

Linear Programming- Manufacturing with Molds

1395-2

Computational Geometry

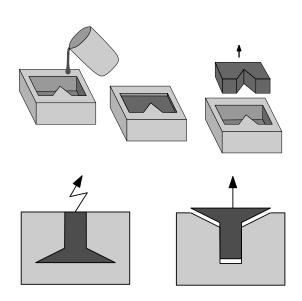
Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear

Casting process



Computational Geometry

Manufacturing with Molds

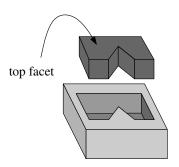
Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

The Geometry of Casting

- top facet
- ordinary facet f has a corresponding facet in the mold, which we denote by \hat{f} .
- castable object



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear

The Geometry of Casting

Question:

Given an object P, can it be removed from its mold by a single translation?

In other words, we want to decide whether a direction \vec{d} exists such that P can be translated to infinity in direction \vec{d} without intersecting the interior of the mold during the translation.

Observation:

Every ordinary facet f must move away from, or slide along, its corresponding facet \hat{f} of the mold.

Computational Geometry

Manufacturing with Molds

> Half-plane intersection problem

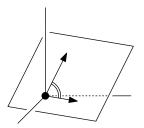
Computing intersection of two convex polygons

Linear Programming

The Geometry of Casting

Angle between two vectors in 3d:

The angle of the vectors is the smaller of the two angles measured in the plane determined by them.



Computational Geometry

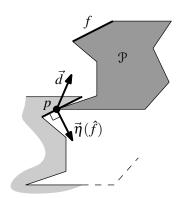
Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Lemma 4.1

P can be removed from its mold in direction d if and only if d makes an angle of at least $\pi/2$ with the outward normal of all ordinary facets of P.



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear

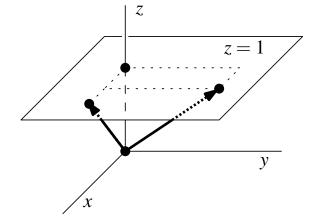
1-1 corresponding between direction and points

Manufacturing with Molds

intersection of two convex polygons

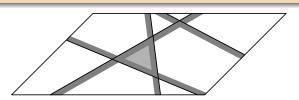
Linear Programming

Randomized Linear



By Lemma 4.1

- $\vec{\eta} = (\vec{\eta}_x, \vec{\eta}_y, \vec{\eta}_z)$: outward normal of an ordinary facet
- $\vec{d} = (d_x, d_y, 1)$: removal direction
- $\angle(\vec{\eta}, \vec{d}) \ge \pi/2 \iff \vec{\eta}.\vec{d} \le 0$
- $\vec{\eta}_x \times d_x + \vec{\eta}_y \times d_y + \vec{\eta}_z \le 0$
- This inequality describe a half-plane in the plane
 z = 1.



Computational Geometry

Manufacturing with Molds

Half-plane intersection

Computing intersection of two convex polygons

Linear Programming

- An object P is castable, for a fixed top facet ←⇒ the intersection of half-planes is non-empty.
- If the intersection problem is solvable in $\mathcal{O}(A)$ time, then the castability problem can be solved in $\mathcal{O}(An)$ time.
- We will solve the intersect5ion problem in $\mathcal{O}(n)$ expected time.
- Theorem 4.2: In $\mathcal{O}(n^2)$ expected time and using $\mathcal{O}(n)$ storage it can be decided whether a polyhydron with n facets is castable.

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear

Half-plane intersection problem

Problem:

- Given a set $H = \{h_1, h_2, \dots, h_n\}$ of half-planes, find the intersection of them.
- Given a set of n linear constraints in two variables, is there a point in the plane, find all points that satisfy all the constraints.

Note:

For casting problem, we do not need to find the intersection of half-planes. Here we consider a more general problem.

Computational Geometry

Manufacturing with

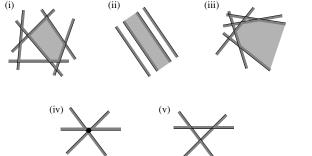
Half-plane intersection problem

Computing intersection of two convex polygons

Half-plane intersection problem

Observations:

- Since a half-plane is convex, the intersection of half-planes is convex.
- Since the intersection is convex, every half-plane bounding line can contribute at most one edge.
- A few examples of intersections of half-planes:



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

An straightforward divide-and-conquer algorithm:

Algorithm IntersectHalfplanes(H)

Input. A set *H* of *n* half-planes in the plane.

Output. The convex polygonal region $C := \bigcap_{h \in H} h$.

- 1. **if** $\operatorname{card}(H) = 1$
- 2. **then** $C \leftarrow$ the unique half-plane $h \in H$
- 3. **else** Split *H* into sets H_1 and H_2 of size $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$.
- 4. $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$
- 5. $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$
- 6. $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$

Time complexity:

$$T(n) = \left\{ \begin{array}{ll} \mathcal{O}(1) & \text{if } n = 1 \\ 2T(n/2) + \mathcal{O}(n\log n) & \text{if } n > 1 \end{array} \right.$$

 $T(n) \in \mathcal{O}(n\log^2 n)$.

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

An straightforward divide-and-conquer algorithm:

Algorithm IntersectHalfplanes(H)

Input. A set H of n half-planes in the plane.

Output. The convex polygonal region $C := \bigcap_{h \in H} h$.

- 1. **if** $\operatorname{card}(H) = 1$
- 2. **then** $C \leftarrow$ the unique half-plane $h \in H$
- 3. **else** Split *H* into sets H_1 and H_2 of size $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$.
- 4. $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$
- 5. $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$
- 6. $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$

Time complexity:

$$T(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ 2T(n/2) + \mathcal{O}(n\log n) & \text{if } n > 1 \end{cases}$$

$$T(n) \in \mathcal{O}(n \log^2 n)$$
.

Computational Geometry

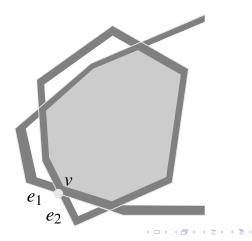
Manufacturing with Molds

Half-plane intersection problem

intersection of two convex polygons

Question: Can we compute the intersection of two convex polygons in $o(n \log n)$ time?

Answer: Yes, we can.



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

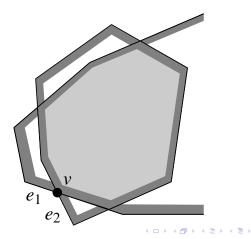
Computing intersection of two convex polygons

Linear Programming Randomized Linear

Question: Can we compute the intersection of two convex

polygons in $o(n \log n)$ time?

Answer: Yes, we can.



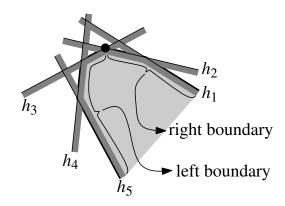
Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear



$$\mathcal{L}_{\text{left}}(C) = h_3, h_4, h_5$$

$$\mathcal{L}_{\text{right}}(C) = h_2, h_1$$

Computational Geometry

Manufacturing with Molds

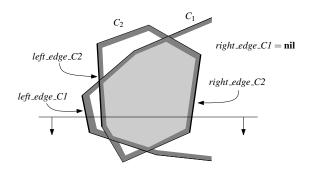
Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear

We use a plane sweep algorithm:

Note: At most 4 line segments intersect the sweep line.



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

- المرابع المرا
- At each event point some new edge e appears on the boundary.
- To handle the edge e: several cases: e belongs to C1
 or to C2, and whether it is on the left or the right
 boundary.
- We consider the case when e is on the left boundary of C1.

p: the upper endpoint of e.

Three case (based on C):

- (1) the edge with p as upper endpoint,
- (2) the edge with $e \cap left_edge_C2$ as upper endpoint, and
- (3) the edge with $e \cap right_edge_C2$ as upper endpoint.

Computational Geometry

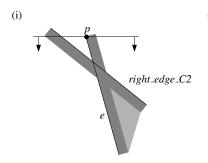
Manufacturing with Molds

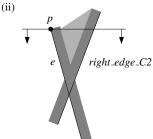
Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

It performs the following actions.





Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

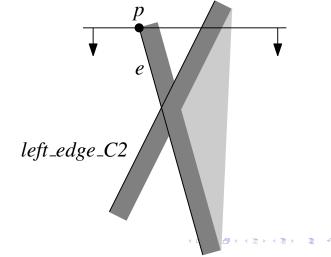
Linear Programming Randomized Linear

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming



Yazd Univ.

Theorem 4.3

The intersection of two convex polygonal regions in the plane can be computed in $\mathcal{O}(n)$ time.

$$T(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ 2T(n/2) + \mathcal{O}(n) & \text{if } n > 1 \end{cases}$$

 $T(n) \in \mathcal{O}(n \log n)$.

Corollary 4.4

The common intersection of a set of n half-planes in the plane can be computed in $\mathcal{O}(n\log n)$ time and linear storage.

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear

yazd Univ.

Theorem 4.3

The intersection of two convex polygonal regions in the plane can be computed in $\mathcal{O}(n)$ time.

$$T(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ 2T(n/2) + \mathcal{O}(n) & \text{if } n > 1 \end{cases}$$

 $T(n) \in \mathcal{O}(n \log n)$

Corollary 4.4

The common intersection of a set of n half-planes in the plane can be computed in $\mathcal{O}(n\log n)$ time and linear storage.

Manufacturing with

Computational Geometry

Molds

Half-plane Intersection problem

Computing intersection of two convex polygons

Linear Programming

ý, L, yazd Univ.

Theorem 4.3

The intersection of two convex polygonal regions in the plane can be computed in $\mathcal{O}(n)$ time.

$$T(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ 2T(n/2) + \mathcal{O}(n) & \text{if } n > 1 \end{cases}$$

 $T(n) \in \mathcal{O}(n \log n)$.

Corollary 4.4

The common intersection of a set of n half-planes in the plane can be computed in $\mathcal{O}(n\log n)$ time and linear storage.

Geometry

Computational

Manufacturing with Molds

Half-plane ntersection problem

Computing intersection of two convex polygons

Linear Programming

Yazd Univ.

Theorem 4.3

The intersection of two convex polygonal regions in the plane can be computed in $\mathcal{O}(n)$ time.

$$T(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ 2T(n/2) + \mathcal{O}(n) & \text{if } n > 1 \end{cases}$$

 $T(n) \in \mathcal{O}(n \log n).$

Corollary 4.4

The common intersection of a set of n half-planes in the plane can be computed in $\mathcal{O}(n\log n)$ time and linear storage.

Computational Geometry

Manufacturing with Molds

Half-plane ntersection problem

Computing intersection of two convex polygons

Linear

Programming
Randomized Linear

Incremental Linear Programming

Previous Section:

- We computed the intersection of n half-planes in $\mathcal{O}(n \log n)$ time.
- The problem has $\Omega(n \log n)$ lower bound.
- So, we cannot solve the casting problem faster in this way.
- Note that, for casting problem we only need to know if the intersection is empty or not.

In this section:

An "expected" linear time algorithm presented to solve the problem using linear programming.

Geometry Computational

Manufacturing with Molds

Half-plane ntersection problem

Computing intersection of two convex polygons

Linear Programming

Incremental Linear Programming

Linear optimization problem:

Maximize $c_1x_1 + c_2x_2 + \cdots + c_dx_d$ (objective function) Subject to

$$a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$$

$$a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$$

$$\vdots$$

$$a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$$

(constraints)

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

Incremental Linear Programming

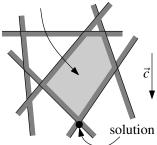
Linear optimization problem:

Objective function:

$$f(x_1, \dots, x_d) = c_1 x_1 + c_2 x_2 + \dots + c_d x_d = \vec{c}.\vec{x}.$$

 $\vec{c} = (c_1, \dots, c_d), \vec{x} = (x_1, \dots, x_d).$

feasible region



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

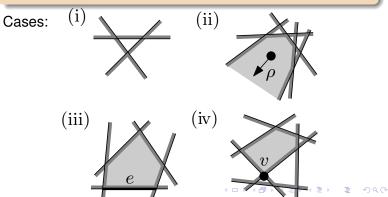
Computing intersection of two convex polygons

Linear Programming

Randomized Linea

LP in the plane:

- H: n half-plane or in other words n linear constraints
- $f_{\vec{c}}(p)$: Objective function = $c_x p_x + c_y p_y$, $\vec{c} = (c_x, c_y)$, $p = (p_x, p_y)$.
- Goal: find $p \in \mathbb{R}^2$ s.t. $p \in \cap H$ and $f_{\vec{c}}(p)$ is maximized.



Computational Geometry

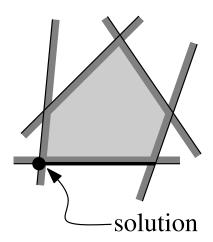
Manufacturing with

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

Unique Answer:



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

Bound the feasible region: we add to half-plane to the set of half-planes

$$m_1 = \left\{ \begin{array}{ll} p_x \leq M & \text{if } c_x > 0 \\ -p_x \leq M & \text{Otherwise} \end{array} \right.$$

$$m_2 = \left\{ \begin{array}{ll} p_y \leq M & \text{if } c_y > 0 \\ -p_y \leq M & \text{Otherwise} \end{array} \right.$$

Notations

- (H, \vec{c}) : a linear program.
- $\bullet \ H_i = \{m_1, m_2, h_1, h_2, \dots, h_i\}.$
- $C_i = m_1 \cap m_2 \cap h_1 \cap h_2 \cap \cdots \cap h_i$
- Clearly $C_0 \supseteq C_1 \supseteq C_2 \supseteq \cdots \cap C_n = C$.
- v_i : the optimal solution for C_i .
- If C_i = ∅, for some i, then the problem is infeasible (intersection is empty).

Computational Geometry

Manufacturing with Molds

Half-plane Intersection problem

Computing intersection of two convex polygons

Linear Programming

Bound the feasible region: we add to half-plane to the set of half-planes

$$m_1 = \left\{ \begin{array}{ll} p_x \leq M & \text{if } c_x > 0 \\ -p_x \leq M & \text{Otherwise} \end{array} \right.$$

$$m_2 = \left\{ \begin{array}{ll} p_y \leq M & \text{if } c_y > 0 \\ -p_y \leq M & \text{Otherwise} \end{array} \right.$$

Notations:

- (H, \vec{c}) : a linear program.
- $H_i = \{m_1, m_2, h_1, h_2, \dots, h_i\}.$
- $C_i = m_1 \cap m_2 \cap h_1 \cap h_2 \cap \cdots \cap h_i.$
- Clearly $C_0 \supseteq C_1 \supseteq C_2 \supseteq \cdots \cap C_n = C$.
- v_i : the optimal solution for C_i .
- If $C_i = \emptyset$, for some i, then the problem is infeasible (intersection is empty).

Computational Geometry

Manufacturing with Molds

lalf-plane ntersection roblem

Computing intersection of two convex polygons

Linear Programming

incremental algorithm

Lemma 4.5

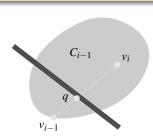
We have

- (i) If $v_{i-1} \in h_i$, then $v_i = v_{i-1}$.
- (ii) If $v_{i-1} \not\in h_i$, then either $C_i = \emptyset$ or $v_i \in \ell_i$, where ℓ_i is the line bounding h_i .

Proof.

(i): Clear, since $C_i \subseteq C_{i-1}$.

(ii):



Computational Geometry

Manufacturing with Molds

Half-plane intersection

Computing intersection of two convex polygons

Linear Programming

Randomized Linea

incremental algorithm

Lemma 4.5

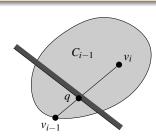
We have

- (i) If $v_{i-1} \in h_i$, then $v_i = v_{i-1}$.
- (ii) If $v_{i-1} \not\in h_i$, then either $C_i = \emptyset$ or $v_i \in \ell_i$, where ℓ_i is the line bounding h_i .

Proof.

(i): Clear, since $C_i \subseteq C_{i-1}$.

(ii):



Computational Geometry

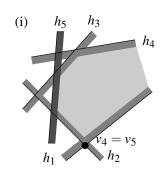
Manufacturing with Molds

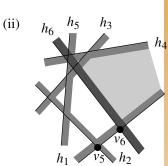
Half-plane intersection

Computing intersection of two convex polygons

Linear Programming

incremental algorithm





Computational Geometry

Manufacturing with Molds

Half-plane intersection

Computing intersection of two convex polygons

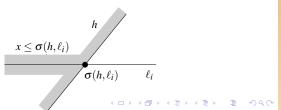
Linear Programming

incremental algorithm

New Simpler problem:

- Find the point p on ℓ_i that maximizes $f_{\vec{c}}(p)$, subject to the constraints $p \in h$, for $h \in H_{i-1}$.
- Maximize $f_{\vec{c}}(x)$ subject to

 $x \geq \sigma(h,\ell_i)$, $h \in H_{i-1}$ and $\ell_i \cap h$ is bounded to the left $x \leq \sigma(h,\ell_i)$, $h \in H_{i-1}$ and $\ell_i \cap h$ is bounded to the right



Computational Geometry

Manufacturing with Molds

Half-plane intersection

Computing intersection of two convex polygons

Linear Programming

incremental algorithm

1-dimensional linear program:

- Maximize $f_{\vec{c}}(x)$ subject to
 - $x \geq \sigma(h,\ell_i), \, h \in H_{i-1} \text{ and } \ell_i \cap h \text{ is bounded to the left } x \leq \sigma(h,\ell_i), \, h \in H_{i-1} \text{ and } \ell_i \cap h \text{ is bounded to the right}$
- $x_{left} = \max_{h \in H_{i-1}} \{ \sigma(h, \ell_i) : \ell_i \cap h \text{ is bounded to the left} \}$ $x_{right} = \min_{h \in H_{i-1}} \{ \sigma(h, \ell_i) : \}$

 $\ell_i \cap h$ is bounded to the right}

Lemma 4.6

A 1-dimensional linear program can be solved in linear time. Hence, if case (ii) of Lemma 4.5 arises, then we can compute v_i , in $\mathcal{O}(i)$ time.

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

incremental algorithm

2DBOUNDEDLP Algorithm:

- Let v₀ be the corner of C₀.
 Let h₁,..., h_n be the half-planes of H.
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **do if** $v_{i-1} \in h_i$
- 5. **then** $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow$ the point p on ℓ_i that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1} .
- 7. **if** p does not exist
- 8. **then** Report that the linear program is infeasible and quit.
- 9. **return** v_n

Lemma 4.7

Algorithm 2DBOUNDEDLP computes the solution to a bounded linear program with n constraints and two variables in $\mathcal{O}(n^2)$ time and linear storage.

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

Randomized Line Programming

incremental algorithm

2DBOUNDEDLP Algorithm:

```
    Let v<sub>0</sub> be the corner of C<sub>0</sub>.
    Let h<sub>1</sub>,...,h<sub>n</sub> be the half-planes of H.
    for i ← 1 to n
```

```
4. do if v_{i-1} \in h_i
```

5. **then** $v_i \leftarrow v_{i-1}$

6. **else** $v_i \leftarrow$ the point p on ℓ_i that maximizes $f_{\vec{c}}(p)$, subject to the constraints in H_{i-1} .

7. **if** p does not exist

then Report that the linear program is infeasible and quit.

9. **return** v_n

8.

Lemma 4.7

Algorithm 2DBOUNDEDLP computes the solution to a bounded linear program with n constraints and two variables in $\mathcal{O}(n^2)$ time and linear storage.

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

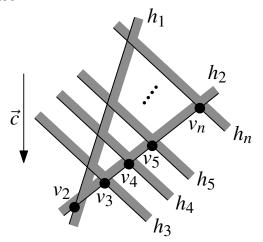
Computing intersection of two convex polygons

Linear Programming

Randomized Lin Programming

incremental algorithm

A bad case:



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming

Randomized Linear Programming

Randomized Linear Programming

Randomized algorithms

Use randomness to avoid bad cases.

Algorithm 2DRANDOMIZEDBOUNDEDLP(H, \vec{c}, m_1, m_2)

Input. A linear program $(H \cup \{m_1, m_2\}, \vec{c})$, where H is a set of n half-planes, $\vec{c} \in \mathbb{R}^2$, and m_1, m_2 bound the solution.

Output. If $(H \cup \{m_1, m_2\}, \vec{c})$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

- 1. Let v_0 be the corner of C_0 .
- 2. Compute a *random* permutation h_1, \ldots, h_n of the half-planes by calling RANDOMPERMUTATION($H[1 \cdots n]$).
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
 - then $v_i \leftarrow v_{i-1}$
- else v_i ←the point p on ℓ_i that maximizes f_{c̄}(p), subject to the constraints in H_{i-1}.
- 7. **if** p does not exist
- 8. **then** Report that the linear program is infeasible and quit.
- 9. **return** v_n

5.

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Randomized Linear Programming

Lemma 4.8

The 2-dimensional linear programming problem with n constraints can be solved in $\mathcal{O}(n)$ randomized expected time using worst-case linear storage.

Proof.

$$X_i = \left\{ \begin{array}{ll} 1 & \text{if } v_{i-1} \not\in h_i \\ 0 & \text{otherwise} \end{array} \right.$$

Total time =
$$\sum_{i=1}^{n} (\mathcal{O}(i) \times X_i)$$

$$E(\text{Total time}) = E\left(\sum_{i=1}^n (\mathcal{O}(i) \times X_i)\right)$$

$$= \sum_{i=1}^n (\mathcal{O}(i) \times E(X_i)).$$

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Randomized Linear Programming

Lemma 4.8

The 2-dimensional linear programming problem with n constraints can be solved in $\mathcal{O}(n)$ randomized expected time using worst-case linear storage.

Proof.

$$X_i = \begin{cases} 1 & \text{if } v_{i-1} \not\in h_i \\ 0 & \text{otherwise} \end{cases}$$

Total time =
$$\sum_{i=1}^{n} (\mathcal{O}(i) \times X_i)$$

$$E(\text{Total time}) = E\left(\sum_{i=1}^n (\mathcal{O}(i) \times X_i)\right)$$
$$= \sum_{i=1}^n (\mathcal{O}(i) \times E(X_i)).$$

Computational Geometry

Manufacturing with Molds

Half-plane ntersection problem

intersection of two convex polygons

Randomized Linear Programming

Lemma 4.8

The 2-dimensional linear programming problem with n constraints can be solved in $\mathcal{O}(n)$ randomized expected time using worst-case linear storage.

Proof (Cont.). Any upper bound for $E(x_i)$?

$$E(X_i) = Pr(v_{i-1} \notin h_i)$$

 $\leq \frac{2}{i}$ (by backward analysis)

$$\begin{split} E(\text{Total time}) &= \sum_{i=1}^n \left(\mathcal{O}(i) \times E(X_i) \right) \\ &\leq \sum_{i=1}^n \left(\mathcal{O}(i) \times \frac{2}{i} \right) \in \mathcal{O}(n). \end{split}$$

Computational Geometry

Manufacturing with Molds

> Half-plane Intersection problem

Computing intersection of two convex polygons

Randomized Linear Programming

Lemma 4.8

The 2-dimensional linear programming problem with n constraints can be solved in $\mathcal{O}(n)$ randomized expected time using worst-case linear storage.

Proof (Cont.). Any upper bound for $E(x_i)$?

$$E(X_i) = Pr(v_{i-1} \notin h_i)$$

 $\leq \frac{2}{i}$ (by backward analysis)

$$\begin{split} E(\text{Total time}) &= \sum_{i=1}^n \left(\mathcal{O}(i) \times E(X_i) \right) \\ &\leq \sum_{i=1}^n \left(\mathcal{O}(i) \times \frac{2}{i} \right) \in \mathcal{O}(n). \end{split}$$

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Randomized Linear Programming

Lemma 4.8

The 2-dimensional linear programming problem with n constraints can be solved in $\mathcal{O}(n)$ randomized expected time using worst-case linear storage.

Proof (Cont.). Any upper bound for $E(x_i)$?

$$E(X_i) = Pr(v_{i-1} \notin h_i)$$

 $\leq \frac{2}{i}$ (by backward analysis)

$$\begin{split} E(\text{Total time}) &= \sum_{i=1}^n \left(\mathcal{O}(i) \times E(X_i) \right) \\ &\leq \sum_{i=1}^n \left(\mathcal{O}(i) \times \frac{2}{i} \right) \in \mathcal{O}(n). \end{split}$$

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

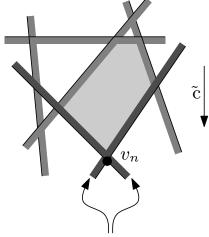
Computing intersection of two convex polygons

Linear Programming Randomized Linear

Randomized Linear Programming

Randomized Linear Programming

Backward Analysis: Why $Pr(v_{i-1} \notin h_i) \leq \frac{2}{i}$?



half-planes defining v_n

Computational Geometry

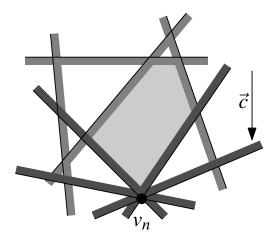
Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Randomized Linear Programming

Backward Analysis: Why $Pr(v_{i-1} \notin h_i) \leq \frac{2}{i}$?



Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Linear Programming Randomized Linear

Randomized Linear Programming

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons

Computational Geometry

Manufacturing with Molds

Half-plane intersection problem

Computing intersection of two convex polygons