
Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Line Segment Intersection

1393-1

1 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Motivation
Thematic Map Overlay

2 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Motivation
Thematic Map Overlay

3 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Motivation
Thematic Map Overlay

3 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Problem

Line segment intersection problem:
Given two sets of line segments, compute all
intersections between a segment from one set and a
segment from the other.

? We consider the segments to be closed.

Simplified version:

Given a set S of n closed segments
in the plane, report all intersection
points among the segments in S.

4 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Problem

Line segment intersection problem:
Given two sets of line segments, compute all
intersections between a segment from one set and a
segment from the other.

? We consider the segments to be closed.

Simplified version:

Given a set S of n closed segments
in the plane, report all intersection
points among the segments in S.

4 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

1st algorithm

The brute-force algorithm clearly requires O(n2)
time.
In a sense this is optimal: when each pair of
segments intersects any algorithm must take Ω(n2)
time, because it has to report all intersections.

5 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

1st algorithm

The brute-force algorithm clearly requires O(n2)
time.
In a sense this is optimal: when each pair of
segments intersects any algorithm must take Ω(n2)
time, because it has to report all intersections.

n/2 lines

n
/
2
lin
es

5 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Output sensitive algorithm

Definition:
An algorithm whose running time depends not only on the
number of segments in the input, but also on the number
of intersection points.

In our case:
We want an algorithm that runs faster when the number
of intersections is sub-quadratic.

6 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Output sensitive algorithm

Definition:
An algorithm whose running time depends not only on the
number of segments in the input, but also on the number
of intersection points.

In our case:
We want an algorithm that runs faster when the number
of intersections is sub-quadratic.

6 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm

y-intervals
Define the y-interval of a segment
to be its orthogonal projection onto
the y-axis.
When the y-intervals of a pair of
segments do not overlap then they
cannot intersect.
To find segments whose y-intervals
overlap we use a Plane sweep
algorithm.

y

x

7 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Plane sweep algorithm

We imagine sweeping a line ` downwards over the
plane, starting from a position above all segments.
While we sweep the imaginary line, we keep track of
all segments intersecting it so that we can find the
pairs we need.
The status of the sweep line is the set of segments
intersecting it.

`

8 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Plane sweep algorithm

We imagine sweeping a line ` downwards over the
plane, starting from a position above all segments.
While we sweep the imaginary line, we keep track of
all segments intersecting it so that we can find the
pairs we need.
The status of the sweep line is the set of segments
intersecting it.

event point

`

sweep line

8 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Plane sweep algorithm

We imagine sweeping a line ` downwards over the
plane, starting from a position above all segments.
While we sweep the imaginary line, we keep track of
all segments intersecting it so that we can find the
pairs we need.
The status of the sweep line is the set of segments
intersecting it.

event point

`

sweep line

8 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm

when the sweep line reaches an event point:
If the event point is the upper endpoint of a segment,
then a new segment starts intersecting the sweep
line and must be added to the status.
If the event point is a lower endpoint, a segment
stops intersecting the sweep line and must be
deleted from the status.
The algorithm tests pairs of segments for which there
is a horizontal line that intersects both segments.
(better than brute-force but still quadratic).

9 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm

when the sweep line reaches an event point:
If the event point is the upper endpoint of a segment,
then a new segment starts intersecting the sweep
line and must be added to the status.
If the event point is a lower endpoint, a segment
stops intersecting the sweep line and must be
deleted from the status.
The algorithm tests pairs of segments for which there
is a horizontal line that intersects both segments.
(better than brute-force but still quadratic).

9 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm

when the sweep line reaches an event point:
If the event point is the upper endpoint of a segment,
then a new segment starts intersecting the sweep
line and must be added to the status.
If the event point is a lower endpoint, a segment
stops intersecting the sweep line and must be
deleted from the status.
The algorithm tests pairs of segments for which there
is a horizontal line that intersects both segments.
(better than brute-force but still quadratic).

9 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
New algorithm:

Status: Sorted list of segments (from left to right as
they intersect the sweep line).
Test adjacent segments in the horizontal ordering for
intersection.
To maintain the status (sorted list), we need to take
care of new event points.

10 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
New algorithm:

Status: Sorted list of segments (from left to right as
they intersect the sweep line).
Test adjacent segments in the horizontal ordering for
intersection.
To maintain the status (sorted list), we need to take
care of new event points.

10 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
New algorithm:

Status: Sorted list of segments (from left to right as
they intersect the sweep line).
Test adjacent segments in the horizontal ordering for
intersection.
To maintain the status (sorted list), we need to take
care of new event points.

new neighbors

sj sk
sl sm

`

10 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Do we still find all intersections?
Lemma 2.1 Let si and sj be two non-horizontal segments
whose interiors intersect in a single point p, and assume
there is no third segment passing through p. Then there
is an event point above p where si and sj become
adjacent and are tested for intersection.

11 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Do we still find all intersections?
Lemma 2.1 Let si and sj be two non-horizontal segments
whose interiors intersect in a single point p, and assume
there is no third segment passing through p. Then there
is an event point above p where si and sj become
adjacent and are tested for intersection.

si
sj

p

`

11 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Handling event points:
The event point is the upper endpoint of a segment:

Insert the new segment in the sorted list.
Check for intersection between the new segment and
the segment before and after it in the sorted list.

12 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Handling event points:
The event point is the upper endpoint of a segment:

Insert the new segment in the sorted list.
Check for intersection between the new segment and
the segment before and after it in the sorted list.

intersection
detected

si
sj

sk
`

12 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Handling event points:
The event point is an intersection:

Change the order of intersected segments in the
sorted list.
For each intersected segment, check for intersection
between the segment and the new neighbor in the
sorted list.

13 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Handling event points:
The event point is an intersection:

Change the order of intersected segments in the
sorted list.
For each intersected segment, check for intersection
between the segment and the new neighbor in the
sorted list.

sj sk sl sm `

13 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Handling event points:
The event point is a lower endpoint of a segment:

Remove the segments from the sorted list.
check for intersection between the neighboring
segments.

14 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Handling event points:
The event point is a lower endpoint of a segment:

Remove the segments from the sorted list.
check for intersection between the neighboring
segments.

sk sl sm `

14 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
A data structure for handling event:
We need an event queue Q such that:

1 find and removes the next event that will occur
from Q. If two event points have the same
y-coordinate, then the one with smaller x-coordinate
will be returned.

2 Insert an event point in Q. An insertion must be able
to check whether an event is already present in Q.

15 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
A data structure for handling event:
We need an event queue Q such that:

1 find and removes the next event that will occur
from Q. If two event points have the same
y-coordinate, then the one with smaller x-coordinate
will be returned.

2 Insert an event point in Q. An insertion must be able
to check whether an event is already present in Q.

15 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Implementation of the event queue:

1 Define an order ≺ on event points: p ≺ q if and only if
py > qy holds or py = qy and px < qx holds.

2 We store the event points in a balanced binary
search tree, ordered according to ≺.

3 Fetching the next event and inserting an event and
testing whether a given event is already present in Q
take O(logm) time, where m is the number of events
in Q.

16 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Implementation of the event queue:

1 Define an order ≺ on event points: p ≺ q if and only if
py > qy holds or py = qy and px < qx holds.

2 We store the event points in a balanced binary
search tree, ordered according to ≺.

3 Fetching the next event and inserting an event and
testing whether a given event is already present in Q
take O(logm) time, where m is the number of events
in Q.

16 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Implementation of the event queue:

1 Define an order ≺ on event points: p ≺ q if and only if
py > qy holds or py = qy and px < qx holds.

2 We store the event points in a balanced binary
search tree, ordered according to ≺.

3 Fetching the next event and inserting an event and
testing whether a given event is already present in Q
take O(logm) time, where m is the number of events
in Q.

16 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
To maintain the sorted list of segments (status of the
algorithm):

1 The status structure must be dynamic: segments
must be inserted into or deleted from the structure.

2 We use a balanced binary search tree as status
structure.

3 At each internal node, we store the segment from the
rightmost leaf in its left subtree.

17 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
To maintain the sorted list of segments (status of the
algorithm):

1 The status structure must be dynamic: segments
must be inserted into or deleted from the structure.

2 We use a balanced binary search tree as status
structure.

3 At each internal node, we store the segment from the
rightmost leaf in its left subtree.

si sj sk sl sm `

T sk

si sl

si
sj

sj sk

sl sm

17 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
To maintain the sorted list of segments (status of the
algorithm):

1 The status structure must be dynamic: segments
must be inserted into or deleted from the structure.

2 We use a balanced binary search tree as status
structure.

3 At each internal node, we store the segment from the
rightmost leaf in its left subtree.

si sj sk sl sm `

T sk

si sl

si
sj

sj sk

sl sm

17 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
To search in T for the segment immediately to the
left of some point p:

1 Traverse the tree until you meet a leaf.
2 This leaf, or the leaf immediately to the left of it,

stores the segment we are searching for.
3 Therefore each update and neighbor search

operation takes O(log n) time.

18 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
To search in T for the segment immediately to the
left of some point p:

1 Traverse the tree until you meet a leaf.
2 This leaf, or the leaf immediately to the left of it,

stores the segment we are searching for.
3 Therefore each update and neighbor search

operation takes O(log n) time.

si sj sk sl sm `

T sk

si sl

si
sj

sj sk

sl sm

18 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm

Algorithm FINDINTERSECTIONS(S)
Input: A set S of line segments in the plane.
Output: The set of intersection points among the

segments in S, with for each intersection point the
segments that contain it.

1. Initialize an empty event queue Q. Next, insert the
segment endpoints into Q; when an upper endpoint
is inserted, the corresponding segment should be
stored with it.

2. Initialize an empty status structure T .
3. while Q is not empty
4. Determine the next event point p in Q and

delete it.
5. HANDLEEVENTPOINT(p)

19 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Algorithm HANDLEEVENTPOINT(p)
1. U(p)←segments whose upper endpoint is p;
2. Find all segments stored in T that contain p;

L(p)←segments found whose lower endpoint is p;
C(p)←segments found that contain p in their interior.

3. if |L(p) ∪ U(p) ∪ C(p)| > 1
4. then Report p as an intersection, together with

L(p), U(p), and C(p).
5. Delete the segments in L(p) ∪ C(p) from T .
6. Insert the segments in U(p) ∪ C(p) into T .
7. if U(p) ∪ C(p) == ∅
8. then sl and sr ←the left and right neighbors of p in T .
9. FINDNEWEVENT(sl, sr, p)
10. else s′←the leftmost segment of U(p) ∪ C(p) in T .

sl←the left neighbor of s′ in T .
11. FINDNEWEVENT(sl, s

′, p)
12. s′′←the rightmost segment of U(p) ∪ C(p) in T .
13. sr ←the right neighbor of s′′ in T .
14. FINDNEWEVENT(s′′, sr, p)

20 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm

Algorithm FINDNEWEVENT(sl, sr, p)
1. if sl and sr intersect below the sweep line, or on it

and to the right of the current event point p, and the
intersection is not yet present as an event in Q

2. then Insert the intersection point as an event
into Q.

21 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm

T

s1
s3

s8

`

s1
s2

s3

s7

s5

s4

T

s1

s1

s1

s1

s3

s3

s3

s3

s4

s4s5

s5

s2

s7

s7

s7

s7

s8

s8

s2

22 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.2
Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
p: An intersection point.
Induction hypothesis: All intersection points q ≺ p
have been computed correctly.
Claim: p is computed correctly.
Case 1: p is an endpoint of one or more of the
segments.
Easy!
Case 2: p is NOT an endpoint.
We show that p will be inserted into Q at some
moment.
Following the proof of Lemma 2.1.

23 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.2
Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
p: An intersection point.
Induction hypothesis: All intersection points q ≺ p
have been computed correctly.
Claim: p is computed correctly.
Case 1: p is an endpoint of one or more of the
segments.
Easy!
Case 2: p is NOT an endpoint.
We show that p will be inserted into Q at some
moment.
Following the proof of Lemma 2.1.

23 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.2
Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
p: An intersection point.
Induction hypothesis: All intersection points q ≺ p
have been computed correctly.
Claim: p is computed correctly.
Case 1: p is an endpoint of one or more of the
segments.
Easy!
Case 2: p is NOT an endpoint.
We show that p will be inserted into Q at some
moment.
Following the proof of Lemma 2.1.

23 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.2
Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
p: An intersection point.
Induction hypothesis: All intersection points q ≺ p
have been computed correctly.
Claim: p is computed correctly.
Case 1: p is an endpoint of one or more of the
segments.
Easy!
Case 2: p is NOT an endpoint.
We show that p will be inserted into Q at some
moment.
Following the proof of Lemma 2.1.

23 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.2
Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
p: An intersection point.
Induction hypothesis: All intersection points q ≺ p
have been computed correctly.
Claim: p is computed correctly.
Case 1: p is an endpoint of one or more of the
segments.
Easy!
Case 2: p is NOT an endpoint.
We show that p will be inserted into Q at some
moment.
Following the proof of Lemma 2.1.

23 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.2
Algorithm FINDINTERSECTIONS computes all intersection
points and the segments that contain it correctly.

Proof. (By induction on priority of points)
p: An intersection point.
Induction hypothesis: All intersection points q ≺ p
have been computed correctly.
Claim: p is computed correctly.
Case 1: p is an endpoint of one or more of the
segments.
Easy!
Case 2: p is NOT an endpoint.
We show that p will be inserted into Q at some
moment.
Following the proof of Lemma 2.1.

23 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
Constructing the event queue on the segment
endpoints: O(n log n) time.
Initializing the status structure: O(1) time.
Deletions and insertions on Q: O(log n) time each.
Insert, delete, and neighbor finding on T : O(log n)
time each.
#oper. for p: O(m(p)) (m(p) := card (L(p) ∪ U(p) ∪ C(p))

If m =
∑

pm(p) then complexity= O(m log n).
m = O(n + k). (k : output size (points+lines)).

24 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
(Claim:) m = O(n + I). (I : # intersections).
Consider the segments as a planar graph.
nv : # vertices, ne : # edges, nf : #faces
m(p) = degree(p)⇒ m =

∑
pm(p) = 2ne.

nv ≤ 2n + I, nf ≤ 2ne/3

Euler’s Formula: nv − ne + nf ≥ 2.
2 ≤ nv − ne + nf

≤ 2n + I − ne + 2ne/3

⇒ ne ≤ 6n + 3I − 6⇒ m ≤ 12n + 6I − 12.

25 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
(Claim:) m = O(n + I). (I : # intersections).
Consider the segments as a planar graph.
nv : # vertices, ne : # edges, nf : #faces
m(p) = degree(p)⇒ m =

∑
pm(p) = 2ne.

nv ≤ 2n + I, nf ≤ 2ne/3

Euler’s Formula: nv − ne + nf ≥ 2.
2 ≤ nv − ne + nf

≤ 2n + I − ne + 2ne/3

⇒ ne ≤ 6n + 3I − 6⇒ m ≤ 12n + 6I − 12.

Θ(n) line segments

k ∈ Θ(n2)

I ∈ Θ(1)

25 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
(Claim:) m = O(n + I). (I : # intersections).
Consider the segments as a planar graph.
nv : # vertices, ne : # edges, nf : #faces
m(p) = degree(p)⇒ m =

∑
pm(p) = 2ne.

nv ≤ 2n + I, nf ≤ 2ne/3
Euler’s Formula: nv − ne + nf ≥ 2.

2 ≤ nv − ne + nf

≤ 2n + I − ne + 2ne/3

⇒ ne ≤ 6n + 3I − 6⇒ m ≤ 12n + 6I − 12.

edge

vertex

face

disconnected
subdivision

25 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
(Claim:) m = O(n + I). (I : # intersections).
Consider the segments as a planar graph.
nv : # vertices, ne : # edges, nf : #faces
m(p) = degree(p)⇒ m =

∑
pm(p) = 2ne.

nv ≤ 2n + I, nf ≤ 2ne/3

Euler’s Formula: nv − ne + nf ≥ 2.
2 ≤ nv − ne + nf

≤ 2n + I − ne + 2ne/3

⇒ ne ≤ 6n + 3I − 6⇒ m ≤ 12n + 6I − 12.

25 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
(Claim:) m = O(n + I). (I : # intersections).
Consider the segments as a planar graph.
nv : # vertices, ne : # edges, nf : #faces
m(p) = degree(p)⇒ m =

∑
pm(p) = 2ne.

nv ≤ 2n + I, nf ≤ 2ne/3

Euler’s Formula: nv − ne + nf ≥ 2.
2 ≤ nv − ne + nf

≤ 2n + I − ne + 2ne/3

⇒ ne ≤ 6n + 3I − 6⇒ m ≤ 12n + 6I − 12.

25 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
(Claim:) m = O(n + I). (I : # intersections).
Consider the segments as a planar graph.
nv : # vertices, ne : # edges, nf : #faces
m(p) = degree(p)⇒ m =

∑
pm(p) = 2ne.

nv ≤ 2n + I, nf ≤ 2ne/3

Euler’s Formula: nv − ne + nf ≥ 2.
2 ≤ nv − ne + nf

≤ 2n + I − ne + 2ne/3

⇒ ne ≤ 6n + 3I − 6⇒ m ≤ 12n + 6I − 12.

25 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Lemma 2.3
The running time of Algorithm FINDINTERSECTIONS is
O((n + I) log n), where I = # intersections.

Proof.
(Claim:) m = O(n + I). (I : # intersections).
Consider the segments as a planar graph.
nv : # vertices, ne : # edges, nf : #faces
m(p) = degree(p)⇒ m =

∑
pm(p) = 2ne.

nv ≤ 2n + I, nf ≤ 2ne/3

Euler’s Formula: nv − ne + nf ≥ 2.
2 ≤ nv − ne + nf

≤ 2n + I − ne + 2ne/3

⇒ ne ≤ 6n + 3I − 6⇒ m ≤ 12n + 6I − 12.

25 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Space Complexity:
O(n + I) (size of the event queue)
Can be improved to O(n): only store intersection
points of pairs of segments that are currently
adjacent on the sweep line.

26 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Space Complexity:
O(n + I) (size of the event queue)
Can be improved to O(n): only store intersection
points of pairs of segments that are currently
adjacent on the sweep line.

s1

`

s2
s3

s4

s5

26 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

Plane sweep algorithm
Theorem 2.4
Let S be a set of n line segments in the plane. All
intersection points in S, with for each intersection point
the segments involved in it, can be reported in
O(n log n + I log n) time and O(n) space, where I is the
number of intersection points.

27 / 28

Yazd Univ.

Computational
Geometry

Line Segment
Intersection
Motivation

Problem

Plane sweep algorithm

Lemma 2.2

Lemma 2.3

28 / 28

	Line Segment Intersection
	Motivation
	Problem
	Plane sweep algorithm
	Lemma 2.2
	Lemma 2.3

