«O>» «Fr «=>»

«=

>

Q>




@ We have solved the easiest case of the map overlay
problem, where the two maps are networks
represented as collections of line segments. %,

@ In general, maps have a more complicated structure: Yazd Univ

they are subdivisions of the plane into labeled R
regions. Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

2/25



Before we can give an algorithm for computing the
overlay of two subdivisions, we must develop a
suitable representation for a subdivision.

Storing a subdivision as a collection of line segments
is not such a good idea.

Operations like reporting the boundary of a region
would be rather complicated.

Add topological information: which segments bound
a given region, which regions are adjacent, and so
on.

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



disconnected
subdivision

Complexity of a subdivision
#faces+#edges+i#vertices.

s

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



fa

04 .
<_Dudent

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



What kind of queries?

@ What is the face containing a given point? (TOO
MUCHY!)

@ Walking around the boundary of a given face,

@ Find the face from an adjacent one if we are given a
common edge,

@ Visit all the edges around a given vertex.

The representation that we shall discuss supports these
operations. It is called the doubly-connected edge list
(DCEL).

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



@ arecord for each edge,
@ a record for each vertex,
@ a record for each face,

@ plus attribute information

DA

6/25



%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



7/25



%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



O
’_/aL/f)
Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the

Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.




'DCEL contains: |
@ arecord for each vertex,

Subdivisions

8/25



DCEL

DCEL contains:
@ a record for each vertex, YA
@ Coordinates(v): the coordinates of v, vazd Univ
Q tI :;zﬁ:ztfggﬁg)&?gﬁlnter to an arbitrary half-edge C°(§"e‘§,‘£,a§{?y”a'

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



DCEL

DCEL contains:

@ a record for each vertex,

@ Coordinates(v): the coordinates of v,
@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.

@ arecord for each face,

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



DCEL

DCEL contains:

@ a record for each vertex,

@ Coordinates(v): the coordinates of v,
@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.
@ arecord for each face,
@ OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

Q@ InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

()

e,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



DCEL

DCEL contains:

@ a record for each vertex,
@ Coordinates(v): the coordinates of v,
@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.
@ arecord for each face,
@ OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),
Q@ InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

@ arecord for each half-edge ¢,

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



DCEL

DCEL contains:

@ a record for each vertex,

@ Coordinates(v): the coordinates of v,
Q@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.

@ arecord for each face,

@ OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

Q@ InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

@ arecord for each half-edge ¢,

@ Origin(€): a pointer to its origin,

Q@ Twin() a pointer to its twin half-edge,

© IncidentFace(€): a pointer to the face that it
bounds.

@ Newt(€) and Prev(€): a pointer to the next and

previous edge on the boundary of IncidentFace(€).

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



Origin(€)

IncidentFace(#)

F = = E DA

9/25



Vertex Coordinates IncidentEdge
V1 (0,4) €11
V2 (2,4) 5{2
V3 (2,2) EQJ
V4 (1,1) €12
Face OuterComponent InnerComponents
h nil 1,1
f2 €41 nil
Half-edge Origin Twin IncidentFace Next Prev
€11 v €12 f €42 €31
€12 V2 €11 fa €32 €41
€1 v3 &2 S €12 iz
€12 V4 @1 S &1 €1
€31 V3 €2 f €11 €22
#32 2 €31 fa €41 €12
4,1 v3 €42 fa €12 &
€42 V2 4.1 S &1 11

DA

10/25



@ Walking around the boundary of a given face,
@ Find the face from an adjacent one if we are given a
common edge,

@ Visit all the edges around a given vertex.

DA

11/25



@ Walking around the boundary of a given face,
@ Find the face from an adjacent one if we are given a
common edge,

@ Visit all the edges around a given vertex.

DA

11/25



DCEL).

@ Copy DCEL of S; and S into new DCEL (Not a Valid

@ Make the new DCEL valid.

12/25



13/25



the geometric situation and

the two doubly-connected

edge lists before handling the
intersection

%

the doubly-connected edge
list after handling the inter-
section

\<\.
I\

DA

14/25



@ Make two new edge with origin v.
@ Set Twin of new edges.

@ Set Next() of the two new half-edges.

DA

15/25



@ Make two new edge with origin v.
@ Set T'win of new edges.

15/25



N

s

/
\/\ Computing the

@ Make two new edge with origin v.
@ Set T'win of new edges.

Overlay of Two
Subdivisions

@ Set Next() of the two new half-edges.

15/25



Computing the Overlay of Two Subdivisions
Updating half-edges

@ Make two new edge with origin v.
@ Set T'win of new edges.

@ Set Next() of the two new half-edges.

@ Set Prev() of the half-edges to which these pointers
point.

()

e,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



Computing the Overlay of Two Subdivisions
Updating half-edges

Fix the situation around v

@ The half-edge for ¢’ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from €', with v
as its origin.

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions

first clockwise half-
edge from e’ with v as

J its origin



Updating half-edges

Computing the Overlay of Two Subdivisions @

Fix the situation around v Veszil Wi
@ The half-edge for ¢’ that has v Computat
. . . putational
as its destination must be Geometry
linked to the first half-edge,
seen C|O_Cl.(WISG from ¢/, with v Sl
as its origin. Computing the

Overlay of Two
Subdivisions

@ The half-edge for ¢’ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its

destination.

first clockwise half-
edge from e’ with v as
its origin



Updating half-edges

Computing the Overlay of Two Subdivisions @

Fix the situation around v Veszil Wi
@ The half-edge for ¢’ that has v Computat
. . . putational
as its destination must be Geometry
linked to the first half-edge,
seen C|O_Cl.(WISG from ¢/, with v Sl
as its origin. Computing the

Overlay of Two
Subdivisions

@ The half-edge for ¢’ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.

@ The same for ¢”.

first clockwise half-

edge from e’ with v as
its origin



Updating half-edges

Computing the Overlay of Two Subdivisions @

Fix the situation around v Veszil Wi
@ The half-edge for ¢’ that has v Computat
. . . putational
as its destination must be Geometry
linked to the first half-edge,
seen C|O_Cl.(WISG from ¢/, with v Sl
as its origin. Computing the

Overlay of Two
Subdivisions

@ The half-edge for ¢’ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its

destination.

@ The same for ¢”.

@ Time complexity: O(m) (m:
degree of v).

first clockwise half-
edge from e’ with v as
its origin



@ Create a face record for each f € O(S;,S2).

@ Set OuterComponent(f) and InnerComponent(f).

DA

17/25



@ # faces= # outer boundaries +1 (unbounded face).

@ From half-edges we can construct the boundaries.

@ To determine weather the boundary is outer
boundary or boundary of a hole:

DA

18/25



@ # faces= # outer boundaries +1 (unbounded face).

@ From half-edges we can construct the boundaries.

To determine weather the boundary is outer
boundary or boundary of a hole:

DA

18/25



Computing the Overlay of Two Subdivisions
Updating faces

@ # faces= # outer boundaries +1 (unbounded face).
@ From half-edges we can construct the boundaries.

@ To determine weather the boundary is outer
boundary or boundary of a hole:

1 I
Leftmost vertex of cycle

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the

Overlay of Two
Subdivisions

18/25



‘Which boundary cycles bound the same face? |
@ Construct a graph G.

Overlay of Two
Subdivisions

19/25



‘Which boundary cycles bound the same face? |
@ Construct a graph G.

@ Every boundary cycle is a node in G.

Computing the

Overlay of Two
Subdivisions

19/25



Updating faces

Computing the Overlay of Two Subdivisions @

7,
Which boundary cycles bound the same face? Yazd Univ
@ Construct a graph G. Computational
@ Every boundary cycle is a node in G. seemen
@ One node for the imaginary outer boundary of the Doubly Connected

Edge List (DCEL)

unbounded face.
Computing the

Overlay of Two
Subdivisions



Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
@ Construct a graph G.
@ Every boundary cycle is a node in G.
@ One node for the imaginary outer boundary of the
unbounded face.

@ Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?

@ Construct a graph G.

@ Every boundary cycle is a node in G.

@ One node for the imaginary outer boundary of the
unbounded face.

@ Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.

@ If there is no half-edge to the left of the leftmost

vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions






Each connected component of the graph G corresponds
exactly to the set of cycles incident to one face.

DA

21/25



@ Similar to line
intersection
algorithm.

22/25



@ Similar to line
segment
intersection
algorithm.

@ Find the edge

immediately to the
left of point.

22/25



How can we Construct G?

Computing the Overlay of Two Subdivisions @

#,
Yazd Univ.
ConStrUCtlng g Computational
a0 q Geometry
@ Similar to line
segment
- q Doubly Connected
intersection Edge List (DCEL)
algorith m. Computing the

Overlay of Two
Subdivisions

@ Find the edge
immediately to the
left of point.

@ We need a pointer
from each edge to
its boundary in G.

22/25



Computing the Overlay of Two Subdivisions

Theorem 2.6

Let S; be a planar subdivision of complexity nq, let So be
a subdivision of complexity ny, and let n := n; + ny. The
overlay of S; and S, can be constructed in

O(nlogn + klogn) time, where k is the complexity of the
overlay.

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



Py

intersection

diﬂ‘erenCe

Q>

24/25



e,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the

Overlay of Two
Subdivisions

28125



	Doubly Connected Edge List (DCEL)
	Computing the Overlay of Two Subdivisions

