d-Dimensional Kd-Trees

s.marzieh.abdolahi

Oct 2014




A data structure to support range queries in IR?.
Preprocessing time: O(n log n)

Space complexity: O(n)

Query time: O(n'~1/4 + k).




CONSTRUCTION OF DD KD-TREES

« The construction algorithm is similar to 2-dim.
case.

« At the root, we split the set of points into two
subsets of same size by a hyperplane L x1-axis.

« At the children of the root, the partition Is based
on the second coordinate: x2-coordinate




So on so forth ... until at depth d -1, we partition
on the last coordinate: x-coordinate.

At depth d, we start all over again by
partitioning on first coordinate.

The recursion stops until there is only one point
left, which is stored as a leaf.




CONSTRUCTION TIME AND SPACE OF
DD KD-TREES

* Since a dD kd-tree Is a binary tree with n leaves, the
storage 1s O(n), and construction time Is O(n log
n).(assuming d is a constant.)

* More precisely,

» Storage = O(d . n) since we store d x;-lists.

« Construction time = O(d . n log n) since we need to
compute d x;-lists for each node.




* Query routine

*Vvisits those nodes whose regions are properly
Intersected by R;

* traverses subtrees that are rooted at nodes whose
regions are fully contained in R.

« It can be shown that query time = O(n'=%/4 + k).







