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@ top facet

@ ordinary facet

the mold, which we denote by f.

Every ordinary facet f has a corresponding facet in
@ castable object
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The Geometry of Casting

Question:

Given an object P, can it be removed from its mold by a
single translation?

In other words, we want to decide whether a direction d
exists such that P can be translated to infinity in direction
d without intersecting the interior of the mold during the
translation.

Observation:

Every ordinary facet f must move away from, or slide
along, its corresponding facet f of the mold.
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measured in the plane determined by them.

The angle of the vectors is the smaller of the two angles
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P can be removed from its mold in direction d if and only

if d makes an angle of at least /2 with the outward
normal of all ordinary facets of P.
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By Lemma 4.1
@ ij = (7, 7y, 77-): outward normal of an ordinary facet

—

® d = (d;,d,,1): removal direction

° L(f,d)>7/2 — 7.d<0

@ 1y Xdyp+ 1y Xdy +17, <0

@ This inequality describe a half-plane in the plane
z= 1
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@ An object P is castable, for a fixed top facet < the
intersection of half-planes is non-empty.

@ If the intersection problem is solvable in O(A) time,
then the castability problem can be solved in O(An)
time.

@ We will solve the intersectbion problem in O(n)
expected time.

@ Theorem 4.2: In O(n?) expected time and using
O(n) storage it can be decided whether a polyhydron
with n facets is castable.
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Half-plane intersection problem

Problem:
@ Given aset H = {hy, ho, ..., h,} of half-planes, find
the intersection of them.
@ Given a set of n linear constraints in two variables, is
there a point in the plane, find all points that satisfy
all the constraints.

Note:

For casting problem, we do not need to find the
intersection of half-planes. Here we consider a more
general problem.
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@ Since a half-plane is convex, the intersection of

half-planes is convex.

@ Since the intersection is convex, every half-plane
bounding line can contribute at most one edge.

@ A few examples of intersections of half-planes:
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Computing the intersection of n half-planes @

An straightforward divide-and-conquer algorithm: .
’{;M}
Algorithm INTERSECTHALFPLANES(H) e Ui
Input. A set H of n half-planes in the plane. ,
. Computational
Output. The convex polygonal region C :=(,cq h. Geometry
1. ifcard(H) =1
2 then C < the unique half-plane h € H G i
3 else Split H into sets H; and H, of size [n/2] and |n/2]. et
4, C| + INTERSECTHALFPLANES(H) i':fgr_?e'iﬁin
5 C> < INTERSECTHALFPLANES(H>) problem
6 C <~ INTERSECTCONVEXREGIONS(C1,(5) Computing
intersection of two
convex polygons
Time complexity: Linear
Programming
Randomized Linear
0(1) I.I: n = 1 Programming

Tn) = { 9T(n/2) + O(nlogn) ifn>1
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Computing the intersection of n half-planes

An straightforward divide-and-conquer algorithm:

Algorithm INTERSECTHALFPLANES(H)
Input. A set H of n half-planes in the plane.
Output. The convex polygonal region C :=(,cq h.
if card(H) =1
then C « the unique half-plane h € H

else Split H into sets H; and H, of size [n/2] and |n/2].

C <~ INTERSECTHALFPLANES(H>)

1

2

3

4. Ci < INTERSECTHALFPLANES(H})

5

6 C <~ INTERSECTCONVEXREGIONS(C1,(5)

Time complexity:

o(1) itn—1
Tn) = { 9T(n/2) + O(nlogn) ifn>1

T(n) € O(nlog®n).
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Question: Can we compute the intersection of two convex
polygons in o(nlogn) time?
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Question: Can we compute the intersection of two convex
polygons in o(nlogn) time?
Answer: Yes, we can.
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hy
hy

right boundary

hy

left boundary

hs

Lieft(C) = h3,hy, hs
Liight(C) = ha, Iy

o F
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We use a plane sweep algorithm:

Note: At most 4 line segments intersect the sweep line.

G
left_edge_C2

left_edge_C1

right_edge_C2

right_edge_C1 = nil
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Computing intersection of two convex
polygons

At each event point some new edge e appears on the
boundary.

To handle the edge e: several cases: e belongs to C'1
or to C'2, and whether it is on the left or the right
boundary.

We consider the case when e is on the left boundary
of C1.

p: the upper endpoint of e.

Three case (based on C):

(1) the edge with p as upper endpoint,

(2) the edge with e N left_edge_C2 as upper
endpoint, and

(3) the edge with e N right_edge_C2 as upper
endpoint.
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(@

right_edge_C2

It performs the following actions.

(i)

right_edge_C2
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The intersection of two convex polygonal regions in the
plane can be computed in O(n) time.
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o(1)

The intersection of two convex polygonal regions in the
plane can be computed in O(n) time.

T(n) = {

2T (n/2) + O(n)

ifn=1
ifn>1
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o(1)

The intersection of two convex polygonal regions in the
plane can be computed in O(n) time.

T(n) = {

T(n) € O(nlogn).

2T (n/2) + O(n)

ifn=1
ifn>1
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Computing intersection of two convex
polygons

Theorem 4.3

The intersection of two convex polygonal regions in the
plane can be computed in O(n) time.

0() itn =1
T(n) = { 2T(n/2) +O(n) ifn>1

T(n) € O(nlogn).

Corollary 4.4

The common intersection of a set of n half-planes in the
plane can be computed in O(nlogn) time and linear
storage.
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Incremental Linear Programming

Previous Section:

@ We computed the intersection of n half-planes in
O(nlogn) time.

@ The problem has Q(nlogn) lower bound.

@ So, we cannot solve the casting problem faster in this
way.

@ Note that, for casting problem we only need to know
if the intersection is empty or not.

In this section:
An "expected" linear time algorithm presented to solve
the problem using linear programming.
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Maximize cyx1 + coxo + - - - + cqxq (Objective function)
Subject to

a1,1%1 + -+ -+ a1 4%4g < b
a2171 + - +agqrqg < by

an,lml Tt an,dwd S bn Computing
intersection of two
i |
(constraints) convex polygons
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Objective function:

f(ml, . ,:Ed) =c1o1 + Coxy + -+ - + cqrg = C.T.

c= (Cl,...,Cd),.'f= (xla"‘ "Ed)

feasible region

ol

solution
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@ H: n half-plane or in other words n linear constraints

@ fz(p): Objective function = c;p, + ¢ypy, € = (cz, cy),
p = Pz, Py)-

@ Goal: flnd p € R%s.t. pe NH and fz(p) is maximized.

(ii)
problem
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Unique Answer:

Lsolution
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Bound the feasible region: we add to half-plane to the set
of half-planes

[ pe<M e >0
"Z —p. <M Otherwise

— py <M ifc, >0
>7 1 —py <M Otherwise

Randomized Linear
Programming
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Linear Programming in R?

Bound the feasible region: we add to half-plane to the set
of half-planes

| pe <M if e, >0
=Y —p, < M Otherwise

_fpy <M ifc, >0
2= { —p, <M Otherwise
Notations:
@ (H,?): alinear program.
@ H; ={mi,ma, hi,ho,... h;}.
@ Ci=miNmaNhyNhyN---Nh;.
@ Clearly Cy D2 C1 2C, D ---C,, =C.
@ v;: the optimal solution for C;.

e If C; = (), for some i, then the problem is infeasible
(intersection is empty).
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We have
(I) If v;i_1 € h;, then Vi = Vj—1-

(ii) If v;—1 & hy, then either C; = () or v; € ¢;, where ¢; is
the line bounding h;.

Proof.

(i): Clear, since C; C C;_1.
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We have
(I) If v;i_1 € h;, then Vi = Vj—1-

(ii) If v;—1 & hy, then either C; = () or v; € ¢;, where ¢; is
the line bounding h;.

Proof.

(i): Clear, since C; C C;_1.
(i):
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@ Find the point p on ¢; that maximizes fz(p), subject to
the constraints p € h, for h € H; ;.

@ Maximize fz(z)
subject to
x> o(h,¢;), h € Hi_; and ¢; N h is bounded to the left
x <o(h,l;), h € Hi_; and ¢; N h is bounded to the
rlght Computing

intersection of two
convex polygons

Linear
Programming
h Randomized Linear
Programming
x < o(ht)
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Linear Programming in R?

incremental algorithm

1-dimensional linear program:

@ Maximize fz(x)
subject to
x > o(h,l;), h € H;_; and ¢; N h is bounded to the left
x <o(h,l;), h € Hi_; and ¢; N h is bounded to the
right

@ Tieft = hg}ixl{a(h, ¢;) : £; N his bounded to the left}

Lright = hgjlqin {O-(hvgz) :
i—1

¢; N h is bounded to the right}

Lemma 4.6

A 1-dimensional linear program can be solved in linear
time. Hence, if case (ii) of Lemma 4.5 arises, then we can
compute v;, in O(z) time.
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BN EhgR Y 9 =

go =

Let vg be the corner of Cj.
Let Ay, ..., h, be the half-planes of H.
fori< 1ton
doif v, € h;
then v; < v;
else v; <the point p on ¢; that maximizes fz(p), subject to the
constraints in H;_;.
if p does not exist

then Report that the linear program is infeasible and quit.

return v,
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Linear Programming in R?

incremental algorithm

2DBOUNDEDLP Algorithm:

1. Let vy be the corner of Cj.

2. Lethy,...,h, be the half-planes of H.

3. fori<1ton

4. doifv;, | €h;

5. then v; < v;_;

6. else v; +the point p on ¢; that maximizes fz(p), subject to the
constraints in H;_ .

7. if p does not exist

8. then Report that the linear program is infeasible and quit.

9. returnv,

Lemma 4.7

Algorithm 2DBOUNDEDLP computes the solution to a
bounded linear program with n constraints and two
variables in O(n?) time and linear storage.
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A bad case:
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Use randomness to avoid bad cases.

Algorithm 2DRANDOMIZEDBOUNDEDLP(H, ¢, m),n;)

Input. A linear program (H U {m,m;},¢), where H is a set of n half-planes,
¢ € R?, and m, m» bound the solution.

Output. If (HU{m;,ms},¢) is infeasible, then this fact is reported. Otherwise,
the lexicographically smallest point p that maximizes fz(p) is reported.

1. Let vy be the corner of Cj.

2. Compute a random permutation hy,...,h, of the half-planes by calling
RANDOMPERMUTATION(H|1 - - - n]).
A convex polygons
3. fori+1ton }
0 Inear
4. doifv,_ | €h; Programming
5. then v; < v;_| Randomized Linear
6. else v; <the point p on ¢; that maximizes fz(p), subject to the Frogramming
constraints in H;_j.
7. if p does not exist
8. then Report that the linear program is infeasible and quit.

9. returnv,
[m] = = =

nae
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Proof.

X'_{ 1 ifvi_lg,{hi
10

The 2-dimensional linear programming problem with n

constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

otherwise
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Proof.

=

1
0

if vi_1 & h;

The 2-dimensional linear programming problem with n

constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

Total time = » ~(O(i) x X;)

E(Total time)

1=

n

1

n

1

otherwise

= E (Z((’)(i) X Xi))
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The 2-dimensional linear programming problem with n

constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

Proof (Cont.). Any upper bound for E(z;)?
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The 2-dimensional linear programming problem with n

constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

Proof (Cont.). Any upper bound for E(z;)?
E(X;) =

= P?"(Ui_l ¢ hz)
<

= (by backward analysis)
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time using worst-case linear storage.

The 2-dimensional linear programming problem with n
constraints can be solved in O(n) randomized expected

Proof (Cont.). Any upper bound for E(z;)?
E(Xi) = Pr(vi-1 ¢ hi)

< (by backward analysis)

=N

E(Total time) = zn:((’)(i)xE(Xi))
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Backward Analysis: Why Pr(v;_; & h;) < 27?
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Backward Analysis: Why Pr(v;_; & h;) < 27?
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