
Oct 2014 

s.marzieh.abdolahi 



• A data structure to support range queries in IR𝑑. 

• Preprocessing time: O(n log n) 

• Space complexity: O(n) 

• Query time: O(n1−1/𝑑 + 𝑘). 

 



CONSTRUCTION OF DD KD-TREES 

• The construction algorithm is similar to 2-dim. 

case. 

• At the root, we split the set of points into two 

subsets of same size by a hyperplane ⊥ x1-axis. 

• At the children of the root, the partition is based 

on the second coordinate: x2-coordinate  



• So on so forth ... until at depth d -1, we partition 

on the last coordinate: xd-coordinate. 

• At depth d, we start all over again by 

partitioning on first coordinate. 

• The recursion stops until there is only one point 

left, which is stored as a leaf. 



CONSTRUCTION TIME AND SPACE OF 

DD KD-TREES 

• Since a dD kd-tree is a binary tree with n leaves, the 

storage is O(n), and construction time is O(n log 

n).(assuming d is a constant.) 

• More precisely, 

•  Storage = O(d . n) since we store d xi-lists. 

• Construction time = O(d . n log n) since we need to 

compute d xi-lists for each node. 



• Query routine 

• visits those nodes whose regions are properly 

intersected by R; 

• traverses subtrees that are rooted at nodes whose 

regions are fully contained in R. 

• It can be shown that query time = O(n1−1/𝑑 + 𝑘). 




