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@ We have solved the easiest case of the map overlay
problem, where the two maps are networks
represented as collections of line segments. %,

@ In general, maps have a more complicated structure: Yazd Univ
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Before we can give an algorithm for computing the
overlay of two subdivisions, we must develop a
suitable representation for a subdivision.

Storing a subdivision as a collection of line segments
is not such a good idea.

Operations like reporting the boundary of a region
would be rather complicated.

Add topological information: which segments bound
a given region, which regions are adjacent, and so
on.
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disconnected
subdivision

Complexity of a subdivision
#faces+#edges+i#vertices.
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What kind of queries?

@ What is the face containing a given point? (TOO
MUCHY!)

@ Walking around the boundary of a given face,

@ Find the face from an adjacent one if we are given a
common edge,

@ Visit all the edges around a given vertex.

The representation that we shall discuss supports these
operations. It is called the doubly-connected edge list
(DCEL).
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@ arecord for each edge,
@ a record for each vertex,
@ a record for each face,

@ plus attribute information

DA

6/25



%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



7/25



%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions



O
’_/aL/f)
Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the

Overlay of Two
Subdivisions

To be able to traverse the boundary of a face, we need to
keep a pointer to a half-edge of any boundary component
and isolated points.




'DCEL contains: |
@ arecord for each vertex,
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DCEL

DCEL contains:
@ a record for each vertex, YA
@ Coordinates(v): the coordinates of v, vazd Univ
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DCEL

DCEL contains:

@ a record for each vertex,

@ Coordinates(v): the coordinates of v,
@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.

@ arecord for each face,
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DCEL

DCEL contains:

@ a record for each vertex,

@ Coordinates(v): the coordinates of v,
@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.
@ arecord for each face,
@ OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

Q@ InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.
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DCEL

DCEL contains:

@ a record for each vertex,
@ Coordinates(v): the coordinates of v,
@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.
@ arecord for each face,
@ OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),
Q@ InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

@ arecord for each half-edge ¢,
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DCEL

DCEL contains:

@ a record for each vertex,

@ Coordinates(v): the coordinates of v,
Q@ IncidentEdge(v): a pointer to an arbitrary half-edge
that has v as its origin.

@ arecord for each face,

@ OuterComponent(f): to some half-edge on its outer
boundary (nil if unbounded),

Q@ InnerComponents(f): a pointer to some half-edge
on the boundary of the hole, for each hole.

@ arecord for each half-edge ¢,

@ Origin(€): a pointer to its origin,

Q@ Twin() a pointer to its twin half-edge,

© IncidentFace(€): a pointer to the face that it
bounds.

@ Newt(€) and Prev(€): a pointer to the next and

previous edge on the boundary of IncidentFace(€).
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Vertex Coordinates IncidentEdge
V1 (0,4) €11
V2 (2,4) 5{2
V3 (2,2) EQJ
V4 (1,1) €12
Face OuterComponent InnerComponents
h nil 1,1
f2 €41 nil
Half-edge Origin Twin IncidentFace Next Prev
€11 v €12 f €42 €31
€12 V2 €11 fa €32 €41
€1 v3 &2 S €12 iz
€12 V4 @1 S &1 €1
€31 V3 €2 f €11 €22
#32 2 €31 fa €41 €12
4,1 v3 €42 fa €12 &
€42 V2 4.1 S &1 11
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@ Walking around the boundary of a given face,
@ Find the face from an adjacent one if we are given a
common edge,

@ Visit all the edges around a given vertex.
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@ Walking around the boundary of a given face,
@ Find the face from an adjacent one if we are given a
common edge,

@ Visit all the edges around a given vertex.
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DCEL).

@ Copy DCEL of S; and S into new DCEL (Not a Valid

@ Make the new DCEL valid.
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the geometric situation and

the two doubly-connected

edge lists before handling the
intersection

%

the doubly-connected edge
list after handling the inter-
section
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@ Make two new edge with origin v.
@ Set Twin of new edges.

@ Set Next() of the two new half-edges.
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@ Make two new edge with origin v.
@ Set T'win of new edges.
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@ Make two new edge with origin v.
@ Set T'win of new edges.
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@ Set Next() of the two new half-edges.
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Computing the Overlay of Two Subdivisions
Updating half-edges

@ Make two new edge with origin v.
@ Set T'win of new edges.

@ Set Next() of the two new half-edges.

@ Set Prev() of the half-edges to which these pointers
point.
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Computing the Overlay of Two Subdivisions
Updating half-edges

Fix the situation around v

@ The half-edge for ¢’ that has v
as its destination must be
linked to the first half-edge,
seen clockwise from €', with v
as its origin.
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Updating half-edges

Computing the Overlay of Two Subdivisions @

Fix the situation around v Veszil Wi
@ The half-edge for ¢’ that has v Computat
. . . putational
as its destination must be Geometry
linked to the first half-edge,
seen C|O_Cl.(WISG from ¢/, with v Sl
as its origin. Computing the

Overlay of Two
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@ The half-edge for ¢’ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its

destination.

first clockwise half-
edge from e’ with v as
its origin



Updating half-edges

Computing the Overlay of Two Subdivisions @

Fix the situation around v Veszil Wi
@ The half-edge for ¢’ that has v Computat
. . . putational
as its destination must be Geometry
linked to the first half-edge,
seen C|O_Cl.(WISG from ¢/, with v Sl
as its origin. Computing the

Overlay of Two
Subdivisions

@ The half-edge for ¢’ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its
destination.

@ The same for ¢”.

first clockwise half-

edge from e’ with v as
its origin



Updating half-edges

Computing the Overlay of Two Subdivisions @

Fix the situation around v Veszil Wi
@ The half-edge for ¢’ that has v Computat
. . . putational
as its destination must be Geometry
linked to the first half-edge,
seen C|O_Cl.(WISG from ¢/, with v Sl
as its origin. Computing the

Overlay of Two
Subdivisions

@ The half-edge for ¢’ with v as
its origin must be linked to the
first counterclockwise
half-edge with v as its

destination.

@ The same for ¢”.

@ Time complexity: O(m) (m:
degree of v).

first clockwise half-
edge from e’ with v as
its origin



@ Create a face record for each f € O(S;,S2).

@ Set OuterComponent(f) and InnerComponent(f).
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@ # faces= # outer boundaries +1 (unbounded face).

@ From half-edges we can construct the boundaries.

@ To determine weather the boundary is outer
boundary or boundary of a hole:

DA

18/25



@ # faces= # outer boundaries +1 (unbounded face).

@ From half-edges we can construct the boundaries.

To determine weather the boundary is outer
boundary or boundary of a hole:
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Computing the Overlay of Two Subdivisions
Updating faces

@ # faces= # outer boundaries +1 (unbounded face).
@ From half-edges we can construct the boundaries.

@ To determine weather the boundary is outer
boundary or boundary of a hole:

1 I
Leftmost vertex of cycle
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‘Which boundary cycles bound the same face? |
@ Construct a graph G.
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‘Which boundary cycles bound the same face? |
@ Construct a graph G.

@ Every boundary cycle is a node in G.

Computing the
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Updating faces

Computing the Overlay of Two Subdivisions @

7,
Which boundary cycles bound the same face? Yazd Univ
@ Construct a graph G. Computational
@ Every boundary cycle is a node in G. seemen
@ One node for the imaginary outer boundary of the Doubly Connected

Edge List (DCEL)

unbounded face.
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Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?
@ Construct a graph G.
@ Every boundary cycle is a node in G.
@ One node for the imaginary outer boundary of the
unbounded face.

@ Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.
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Computing the Overlay of Two Subdivisions
Updating faces

Which boundary cycles bound the same face?

@ Construct a graph G.

@ Every boundary cycle is a node in G.

@ One node for the imaginary outer boundary of the
unbounded face.

@ Add an arc between two cycles if and only if one of
the cycles is the boundary of a hole and the other
cycle has a half-edge immediately to the left of the
leftmost vertex of that hole cycle.

@ If there is no half-edge to the left of the leftmost

vertex of a cycle, then the node representing the
cycle is linked to the node of the unbounded face.

()

%,

Yazd Univ.

Computational
Geometry

Doubly Connected
Edge List (DCEL)

Computing the
Overlay of Two
Subdivisions






Each connected component of the graph G corresponds
exactly to the set of cycles incident to one face.
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@ Similar to line
intersection
algorithm.
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@ Similar to line
segment
intersection
algorithm.

@ Find the edge

immediately to the
left of point.
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How can we Construct G?

Computing the Overlay of Two Subdivisions @

#,
Yazd Univ.
ConStrUCtlng g Computational
a0 q Geometry
@ Similar to line
segment
- q Doubly Connected
intersection Edge List (DCEL)
algorith m. Computing the

Overlay of Two
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@ Find the edge
immediately to the
left of point.

@ We need a pointer
from each edge to
its boundary in G.
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Computing the Overlay of Two Subdivisions

Theorem 2.6

Let S; be a planar subdivision of complexity nq, let So be
a subdivision of complexity ny, and let n := n; + ny. The
overlay of S; and S, can be constructed in

O(nlogn + klogn) time, where k is the complexity of the
overlay.
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