A sample paper that we are writing in the class

Ali Ahmadi, Jafar Mohammadi

October 26, 2019

Contents

1	Cha	apter Title	9
	1.1	Another section	9
	1.2	Introduction	10
	1.3	Second one	10
		1.3.1 A Subsection	11
	1.4	itemize	11
	1.5	enumerate	12
	1.6	Notepadd++ Commands	12
2	Ma	thematics Formula	13
	2.1	Introduction	13
	2.2		14
3	$Th\epsilon$	eorem-Like Environment	17
	3.1	Introduction	17
			17
4	Ada	ling Figures and Tables	19
_			20

4 CONTENTS

List of Figures

4.1	This is caption	of the	figure								20
4.2	This is caption	of the	figure*****.								21

List of Tables

4.1	This is caption	of the	figure*****	۲.																2
			0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Chapter 1

Chapter Title

This is abstract of our paper. To make it more enough, we copy a text from below.

This is a test. Warning: there are PC members who have never accessed the ICCG 2020 Web pages (see the table below). It is possible that emails sent by EasyChair never reached these PC members. There are two possible reasons for this.

1.1 Another section

To view more information about a PC member, edit this information or delete the PC member, click, or. This is a test. Warning: there are PC members who have never accessed the ICCG 2020 Web pages (see the table below). It is possible that emails sent by EasyChair never reached these PC members. There are two possible reasons for this. First, the email address may be incorrect. Second, there might be an email delivery problem: mail servers are trying to fight spam mail and so are becoming increasingly hostile and unreliable. We recommend you to check the email addresses of these PC members using the 'Email addresses' menu item in the upper right corner and, if they are correct, try to contact these PC members

directly to check if they received any email. You can click on the question mark in the table to obtain more information about a PC member. Below you will find the table of all PC members ordered by the time of their last access to the PC Web page. All times are GMT. There are 21 PC members

To view more information about a PC member, edit this information or

delete the PC member, click , , or . This is a test. Warning: there are PC members who have never accessed the ICCG 2020 Web pages (see the table below). It is possible that emails sent by EasyChair never reached these PC members. There are two possible reasons for this. First, the email address may be incorrect. Second, there might be an email delivery problem: mail servers are trying to fight spam mail and so are becoming increasingly hostile and unreliable. We recommend you to check the email addresses of these PC members using the 'Email addresses' menu item in the upper right corner and, if they are correct, try to contact these PC members directly to check if they received any email. You can click on the question mark in the table to obtain more information about a PC member. Below you will find the table of all PC members ordered by the time of their last access to the PC Web page. All times are GMT. There are 21 PC members

To view more information about a PC member, edit this information or delete the PC member, click , , or .

Pishgoftar

Warning: there are PC members who have never accessed the ICCG 2020 Web pages (see the table below). It is possible that emails sent by EasyChair never reached these PC members. There are two possible reasons for this.

1.2 Introduction

This is a test. Warning: there are PC members who have never accessed the ICCG 2020 Web pages¹ (see the table below). It is possible that emails sent by EasyChair never reached these PC members. There are two possible reasons for this.

1.3 Second one

First, the email address may be incorrect. Second, there might be an email delivery problem: mail servers are trying to fight spam mail and so are becoming² increasingly hostile and unreliable.

¹The website is http://iccg.com.

 $^{^2}$ Second one

1.4. ITEMIZE 11

We recommend you to check the email addresses of these PC members using the 'Email addresses' menu item in the upper right corner and, if they are correct, try to contact these PC members directly to check if they received any email.

1.3.1 A Subsection

You can click on the question mark in the table to obtain more information about a PC member. Below you will find the table of all PC members ordered by the time of their last access to the PC Web page. All times are GMT. There are 21 PC members

A sub sub section

To view more information about a PC member, edit this information or delete the PC member, click , , or .

To log in as another PC member³ (that is, see the view of the PC member and/or make actions on her or his behalf), click. This is a test. Warning: there are PC members who have never accessed the ICCG 2020 Web pages (see the table below).

It is possible that emails sent by EasyChair never reached these PC members. There are two possible reasons for this. First, the email address may be incorrect. Second, there might be an email delivery problem: mail servers are trying to fight spam mail and so are becoming increasingly hostile and unreliable. We recommend you to check the email addresses of these PC members using the 'Email addresses' menu item in the upper right corner and, if they are correct, try to contact these PC members directly to check if they received any email. You can click on the question mark in the table to obtain more information about a PC member. Below you will find the table of all PC members ordered by the time of their last access to the PC Web page. All times are GMT. There are 21 PC members

1.4 itemize

This is itemize.

³This is another footnote.

- a) Item One
- b) Item 2
- c) This is a test for itemize item text to be a little long to see what happens.

This is a test after itemize. As dfhk dkfjkd kdfjd ldkfl ldkfd this is that we saw in subsection 1.3.1, we know that at the page 11 we sss

- Item One
- Item 2
- This is a test for itemize item text to be a little long to see what happens.

1.5 enumerate

1. Item One

\end{enumerate}

- 2. Item 2
- 3. This is a test for itemize item text to be a little long to see what happens.

By equation 2.1 we have

1.6 Notepadd++ Commands

```
NPP_SAVE
cd $(CURRENT_DIRECTORY)
pdflatex -synctex=-1 --shell-escape $(FILE_NAME)

\begin{enumerate}
\item Item One
\item Item 2
\item This is a test for itemize item text to be a little long to see what hap
```

Chapter 2

Mathematics Formula

2.1 Introduction

The function

$$y = \left(\int_{11}^{\infty} 2x dx, \sum_{i=1}^{\infty}, \sqrt{1, 2x^{2^{2i}} + z_{i,j}^{2x+1}} \right)$$

we have

$$\sin^{2} \alpha + \cos^{2} \beta, \sqrt{2 \sin \alpha \cos \alpha} \times x, y$$

$$y = \left(\int_{11}^{\infty} 2x dx, \sum_{i=1}^{\infty}, \sqrt{1, 2x^{2^{1}} + z_{i,j}^{2x+1}} \right)$$

$$\sin^{2} \alpha + \cos^{2} \beta, \sqrt{2 \sin \alpha \cos \alpha} \times x, y$$
(2.1)

$$x^2 + y^2, 2xy\sin x \le 4xy + 2\sin x\cos y \tag{2.2}$$

$$x, y \leq x^2 + y^2$$

$$\geq 2x - 1$$

$$\not\subset 5.$$
(2.3)

$$\geq 2x-1$$

$$\not\subset$$
 5. (2.4)

$$x^{2} + y^{2}, 2xy \sin x \leq 4xy + 2\sin x \cos y$$
$$x, y \leq x^{2} + y^{2}$$
$$\geq 2x - 1$$
$$\not\subset 5.$$

by 2.3 there is ...

Based on the Conjecture 4.1.4 we have bla bla bla. Conjecture 4.1.4

2.2 Array

$$\begin{bmatrix} 25 & 42 & x^3 & x, y \\ x^2 + y^2 & \sin \alpha & \\ & x^2 + y^2, 2xy & \end{bmatrix}$$

25	42	x^3	x, y
$x^2 + y^2$		$\sin \alpha$	
	$x^2 + y^2, 2xy$		

2.2. ARRAY 15

U	niform	1		Delta		Gamma and Delta					
Max	Min	Ave	Max	Min	Ave	Max	Min	Ave			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			

U	Iniforn	1		Delta		Gamma and Delta					
Max	Min	Ave	Max	Min	Ave	Max	Min	Ave			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			

Chapter 3

Theorem-Like Environment

3.1 Introduction

I want to have a theorem.

Theorem 3.1.1 If G is planar then it is planar.

Theorem 3.1.2 This is second one.

3.2 New Section

Lemma 3.2.1 This is a lemma that we added after 2 theorems. So its number have to be something.

Conjecture 3.2.2 (Lu, 2000) This is a conjecture. My command

As you can see in Figure 4.1, we see that bla bla

Remark 3.2.1 ([CDE+13]) This is a remark. My second one Parameter

Chapter 4
Adding Figures and Tables

Figure 4.1: This is caption of the figure.

4.1 adding Figures

Lemma 4.1.1 ([KT06]) This is a lemma that we added after 2 theorems. So its number have to be something.

Conjecture 4.1.2 (Lu, 2000) This is a conjecture. My command

Lemma 4.1.3 This is a lemma that we added after 2 theorems. So its number have to be something.

In [NS07, GT85], we can see

Conjecture 4.1.4 (Lu, 2000) This is a conjecture. My command

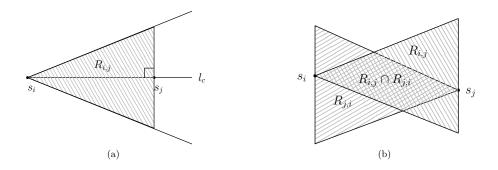


Figure 4.2: This is caption of the figure*****.

U	Jniforn	1		Delta		Gamma and Delta					
Max	Min	Ave	Max	Min	Ave	Max	Min	Ave			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9			

Table 4.1: This is caption of the figure*****.

Bibliography

- [CDE⁺13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google: Globally distributed database. *ACM Transaction on Computing Systems*, 31(3):8:1–8:22, August 2013.
- [GT85] Giangiacomo Gerla and Robert Tortora. Normalization of fuzzy algebras. Fuzzy Sets Systems, 17(1):73–82, September 1985.
- [KT06] Jon Kleinberg and Eva Tardos. *Algorithm design*. Pearson, Boston, MA, 2006. International edition.
- [NS07] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University Press, New York, NY, USA, 2007.