

Computational Geometry

Computing Convex Hull (in 2D)

Definition

2nd algorithm

1393-1

Convex Set

Definition:

A subset S of the plane is called **convex** if and only if for any pair of points $p,q\in S$, the line segment \overline{pq} is completely contained in S.

The convex hull $\mathcal{CH}(S)$ of a set S is the smallest convex set that contains S. To be more precise, it is the intersection of all convex sets that contain S.

Computational Geometry

Convex hu

Definition

Geometry of problem 1st algorithm 2nd algorithm Proof of correctness

Higher dimension

Convex Set

Definition:

A subset S of the plane is called **convex** if and only if for any pair of points $p,q\in S$, the line segment \overline{pq} is completely contained in S.

not convex

Convex Hull

The convex hull $\mathcal{CH}(S)$ of a set S is the smallest convex set that contains S. To be more precise, it is the intersection of all convex sets that contain S.

Computational Geometry

Convex hu

Definition

Geometry of problem 1st algorithm

2nd algorithm

Proof of correctr

Other algorithms

Convex Set

Definition:

A subset S of the plane is called **convex** if and only if for any pair of points $p, q \in S$, the line segment \overline{pq} is completely contained in S.

Computational Geometry

Convex hul

Geometry of problem 1st algorithm 2nd algorithm Proof of correctness

Other algorithms Higher dimension:

Convex Hull:

The convex hull $\mathcal{CH}(S)$ of a set S is the smallest convex set that contains S. To be more precise, it is the intersection of all convex sets that contain S.

Observation:

It is the unique convex polygon whose vertices are points from P and that contains all points of P.

Computational Geometry

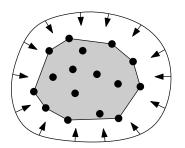
Convex hu

Definition

Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

Observation:

It is the unique convex polygon whose vertices are points from P and that contains all points of P.



Computational Geometry

Convex hu

Definition

Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness

Problem:

Given a set $P = \{p_1, p_2, \dots, p_n\}$ of points in the plane, compute a list that contains those points from P that are the vertices of $\mathcal{CH}(P)$, listed in clockwise order.

Computational Geometry

Definition

Geometry of problem 2nd algorithm

Problem:

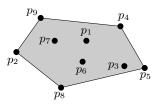
Given a set $P = \{p_1, p_2, \dots, p_n\}$ of points in the plane, compute a list that contains those points from P that are the vertices of $\mathcal{CH}(P)$, listed in clockwise order.

Input= set of points

 $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9$

Output= representation of the convex hull:

 p_4, p_5, p_8, p_2, p_9



Computational Geometry

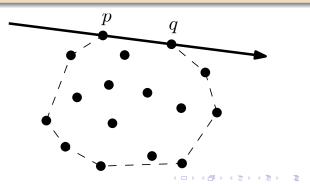
Definition

Geometry of problem 1st algorithm 2nd algorithm Proof of correctness Other algorithms

Geometry of the problem

Property:

If we direct the line through p and q such that $\mathcal{CH}(P)$ lies to the right, then all the points of P must lie to the right of this line. The reverse is also true: if all points of $P\setminus\{p,q\}$ lie to the right of the directed line through p and q, then pq is an edge of $\mathcal{CH}(P)$.



Computational Geometry

Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness

First algorithm

Algorithm SLOWCONVEXHULL(P)

Input: A set *P* of points in the plane.

Output: \mathcal{L} =The vertices of $\mathcal{CH}(P)$ in clockwise order.

- 1. $E \leftarrow \emptyset$.
- 2. **for** all ordered pairs $(p,q) \in P \times P$ with $p \neq q$
- 3. $valid \leftarrow true$
- 4. **for** all points $r \in P$ not equal to p or q
- 5. **if** r lies to the left \overrightarrow{pq}
- 6. then $valid \leftarrow$ false.
- 7. **if** valid then Add \overrightarrow{pq} to E.
- 8. From the set E of edges construct vertices of $\mathcal{CH}(P)$, sorted in clockwise order.

Clarify

- How do we test whether a point lies to the left or to the right of a directed line? (See Exercise 1.4)
- 2 How can we construct \mathcal{L} from E?

Computational Geometry

Convex n

Geometry of problem

1st algorithm

2nd algorithm
Proof of correctness
Other algorithms

First algorithm

Algorithm SLOWCONVEXHULL(P)

Input: A set *P* of points in the plane.

Output: \mathcal{L} =The vertices of $\mathcal{CH}(P)$ in clockwise order.

- 1. $E \leftarrow \emptyset$.
- 2. **for** all ordered pairs $(p,q) \in P \times P$ with $p \neq q$
- 3. $valid \leftarrow true$
- 4. **for** all points $r \in P$ not equal to p or q
- 5. **if** r lies to the left \overrightarrow{pq}
- 6. then $valid \leftarrow$ false.
- 7. **if** valid then Add \overrightarrow{pq} to E.
- 8. From the set E of edges construct vertices of $\mathcal{CH}(P)$, sorted in clockwise order.

Clarify:

- How do we test whether a point lies to the left or to the right of a directed line? (See Exercise 1.4)
- 2 How can we construct \mathcal{L} from E?

Computational Geometry

Convex

Geometry of problem

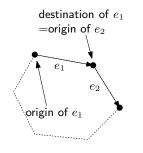
1st algorithm

Proof of correctne Other algorithms

Computing \mathcal{L} :

- All edges are directed.
- remove an arbitrary edge e_1 from E. Put the origin of e_1 and the destination in \mathcal{L} .
- Find the edge e_2 in E whose origin is the destination of e_1 , remove it from E, and append its destination to \mathcal{L} .
- Next, find the edge e_3 whose origin is the destination of e_2 , remove it from E, and append its destination to \mathcal{L} .
- And so on.

Time Complexity: $\mathcal{O}(n^2)$



Computational Geometry

Complexity of the algorithm

Algorithm SLOWCONVEXHULL(P)

Input: A set P of points in the plane.

Output: \mathcal{L} =The vertices of $\mathcal{CH}(P)$ in clockwise order.

- 1. $E \leftarrow \emptyset$.
- 2. **for** all ordered pairs $(p,q) \in P \times P$ with $p \neq q$
- 3. $valid \leftarrow true$
- 4. **for** all points $r \in P$ not equal to p or q
- 5. **if** r lies to the left \overrightarrow{pq}
- 6. then $valid \leftarrow false$.
- 7. **if** valid then Add \overrightarrow{pq} to E.
- 8. From the set E of edges construct vertices of $\mathcal{CH}(P)$, sorted in clockwise order.

Running time: $\mathcal{O}(n^3) + \mathcal{O}(n^2) = \mathcal{O}(n^3)$.

Computational Geometry

Convex n

Definition

Geometry of proble

1st algorithm

2nd algorithm
Proof of correctnes

ther algorithms gher dimensions

Complexity of the algorithm

Algorithm SLOWCONVEXHULL(P)

Input: A set P of points in the plane.

Output: \mathcal{L} =The vertices of $\mathcal{CH}(P)$ in clockwise order.

- 1. $E \leftarrow \emptyset$.
- 2. **for** all ordered pairs $(p,q) \in P \times P$ with $p \neq q$
- 3. $valid \leftarrow true$
- 4. **for** all points $r \in P$ not equal to p or q
- 5. **if** r lies to the left \overrightarrow{pq}
- 6. then $valid \leftarrow false$.
- 7. **if** valid then Add \overrightarrow{pq} to E.
- 8. From the set E of edges construct vertices of $\mathcal{CH}(P)$, sorted in clockwise order.

Running time: $\mathcal{O}(n^3) + \mathcal{O}(n^2) = \mathcal{O}(n^3)$.

Computational Geometry

Definition

Geometry of probler

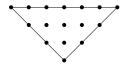
st algorithm and algorithm roof of correctnes

Proof of correctn
Other algorithms

Degenerate case (or Degeneracy)

Degenerate Case:

A point r does not always lie to the right or to the left of the line through p and q, it can also happen that it **lies on** this line. What should we do then?



Solution:

A directed edge \overrightarrow{pq} is an edge of $\mathcal{CH}(P)$ if and only if all other points $r \in P$ lie either strictly to the right of the directed line through p and q, or they lie on the open line segment \overline{pq} .

Computational Geometry

Definition

Geometry of proble

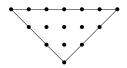
1st algorithm

2nd algorithm Proof of correctness Other algorithms

Degenerate case (or Degeneracy)

Degenerate Case:

A point r does not always lie to the right or to the left of the line through p and q, it can also happen that it **lies on** this line. What should we do then?



Solution:

A directed edge \overrightarrow{pq} is an edge of $\mathcal{CH}(P)$ if and only if all other points $r \in P$ lie either strictly to the right of the directed line through p and q, or they lie on the open line segment \overline{pq} .

Computational Geometry

Definition

Geometry of problem

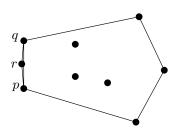
1st algorithm 2nd algorithm Proof of correctness

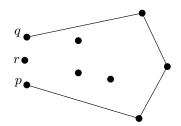
Higher dimensions

Robustness:

Robustness:

If the points are given in floating point coordinates and the computations are done using floating point arithmetic, then there will be rounding errors that may distort the outcome of tests.





This algorithm is not robust!

Computational Geometry

Definition

Geometry of problem

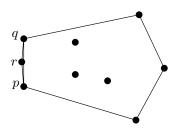
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

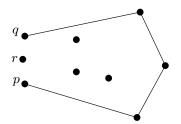
Higher dimensions

Robustness:

Robustness:

If the points are given in floating point coordinates and the computations are done using floating point arithmetic, then there will be rounding errors that may distort the outcome of tests.





This algorithm is not robust!

Computational Geometry

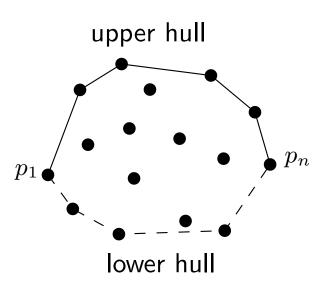
Definition

Geometry of problem 1st algorithm

2nd algorithm
Proof of correctness
Other algorithms

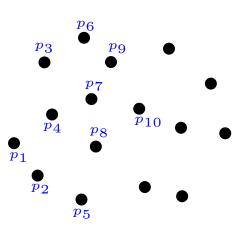
Computational Geometry

Convex hul



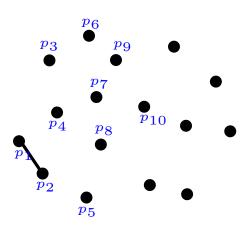
Computational Geometry

Convex hull Definition Geometry of problem 1st algorithm 2nd algorithm Proof of correctness Other algorithms



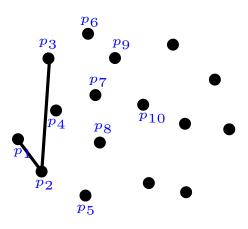
Computational Geometry

Convex hull



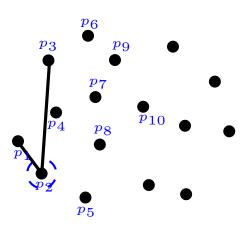
Computational Geometry

Convex hull



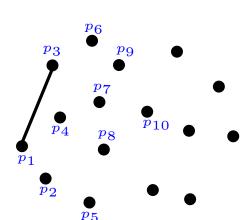
Computational Geometry

Convex hull



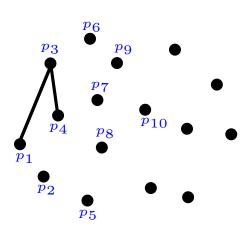
Computational Geometry

Convex hull



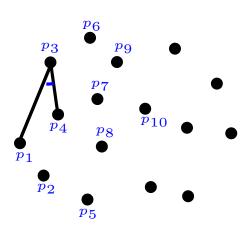
Computational Geometry

Convex hull



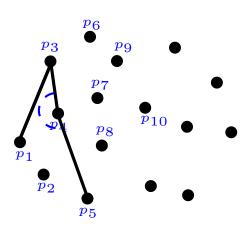
Computational Geometry

Convex hull



Computational Geometry

Convex hull



Computational Geometry

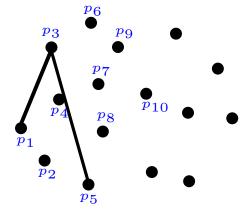
Convex hull

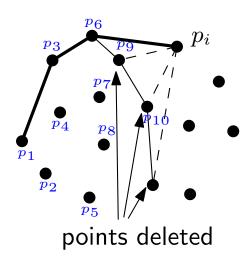
Computational Geometry

Convex hull

Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness

Proof of correctnes Other algorithms Higher dimensions





Computational Geometry

Convex hull Definition Geometry of problem 1st algorithm 2nd algorithm Proof of correctness Other algorithms

Algorithm CONVEXHULL(P)

Input: A set P of points in the plane.

Output: \mathcal{L} =The vertices of $\mathcal{CH}(P)$ in clockwise order.

- 1. p_1, \ldots, p_n = the points sorted by x-coordinate.
- 2. Add p_1 and p_2 to a list \mathcal{L}_{upper} , with p_1 as the first point.
- 3. for $i \leftarrow 3$ to n
- 4. Append p_i to \mathcal{L}_{upper} .
- 5. **while** $|\mathcal{L}_{upper}| > 2$ and the last 3 points in \mathcal{L}_{upper} do not make a right turn
- 6. Delete the middle of last 3 points from \mathcal{L}_{upper} .
- 7. Add p_n and p_{n-1} to a list \mathcal{L}_{lower} , with p_n as the first point.
- 8. **for** $i \leftarrow n-2$ downto 1
- 9. Append p_i to \mathcal{L}_{lower} .
- 10. **while** $|\mathcal{L}_{lower}| > 2$ and the last three points in \mathcal{L}_{lower} do not make a right turn
- 11. Delete the middle of last 3 points from \mathcal{L}_{lower} .
- 12. Remove the first and the last point from \mathcal{L}_{lower} .
- 13. Append \mathcal{L}_{lower} to \mathcal{L}_{upper} , and call the resulting list \mathcal{L} .
- 14. return \mathcal{L}

Computational Geometry

Convex hull
Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

Special cases:

- Two points have same x-coordinate.

4 D > 4 B > 4 B > 4 B >

not a right turn

Yazd Univ.

Computational Geometry

Geometry of problem 2nd algorithm

Special cases:

- Two points have same *x*-coordinate.
- Three points on a line

Solution:

Use the lexicographic order.

Solution:

Computational Geometry

Definition
Geometry of pro

1st algorithm 2nd algorithm

Proof of correctn Other algorithms

Higher dimensions

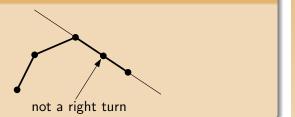
Special cases:

- Two points have same *x*-coordinate.
- 2 Three points on a line

Solution:

Use the lexicographic order.

Solution:



Computational Geometry

Convex hu

Definition Geometry of problem 1st algorithm

2nd algorithm Proof of correctne

Other algorithms Higher dimension

Robustness:

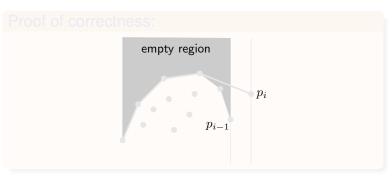
What does the algorithm do in the presence of rounding errors in the floating point arithmetic?

- When such errors occur, it can happen that a point is removed from the convex hull although it should be there, or that a point inside the real convex hull is not removed. But the structural integrity of the algorithm is unharmed: it will compute a closed polygonal chain.
- The only problem that can still occur is that, when three points lie very close together, a turn that is actually a sharp left turn can be interpreted as a right turn. This might result in a dent in the resulting polygon.

Computational Geometry

Convex hull
Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

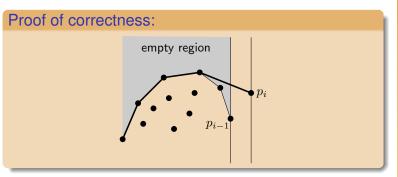
Theorem: The convex hull of a set of n points in the plane can be computed in $\mathcal{O}(n \log n)$ time.



Computational Geometry

Convex hull
Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

Theorem: The convex hull of a set of n points in the plane can be computed in $\mathcal{O}(n \log n)$ time.



Computational Geometry

Theorem: The convex hull of a set of n points in the plane can be computed in $\mathcal{O}(n \log n)$ time.

Time Complexity:

- Sorting: $\mathcal{O}(n \log n)$.
- The for-loop is executed a linear number of times.
- For each execution of the for-loop the while-loop is executed at least once. For any extra execution a point is deleted from the current hull.
- So the time complexity for computing upper hull and lower hull is $\mathcal{O}(n)$.
- Total running time: $O(n \log n)$.

Lower bound:

An $\Omega(n \log n)$ lower bound is known for the convex hull problem.

Computational Geometry

Convex hull
Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

Theorem: The convex hull of a set of n points in the plane can be computed in $\mathcal{O}(n \log n)$ time.

Time Complexity:

- Sorting: $\mathcal{O}(n \log n)$.
- The for-loop is executed a linear number of times.
- For each execution of the for-loop the while-loop is executed at least once. For any extra execution a point is deleted from the current hull.
- So the time complexity for computing upper hull and lower hull is $\mathcal{O}(n)$.
- Total running time: $O(n \log n)$.

Lower bound:

An $\Omega(n\log n)$ lower bound is known for the convex hull problem.

Computational Geometry

Convex hull
Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

Other algorithms:

پنوان این کار Yazd Univ.

Computational Geometry

Convex hull
Definition
Geometry of problem
1st algorithm
2nd algorithm
Proof of correctness
Other algorithms

n: number of points

h: number of points on the boundary of convex hull

Higher dimensions:

- The convex hull can be defined in any dimension.
- Convex hulls in 3-dimensional space can still be computed in $O(n \log n)$ time (Chapter 11).
- For dimensions higher than 3, however, the complexity of the convex hull is no longer linear in the number of points.

Geometry Computational

Computational Geometry

Convex hull