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The Geometry of Casting

top facet
ordinary facet
Every ordinary facet f has a corresponding facet in
the mold, which we denote by f̂ .
castable object

top facet
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The Geometry of Casting

Question:
Given an object P , can it be removed from its mold by a
single translation?
In other words, we want to decide whether a direction ~d
exists such that P can be translated to infinity in direction
~d without intersecting the interior of the mold during the
translation.

Observation:
Every ordinary facet f must move away from, or slide
along, its corresponding facet f̂ of the mold.
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The Geometry of Casting

Angle between two vectors in 3d:
The angle of the vectors is the smaller of the two angles
measured in the plane determined by them.
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Lemma 4.1
P can be removed from its mold in direction d if and only
if d makes an angle of at least π/2 with the outward
normal of all ordinary facets of P .

p

P

~η( f̂ )

~d

f
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1-1 corresponding between direction and
points

z

x

y

z = 1
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By Lemma 4.1
~η = (~ηx, ~ηy, ~ηz): outward normal of an ordinary facet
~d = (dx, dy, 1): removal direction

∠(~η, ~d) ≥ π/2 ⇐⇒ ~η.~d ≤ 0

~ηx × dx + ~ηy × dy + ~ηz ≤ 0

This inequality describe a half-plane in the plane
z = 1.
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An object P is castable, for a fixed top facet ⇐⇒ the
intersection of half-planes is non-empty.
If the intersection problem is solvable in O(A) time,
then the castability problem can be solved in O(An)
time.
We will solve the intersect5ion problem in O(n)
expected time.
Theorem 4.2: In O(n2) expected time and using
O(n) storage it can be decided whether a polyhydron
with n facets is castable.
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Half-plane intersection problem

Problem:
Given a set H = {h1, h2, . . . , hn} of half-planes, find
the intersection of them.
Given a set of n linear constraints in two variables, is
there a point in the plane, find all points that satisfy
all the constraints.

Note:
For casting problem, we do not need to find the
intersection of half-planes. Here we consider a more
general problem.
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Half-plane intersection problem

Observations:
Since a half-plane is convex, the intersection of
half-planes is convex.
Since the intersection is convex, every half-plane
bounding line can contribute at most one edge.
A few examples of intersections of half-planes:

(i) (ii) (iii)

(iv) (v)
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Computing the intersection of n half-planes

An straightforward divide-and-conquer algorithm:

Section 4.2
HALF-PLANE INTERSECTION

line a half-plane lies is indicated by dark shading in the figure; the common
intersection is shaded lightly. As you can see in Figures 4.2 (ii) and (iii), the

(i) (ii) (iii)

(iv) (v)

Figure 4.2
Examples of the intersection of
half-planes

intersection does not have to be bounded. The intersection can also degenerate
to a line segment or a point, as in (iv), or it can be empty, as in (v).

We give a rather straightforward divide-and-conquer algorithm to compute the
intersection of a set of n half-planes. It is based on a routine INTERSECTCON-
VEXREGIONS to compute the intersection of two convex polygonal regions. We
first give the overall algorithm.

Algorithm INTERSECTHALFPLANES(H)
Input. A set H of n half-planes in the plane.
Output. The convex polygonal region C :=

⋂
h∈H h.

1. if card(H) = 1
2. then C ← the unique half-plane h ∈ H
3. else Split H into sets H1 and H2 of size �n/2� and �n/2
.
4. C1 ←INTERSECTHALFPLANES(H1)
5. C2 ←INTERSECTHALFPLANES(H2)
6. C ←INTERSECTCONVEXREGIONS(C1,C2)

What remains is to describe the procedure INTERSECTCONVEXREGIONS. But
wait—didn’t we see this problem before, in Chapter 2? Indeed, Corollary 2.7
states that we can compute the intersection of two polygons in O(n logn+
k logn) time, where n is the total number of vertices in the two polygons. We
must be a bit careful in applying this result to our problem, because the regions
we have can be unbounded, or degenerate to a segment or a point. Hence,
the regions are not necessarily polygons. But it is not difficult to modify the
algorithm from Chapter 2 so that it still works.

Let’s analyze this approach. Assume we have already computed the two regions
C1 and C2 by recursion. Since they are both defined by at most n/2+ 1 half-
planes, they both have at most n/2+1 edges. The algorithm from Chapter 2
computes their overlay in time O((n + k) logn), where k is the number of
intersection points between edges of C1 and edges of C2. What is k? Look 67

Time complexity:

T (n) =

{
O(1) if n = 1
2T (n/2) +O(n log n) if n > 1

T (n) ∈ O(n log2 n).
12 / 36
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Computing the intersection of n half-planes

Question: Can we compute the intersection of two convex
polygons in o(n log n) time?
Answer: Yes, we can.

v
e1

e2
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Computing intersection of two convex
polygons

Lleft(C) = h3,h4,h5

Lright(C) = h2,h1

h1

h2

h3

h4

h5
left boundary

right boundary
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Computing intersection of two convex
polygons

We use a plane sweep algorithm:
Note: At most 4 line segments intersect the sweep line.

C2
C1

left edge C1

right edge C1 = nil
left edge C2

right edge C2
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Computing intersection of two convex
polygons

At each event point some new edge e appears on the
boundary.
To handle the edge e: several cases: e belongs to C1
or to C2, and whether it is on the left or the right
boundary.
We consider the case when e is on the left boundary
of C1.
p: the upper endpoint of e.
Three case (based on C):
(1) the edge with p as upper endpoint,
(2) the edge with e ∩ left_edge_C2 as upper
endpoint, and
(3) the edge with e ∩ right_edge_C2 as upper
endpoint.
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Computing intersection of two convex
polygons

It performs the following actions.

right edge C2

(i) (ii)

e

e right edge C2

p p
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Computing intersection of two convex
polygons

e

left edge C2

p
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Computing intersection of two convex
polygons

Theorem 4.3
The intersection of two convex polygonal regions in the
plane can be computed in O(n) time.

T (n) =

{
O(1) if n = 1
2T (n/2) +O(n) if n > 1

T (n) ∈ O(n log n).

Corollary 4.4
The common intersection of a set of n half-planes in the
plane can be computed in O(n log n) time and linear
storage.
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Incremental Linear Programming

Previous Section:
We computed the intersection of n half-planes in
O(n log n) time.
The problem has Ω(n log n) lower bound.
So, we cannot solve the casting problem faster in this
way.
Note that, for casting problem we only need to know
if the intersection is empty or not.

In this section:
An "expected" linear time algorithm presented to solve
the problem using linear programming.
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Incremental Linear Programming

Linear optimization problem:
Maximize c1x1 + c2x2 + · · ·+ cdxd (objective function)
Subject to

a1,1x1 + · · ·+ a1,dxd ≤ b1

a2,1x1 + · · ·+ a2,dxd ≤ b2
...

an,1x1 + · · ·+ an,dxd ≤ bn

(constraints)
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Linear optimization problem:
Objective function:
f(x1, . . . , xd) = c1x1 + c2x2 + · · ·+ cdxd = ~c.~x.
~c = (c1, . . . , cd), ~x = (x1, . . . , xd).

feasible region

~c

solution
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Linear Programming in R2

LP in the plane:
H: n half-plane or in other words n linear constraints
f~c(p): Objective function = cxpx + cypy, ~c = (cx, cy),
p = (px, py).
Goal: find p ∈ R2 s.t. p ∈ ∩H and f~c(p) is maximized.

Cases: (i) (ii)

(iii) (iv)

v
e

ρ
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Unique Answer:

solution
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Linear Programming in R2

Bound the feasible region: we add to half-plane to the set
of half-planes

m1 =

{
px ≤M if cx > 0
−px ≤M Otherwise

m2 =

{
py ≤M if cy > 0
−py ≤M Otherwise

Notations:
(H,~c): a linear program.
Hi = {m1,m2, h1, h2, . . . , hi}.
Ci = m1 ∩m2 ∩ h1 ∩ h2 ∩ · · · ∩ hi.
Clearly C0 ⊇ C1 ⊇ C2 ⊇ · · ·Cn = C.
vi: the optimal solution for Ci.
If Ci = ∅, for some i, then the problem is infeasible
(intersection is empty).
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incremental algorithm

Lemma 4.5
We have
(i) If vi−1 ∈ hi, then vi = vi−1.
(ii) If vi−1 6∈ hi, then either Ci = ∅ or vi ∈ `i, where `i is
the line bounding hi.

Proof.
(i): Clear, since Ci ⊆ Ci−1.
(ii):

vi

vi−1

q

Ci−1
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incremental algorithm

(i) (ii)

~c

v4 = v5

h1 h2

h3

h4

h5

v6
v5

h6
h5 h3

h4

h2h1
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incremental algorithm

New Simpler problem:
Find the point p on `i that maximizes f~c(p), subject to
the constraints p ∈ h, for h ∈ Hi−1.
Maximize f~c(x)
subject to
x ≥ σ(h, `i), h ∈ Hi−1 and `i ∩h is bounded to the left
x ≤ σ(h, `i), h ∈ Hi−1 and `i ∩ h is bounded to the
right

`i

h

x≤ σ(h, `i)

σ(h, `i)
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incremental algorithm

1-dimensional linear program:
Maximize f~c(x)
subject to
x ≥ σ(h, `i), h ∈ Hi−1 and `i ∩h is bounded to the left
x ≤ σ(h, `i), h ∈ Hi−1 and `i ∩ h is bounded to the
right
xleft = max

h∈Hi−1

{σ(h, `i) : `i ∩ h is bounded to the left}
xright = min

h∈Hi−1

{σ(h, `i) :

`i ∩ h is bounded to the right}

Lemma 4.6
A 1-dimensional linear program can be solved in linear
time. Hence, if case (ii) of Lemma 4.5 arises, then we can
compute vi, in O(i) time.
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2DBOUNDEDLP Algorithm:

Chapter 4
LINEAR PROGRAMMING

1. Let v0 be the corner of C0.
2. Let h1, . . . ,hn be the half-planes of H.
3. for i ← 1 to n
4. do if vi−1 ∈ hi
5. then vi ← vi−1
6. else vi ←the point p on �i that maximizes f�c(p), subject to the

constraints in Hi−1.
7. if p does not exist
8. then Report that the linear program is infeasible and quit.
9. return vn

We now analyze the performance of our algorithm.

Lemma 4.7 Algorithm 2DBOUNDEDLP computes the solution to a bounded

linear program with n constraints and two variables in O(n2) time and linear

storage.

Proof. To prove that the algorithm correctly finds the solution, we have to show
that after every stage—whenever we have added a new half-plane hi—the point
vi is still the optimum point for Ci. This follows immediately from Lemma 4.5.
If the 1-dimensional linear program on �i is infeasible, then Ci is empty, and
consequently C = Cn ⊆ Ci is empty, which means that the linear program is
infeasible.

It is easy to see that the algorithm requires only linear storage. We add the
half-planes one by one in n stages. The time spent in stage i is dominated by the
time to solve a 1-dimensional linear program in line 6, which is O(i). Hence,
the total time needed is bounded by

n

∑
i=1

O(i) = O(n2).

Although our linear programming algorithm is nice and simple, its running
time is disappointing—the algorithm is much slower than the previous algorithm,
which computed the whole feasible region. Is our analysis too crude? We
bounded the cost of every stage i by O(i). This is not always a tight bound:
Stage i takes Θ(i) time only when vi−1 �∈ hi; when vi−1 ∈ hi then stage i takes
constant time. So if we could bound the number of times the optimal vertex
changes, we might be able to prove a better running time. Unfortunately the

h1

h2

h3

h4

h5

hn

v2

vn

v5
v4

v3

�c

optimum vertex can change n times: there are orders for some configurations
where every new half-plane makes the previous optimum illegal. The figure in
the margin shows such an example. This means that the algorithm will really
spend Θ(n2) time. How can we avoid this nasty situation?

4.4 Randomized Linear Programming

If we have a second look at the example where the optimum changes n times,
we see that the problem is not so much that the set of half-planes is bad. If we76

Lemma 4.7
Algorithm 2DBOUNDEDLP computes the solution to a
bounded linear program with n constraints and two
variables in O(n2) time and linear storage.
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time to solve a 1-dimensional linear program in line 6, which is O(i). Hence,
the total time needed is bounded by

n

∑
i=1

O(i) = O(n2).

Although our linear programming algorithm is nice and simple, its running
time is disappointing—the algorithm is much slower than the previous algorithm,
which computed the whole feasible region. Is our analysis too crude? We
bounded the cost of every stage i by O(i). This is not always a tight bound:
Stage i takes Θ(i) time only when vi−1 �∈ hi; when vi−1 ∈ hi then stage i takes
constant time. So if we could bound the number of times the optimal vertex
changes, we might be able to prove a better running time. Unfortunately the
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h3

h4

h5

hn

v2

vn

v5
v4

v3

�c

optimum vertex can change n times: there are orders for some configurations
where every new half-plane makes the previous optimum illegal. The figure in
the margin shows such an example. This means that the algorithm will really
spend Θ(n2) time. How can we avoid this nasty situation?

4.4 Randomized Linear Programming

If we have a second look at the example where the optimum changes n times,
we see that the problem is not so much that the set of half-planes is bad. If we76

Lemma 4.7
Algorithm 2DBOUNDEDLP computes the solution to a
bounded linear program with n constraints and two
variables in O(n2) time and linear storage.
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Randomized algorithms
Use randomness to avoid bad cases.

Section 4.4
RANDOMIZED LINEAR

PROGRAMMING

had added them in the order hn, hn−1, . . . , h3, then the optimal vertex would not
change anymore after the addition of hn. In this case the running time would be
O(n). Is this a general phenomenon? Is it true that, for any set H of half-planes,
there is a good order to treat them? The answer to this question is “yes,” but
that doesn’t seem to help us much. Even if such a good order exists, there
seems to be no easy way to actually find it. Remember that we have to find the
order at the beginning of the algorithm, when we don’t know anything about
the intersection of the half-planes yet.

We now meet a quite intriguing phenomenon. Although we have no way to
determine an ordering of H that is guaranteed to lead to a good running time,
we have a very simple way out of our problem. We simply pick a random
ordering of H. Of course, we could have bad luck and pick an order that leads
to a quadratic running time. But with some luck, we pick an order that makes it
run much faster. Indeed, we shall prove below that most orders lead to a fast
algorithm. For completeness, we first repeat the algorithm.

Algorithm 2DRANDOMIZEDBOUNDEDLP(H,�c,m1,m2)
Input. A linear program (H ∪{m1,m2},�c), where H is a set of n half-planes,
�c ∈ R2, and m1, m2 bound the solution.

Output. If (H ∪{m1,m2},�c) is infeasible, then this fact is reported. Otherwise,
the lexicographically smallest point p that maximizes f�c(p) is reported.

1. Let v0 be the corner of C0.
2. Compute a random permutation h1, . . . ,hn of the half-planes by calling

RANDOMPERMUTATION(H[1 · · ·n]).
3. for i ← 1 to n
4. do if vi−1 ∈ hi
5. then vi ← vi−1
6. else vi ←the point p on �i that maximizes f�c(p), subject to the

constraints in Hi−1.
7. if p does not exist
8. then Report that the linear program is infeasible and quit.
9. return vn

The only difference from the previous algorithm is in line 2, where we put the
half-planes in random order before we start adding them one by one. To be able
to do this, we assume that we have a random number generator, RANDOM(k),
which has an integer k as input and generates a random integer between 1 and k
in constant time. Computing a random permutation can then be done with the
following linear time algorithm.

Algorithm RANDOMPERMUTATION(A)
Input. An array A[1 · · ·n].
Output. The array A[1 · · ·n] with the same elements, but rearranged into a

random permutation.
1. for k ← n downto 2
2. do rndindex ←RANDOM(k)
3. Exchange A[k] and A[rndindex]. 77
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Lemma 4.8
The 2-dimensional linear programming problem with n
constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

Proof. Xi =

{
1 if vi−1 6∈ hi
0 otherwise

Total time =

n∑

i=1

(O(i)×Xi)

E(Total time) = E

(
n∑

i=1

(O(i)×Xi)

)

=

n∑

i=1

(O(i)× E(Xi)).
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Lemma 4.8
The 2-dimensional linear programming problem with n
constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

Proof (Cont.). Any upper bound for E(xi)?

E(Xi) = Pr(vi−1 6∈ hi)
≤ 2

i
(by backward analysis)

E(Total time) =

n∑

i=1

(O(i)× E(Xi))

≤
n∑

i=1

(
O(i)× 2

i

)
∈ O(n).
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