cup U(p)\cup C(p))$
- If $m = \sum_{p} m(p)$ then complexity= $\mathcal{O}(m \log n)$.
- $m = \mathcal{O}(n+k)$. (k : output size (points+lines)).

Computational Geometry

Line Segment Intersection

> Motivation Problem

> Problem

lane sweep algorithn emma 2.2

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $\mathcal{O}(n \log n)$ time.
- Initializing the status structure: $\mathcal{O}(1)$ time.
- Deletions and insertions on \mathcal{Q} : $\mathcal{O}(\log n)$ time each.
- Insert, delete, and neighbor finding on \mathcal{T} : $\mathcal{O}(\log n)$ time each.
- #oper. for p: $\mathcal{O}(m(p))$ $(m(p) := \operatorname{card} (L(p) \cup U(p) \cup C(p))$
- If $m = \sum_{p} m(p)$ then complexity= $\mathcal{O}(m \log n)$.
- $m = \mathcal{O}(n+k)$. (k : output size (points+lines)).

Computational Geometry

Line Segment Intersection Motivation Problem

Problem
Plane sweep algorithm
Lemma 2.2

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $\mathcal{O}(n \log n)$ time.
- Initializing the status structure: $\mathcal{O}(1)$ time.
- Deletions and insertions on \mathcal{Q} : $\mathcal{O}(\log n)$ time each.
- Insert, delete, and neighbor finding on \mathcal{T} : $\mathcal{O}(\log n)$ time each.
- #oper. for p: $\mathcal{O}\big(m(p)\big)$ $(m(p) := \mathsf{card}\ (L(p) \cup U(p) \cup C(p))$
- If $m = \sum_{p} m(p)$ then complexity= $\mathcal{O}(m \log n)$.
- $m = \mathcal{O}(n+k)$. (k: output size (points+lines)).

Computational Geometry

Line Segment Intersection Motivation Problem

Problem
Plane sweep algorithm
Lemma 2.2
Lemma 2.3

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $\mathcal{O}(n \log n)$ time.
- Initializing the status structure: $\mathcal{O}(1)$ time.
- Deletions and insertions on \mathcal{Q} : $\mathcal{O}(\log n)$ time each.
- Insert, delete, and neighbor finding on \mathcal{T} : $\mathcal{O}(\log n)$ time each.
- #oper. for p: $\mathcal{O}(m(p))$ $(m(p) := \text{card } (L(p) \cup U(p) \cup C(p))$
- If $m = \sum_{p} m(p)$ then complexity= $\mathcal{O}(m \log n)$.
- $m = \mathcal{O}(n+k)$. (k : output size (points+lines)).

Computational Geometry

Line Segment
Intersection
Motivation
Problem
Plane sweep algorithm

Problem
Plane sweep algorithm
Lemma 2.2
Lemma 2.3

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- Constructing the event queue on the segment endpoints: $\mathcal{O}(n \log n)$ time.
- Initializing the status structure: $\mathcal{O}(1)$ time.
- Deletions and insertions on \mathcal{Q} : $\mathcal{O}(\log n)$ time each.
- Insert, delete, and neighbor finding on \mathcal{T} : $\mathcal{O}(\log n)$ time each.
- #oper. for p: $\mathcal{O}(m(p))$ $(m(p) := \text{card } (L(p) \cup U(p) \cup C(p))$
- If $m = \sum_{p} m(p)$ then complexity= $\mathcal{O}(m \log n)$.
- $m = \mathcal{O}(n+k)$. (k: output size (points+lines)).

Computational Geometry

Line Segment
Intersection
Motivation
Problem
Plane sweep algorithm
Lemma 2.2
Lemma 2.3

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- (Claim:) $m = \mathcal{O}(n+I)$. (I: # intersections)
- Consider the segments as a planar graph.
- ullet $n_v: \#$ vertices, $n_e: \#$ edges, $n_f: \#$ faces
- $m(p) = degree(p) \Rightarrow m = \sum_{p} m(p) = 2n_e$.
- $n_v \le 2n + I, n_f \le 2n_e/3$
- Euler's Formula: $n_v n_e + n_f \ge 2$.

Computational Geometry

Line Segment Intersection

Motivation Problem

roblem Plane sween

lane sweep algor

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- (Claim:) $m = \mathcal{O}(n+I)$. (I : # intersections).
- Consider the segments as a planar graph.
- n_v : # vertices, n_e : # edges, n_f : #faces
- $m(p) = degree(p) \Rightarrow m = \sum_{m} m(p) = 2n_e$
- $n_v \le 2n$ $I_{v,n_v} \le 2n_e/\sqrt{\Theta(n)}$ line segments
 - Euler's Formula $n_n n_n + n_n \ge k \in \Theta(n^2)$

 $\Rightarrow m \le 12n + 6I - 12.$

Computational Geometry

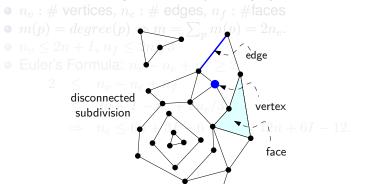
Line Segment
Intersection
Motivation
Problem
Plane sweep algorithm
Lemma 2.2

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- (Claim:) $m = \mathcal{O}(n+I)$. (I : # intersections).
- Consider the segments as a planar graph.



Computational Geometry

Line Segment Intersection Motivation Problem Plane sweep algorithm Lemma 2.2

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- (Claim:) $m = \mathcal{O}(n+I)$. (I : # intersections).
- Consider the segments as a planar graph.
- n_v : # vertices, n_e : # edges, n_f : #faces
- $m(p) = degree(p) \Rightarrow m = \sum_{p} m(p) = 2n_e$.
- $n_v \le 2n + I, n_f \le 2n_e/3$
- Euler's Formula: $n_v n_e + n_f \ge 2$.
 - $2 \leq n_v n_e + n_f$
 - $\leq 2n + I n_e + 2n_e/3$
 - $\Rightarrow n_e \le 6n + 3I 6 \Rightarrow m \le 12n + 6I 12.$

Computational Geometry

Line Segment Intersection

Problem

Plane sweep a

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- (Claim:) $m = \mathcal{O}(n+I)$. (I : # intersections).
- Consider the segments as a planar graph.
- n_v : # vertices, n_e : # edges, n_f : #faces
- $m(p) = degree(p) \Rightarrow m = \sum_{p} m(p) = 2n_e$.
- $n_v \le 2n + I$, $n_f \le 2n_e/3$
- Euler's Formula: $n_v n_e + n_f \ge 2$.

$$2 \leq n_v - n_e + n_f$$

$$\leq 2n + I - n_e + 2n_e/3$$

$$\Rightarrow n_e \leq 6n + 3I - 6 \Rightarrow m \leq 12n + 6I - 12.$$

Computational Geometry

Line Segment Intersection

> Notivation Problem

lane sweep algo

Lemma 2.3

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- (Claim:) $m = \mathcal{O}(n+I)$. (I : # intersections).
- Consider the segments as a planar graph.
- n_v : # vertices, n_e : # edges, n_f : #faces
- $m(p) = degree(p) \Rightarrow m = \sum_{p} m(p) = 2n_e$.
- $n_v \le 2n + I$, $n_f \le 2n_e/3$
- Euler's Formula: $n_v n_e + n_f \ge 2$.

$$2 \leq n_v - n_e + n_f$$

$$\leq 2n + I - n_e + 2n_e/3$$

$$\Rightarrow n_e \leq 6n + 3I - 6 \Rightarrow m \leq 12n + 6I - 12.$$

Computational Geometry

Line Segment Intersection

> Motivation Problem

Plane sweep algo

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS is $\mathcal{O}((n+I)\log n)$, where I=# intersections.

Proof.

- (Claim:) $m = \mathcal{O}(n+I)$. (I : # intersections).
- Consider the segments as a planar graph.
- n_v : # vertices, n_e : # edges, n_f : #faces
- $m(p) = degree(p) \Rightarrow m = \sum_{p} m(p) = 2n_e$.
- $n_v \le 2n + I$, $n_f \le 2n_e/3$
- Euler's Formula: $n_v n_e + n_f \ge 2$.

$$\begin{array}{rcl}
2 & \leq & n_v - n_e + n_f \\
& \leq & 2n + I - n_e + 2n_e/3 \\
\Rightarrow & n_e \leq 6n + 3I - 6 \Rightarrow m \leq 12n + 6I - 12.
\end{array}$$

Computational Geometry

Line Segment Intersection

Problem

Plane sweep algorith

Space Complexity:

- $\mathcal{O}(n+I)$ (size of the event queue)
- Can be improved to $\mathcal{O}(n)$: only store intersection points of pairs of segments that are currently adjacent on the sweep line.

Computational Geometry

Line Segment Intersection

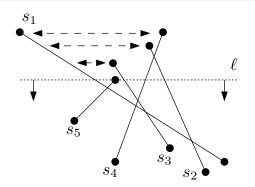
roblem

lane sween

Plane sweep algorithm emma 2.2

Space Complexity:

- $\mathcal{O}(n+I)$ (size of the event queue)
- Can be improved to $\mathcal{O}(n)$: only store intersection points of pairs of segments that are currently adjacent on the sweep line.



Computational Geometry

Line Segment Intersection Motivation Problem

Plane sweep algorithm Lemma 2.2

Theorem 2.4

Let S be a set of n line segments in the plane. All intersection points in S, with for each intersection point the segments involved in it, can be reported in $\mathcal{O}(n \log n + I \log n)$ time and $\mathcal{O}(n)$ space, where I is the number of intersection points.

Computational Geometry

Line Seament

Line Segment

Motivation

Plane sweep algorithm

