KEQREPY

J) gl

D

OIS 5 da graza [0210 4)

1-limits

return the limit as the variable v approaches a from the given direction.

«dir - (default: None); dir may have the value ‘plus’ (or ‘+’ or ‘right’) for a limit from above, ‘minus’ (or ‘- or ‘left’)
for a limit from below, or may be omitted (implying a two-sided limit is to be computed).

taylor - (default: False); if True, use Taylor series, which allows more limits to be computed (but may also crash in
some obscure cases due to bugs in Maxima).

* Note

The output may also use ‘und’ (undefined), ‘ind’ (indefinite but bounded), and ‘infinity’ (complex infinity).

Limits
lim f(z)= limit (£ (x), x=a)

T—a

limit (sin(x)/x, x=0)
lim f(z)=limit(f(x), x=a, dir=’plus’)

r—at

limit(1/x, x=0, dir=’plus’)

lim f(z) =1imit(f(x), x=a, dir=’minus’)
T—a

limit{(1/x, x=0, dir=’minus’)

exampeles:

sage: X = var('x")

sage: f = (1+1/x)"x
sage: f.limit(x = 00)
=

sage: [.limit({x = 5)
¥ 1613125

sage: T[.limit(x K 2
206961575465 was
sage: f[.limit(x

=il =k §lg) TG

I, taylor=True)

More examples:

sage: limit{x*log(x), x = 0, dir="+")
0

sage: lim{{x+1)~{1l/x), x = 0)

v

sage: lim{e"x/xX, X = 00)
+InEinity

sage: lim({e"x/x, X = —00)

0

sage: lim(-e"x/x, X = 00)

= Entinityr

sage: lim{{cos{x))/{x"2), x = 0)
+Intinityr

Here iInd means “indefinite but bounded”:

sage: lim(sin(l/x), x = 0)
ind

sage: limit (floor (x), x=0,
sage: limit (floor (x), x=0,

sage: limit (floor(x), x=0)
und

sage: limit(l/x, x=0)
Infinity
sage: limit(l/x, x=0,
+Infinity
sage: limit(l/x, x=0,
—Infinity

dir="-")

diz="4")

dir="+")

dip=t=")

These calculation for the exponential function shows a pretty serious annoyance in Sage: It needs to
know whether is an

* Integer, even though the result of the calculation doesn't depend on the answer to this questions
We therefore end up having to

« use Sage's assume() function to give both possible answers for the type of .

var('h')
limit((sin(x+h) - sin(x))’'h, h=0)

cos ()

limit((exp(x+h) - exp(x))/h, h=0)

Traceback (click to the left of this block for traceback)

Is x an integer?

assume(x, 'integer')
Iimit{(exp(x+h) - exp(x))/h, h=0)

eﬂ:

forget()
assume(x, 'mnoninteger’)
Iimit{(exp(x+h) - exp(x))’h, h=0)

eCC
forget()

var(a')
Iimit((x™~(1/3) - a™(1/3))/(x-a), x=a)

3 (%)

Here's one last limit, just for fun. You might think about
how to do it by hand.

limit(x”*x,x=0)

1

2-derivative

* Sage can also compute derivatives, either of expressions or of functions.
derivative(), differentiate(), and diff() are three different names for the
same function (or method) for doing this.

nestrad = sqri(x+sqrt(x-+sqrt(x)))
nestrad

V@+v@+vﬁ

diff(nestrad,x)
1
@)
:r+\/i;
1
¢ T+A/ T+/T

simplify rational()

| !4\/:1:4—\/5\/3-3%—2 \/:E+1!
MRV TNV TN

fx =% %
f

7zt

fprime = dittif)

fprime
t++ {log{z) +1)2" L

3 ‘,'/'0.15' B
pt =plot(f, (z,0,2), color=red, linestyle=-) oeb [
ptprime = plotitprime, (z,0,2), color=blue’, linestyle=--) g
show(pfptprime, aspect_ratro=1, ymin=-2, ymax=2) af

k

-1.9 L
:

diff(sin() %)
cos ()

diff (sin(x) x.4)
sin ()

sin(x). diff(x,21)
cos ()

f(x)=sin(x)
it (f)

z — cos(z)

Jiff(F.x 4)
FE(F %, 4)(pifd)
bt 19 el 1 B 0 I

V2

Sage can even handle differentiation rules for arbitrary functions, like this:

function('f g h')
var('x")

T
diff(f(x)*g(x).x)

f (x) D[0] (g) () + g («) D[0] (f) ()
diff(f(x)/g(x), xX)

_[=)D0je)=z) | D(f)z)

g(z)’ 9(z)

diff(£(e0) g () *h().%)
f(z) g(z) D0 (h) (z) + f (z) h () D[0] (g) () + g (@) k() D[0] (f) ()
diff(f(g()).%)

D0 (f) (¢ ()) D[0] (9) (=)

diff(sqrt(f(x)).x)
1 D0](f)(=)

2 \/f()

EXAM PLES We differentiate a callable symbolic function:

sage: f(x,y) = x*y + sin(x"2) + e (-x)
sage: L

(%, 9 |==> x®ap o @l b iorpy (e
sage: derivative (f, X)

(X) |==F Z2FXFcos (X"Z) + ¥ = ef [(—X)

sage: derivative (f, v)
Xy V) | = X

We differentiate a polynomial:

sage: t = polygen(QQ@, 't')
sage: £ = (1-t)"5; ¢

=Lr9 «= SFLAd = 10153 + 107022

sage: derilivative (f)
-5*xt~4 + 20*t~3 -
sage: derilivative (£, t)
-5*xt~4 + 20*%t~3 -
sage: derivative (£, t, t)
- 20%t~3 + 60*E™2 = 6O+t 4+ 20
sage: derivative (£, t, 2)
=2 0% 83 b gUrENZ = BUOFE b 20
sage: derivative (f, 2)
-20*%t23 4+ BO*LAZ2 = BOFL + 20

FOFENZ + 20%C

JOFENEZ + Z20FE

5t 4+ 1

3

5

We differentiate a symbolic expression:

sage: var('a x")

(a, x)

sage: f = exp(sin(a - x"2))/x

sage: derivative (f, x)

—2%cos (-x*2 + a)*er(sin(-x"2 + a)) - e*(sin(-x"2 + a))/x"2

sage: derivative (£, a)
cos(-x"2 + a)*fe(sin(-x"2 + a))/x

Syntax for repeated differentiation:

sage: R.<u, v> = PolynomialRing {(QQ)

sage: £ = und*v"5

sage: derivative (f, u)

4*un3*vh5

sage: f.derivative (u) # can always use method notation
too

4*ur3*+vh5

sage: derivative (£, u, u)
L2E0™ 25975

sage: derivative(f, u, u, u)
ZAFUENS

sage: derivative(f, u, 3)

Rl R

sage: derivative(f, u, v)
207325 3%pi

sage: derivative (f, u, 2, V)
BUE U A2 & aptd

sage: derivative (f, u, v, 2)
BOROAIANRS

sage: derivative (f, [u, v, Vv])
8OxG" 353

Partial derivative notation in Sage

It’s confusing at first, but a simple example will make it clear.

| defined a function of two variables called test. When you run this in the notebook
Interface, you get:

test(x,y)

Dle] (test)(x,y)
D[B,6]({test){x.y)
D[1](test)(x,y)
D[1,1]{test){x.y)

The capital D denotes a derivative. The numbers in brackets indicate which variable the derivative is with
respect to. In this example, O denotes x and 1 denotes y.

The number of times a number is repeated indicates the order of the derivative.

D[0] is the first derivative with respect to x, D[1] is the first derivative with respect to y, D[0,0] is the second
derivative with respect to x and D[1,1] is the second derivative with respect to y.

example

y=var('y")
E DR, W =3P 3Rt A=d 5 ge s

show(f)

(x,y) +— 3x°y +x% - 4y°

> f.diff(x) is the partial with respect to x and f.diff(y) is the partial with respect to y.

Bl {22)

Ky ¥ | == SR 4 28K
TediTT {¥)

[y ¥ |——> BER"3 = 1I2FY"2Z

» If you want to take higher partials, just add in more variables. Thus f.diff(x,y) is the same as fxy.

Bk B &,
(X 3r] |==2 O~z

Implicit differentiation displays extraneous x variable.

The problem is, given y = 9*x*(1/2) - 2*y*(3/5), find dy/dx The answer is supposed to be
dy/dx = (45*yN2/5)) / (10*x*(1/2)*y*(2/5)+12*xN1/2))

When | enter the following syntax, there is an extraneous character, (x), displayed:

yv=function({'y", x)

temp=daff (9*x2 (1/2) = 2y (3.5 — ¥)
solve (temp,diff(y))

show(solve (temp,diff(y)))

http://ask.sagemath.org/question/10393/implicit-differentiation-displays-extraneous-x-variable/

Indefinite Integrals

We can use Sage to evaluate many indefinite integrals. Recall that if f is a function, then
Jf(x) dx=F(x)+C,

where F is an antiderivative of f (assuming it has one). The syntax for integrating a function in Sage is as follows:

integral("function", "variable of integration")

where "function" is the function that you want to integrate (without the quotes) and "variable of integration" is the variable that
you want to integrate with respect to (typically x).

For example, if you want to find the indefinite integral of y=sin(x), then you would type:
integral(sin(x),x)

Try typing the expression above in an empty Sage cell and then clicking "evaluate" (or typing "shift+enter"

One thing that you should notice is that the answer is missing the constant of integration (i.e. "+C").
You'll just have to remember that this is always missing.

We can also integrate functions that we have previously defined.

In an empty Sage cell, define the function f(x)=3x2-2x3 by typing the following.

f(x)=3*x"2-2"x"3

Next, enter the following into an empty Sage cell and evaluate it.

integral(f(x),x)

Enter the following into a Sage cell.

:E_i:n.t[:-:]=:i.:n.ti=g':|:a.1 [Elzx] x]

It will look like nothing happened, but all we did was tell Sage to let £ ine
denote the indefinite integral of I (I made up the notation £_ine).

To see what £ ine actually 15, type the following into a Sage cell;

sh-:-w[f_:i.:n.t[:-:]]

To differentiate £ ine, type the following into a Sage cell.
diff (f int(x),x)

If you did everything correctly, the answer that you got should be equal
to the original function f.

Definite Integrals

Thankfully, we can compute the exact values of definite integrals using
Sage. The syntax for evaluating a definite integral using Sage is similar to

the syntax for indefinite integrals, except that we need to specify the
interval:

integral ("function', "wvariable of integration”™, a,b)

EXAMPLES:

sage: X = var('x")

sage: h = sin(x)/ (cos(x))"2
sage: h.integral (x)

1/cos (x)

sage: f = x*2/(x+1)"3
sage: f.integral (x)
1/2* (4*x + 3)/(x"2 + 2*x + 1) + log(x + 1)

sage: f = x*cos (x™2)

sage: f.integral(x, 0, sqgrt(pi))
0

sage: f.integral (x, a=-pi, b=pi)
0

sage: f(x) = sin(x)

sage: f.integral(x, 0, pi/2)

Constraints are sometimes needed:

sage: var('x, n')

(X, n)

sage: 1ntegral (x"n,x)

Traceback (most recent call last):

ValueError: Computation falled since Maxima requested
additional

constraints; using the 'assume' command before evaluation
may help (example of legal syntax 1s 'assume(n>0)', see
"assume?

for more details)

Is n equal to -17

sage: assume(n > 0)

sage: 1ntegral (x"n,x)

x*(n + 1)/ (n + 1)

sage: forget ()

Note that an exception is raised when a definite integral Is
divergent:

sage: forget() # alwavs remember to forget assumptions you
no longer need
sage: integrate (1/x"3, (x,0,1))

Traceback (most recent call last):
ValueError: Integral 1s divergent.
sage: integrate (1/x"3,x,-1,3)

Traceback (most recent call last):

ValueError: Integral 1s divergent.

The examples in the Maxima documentation:

sage: var('x, v, z, b'")

(2, v, 2z, b)
sage: 1ntegral (sin(x)"3, X)
1/3*cos (x) "3 - cos(x)

sage: inteqgral (x/sqrt(b”2-x"2), b)
x*log(Z2*bk + Z*sqrt(b"2 - x*2))

sage: integral (x/sqgrt (b"2-x"2), X)

-sgqrt (b2 - x*2)

sage: 1ntegral (cos(x)"Z2 * exp(x), %, 0, pl)
3/5%e”pi - 3/5

sage: 1ntegral (x"2 * exp(-x"2), X, -00, 0O)
1/2*sqrt (pi)

Multiple integrals in Sage

##In the first two cells we do a double integral example

Xx=varf{'x")

y=var('y")

innerint=integral (sgrt(x),x,v,e"Vy)
innerint

-2/3*v0(3/2) + 2/3*e”{(3/2*%vy)

outerint = integral(innerint,vy,0,1)
outerint
4/9*e”~(3/2) - 32/45

##Here's a triple integral example
x=var{'x");

y=var{'y');

z=var('z"'");

innerint=integral(l,z,0, (1/2)*(6-6*x-3*v));
middleint=integral (innerint,v,0,-2*x+2);
outerint=integral {(middleint,x, 0,1} ;
outerint

1

Double integral

zl=integral (sgrt(1-v"4),v,x,x"(1/3))
zl

integrate(sgrt{(-v™4 + 1), v, x, x°(1/3))

z2=integral (sgqrt(1-v*4),x,v"3,v)
Z2

~sgr(-v7™4 + 1)*(y"3 - v)

z3=1ntegral (z2,v,0,1)
Z3

1/8%pi - 1/6

Triple integrals

tl=integral (sin(x) *cos(sin(y)) ,x,v,pi/2)
il

cos (y) *cos(sin(y))

midt=integral (tl,vy,0,pi/2)
midt

51ri(1)

t3=integral (midt,z,0,pi)
show (t3)

man (1)

To integrate the function x2 from 0 to 1, we do

sage: numerical integral (x7Z, 0, 1, max points=100)
(0.3333333333333333, 3.700743415417188e-15)

To integrate the function sin(x)> + sin(x) we do

sage: numerical integral (sin(x)”"3 + sin(x), 0, pl)
(3.333333333333333, 3.700743415417188e-14)

integral (cos (sin(y)),v,0,1)
integrate (cos (sin(y)), v, 0, 1)

numerical integral (cos(sin(y)),0,1)
(0.8687400395769761, 9.644951943521286e-15)

Series and summations

An infinite series is a summation of a sequence with an infinite number of terms.
Truncated series are useful for approximating functions. In this section, we'll look at the
capabilities that Sage has for computing infinite sequences and computing their sums.

var('x, nn, k']

f(x) = sin(x) / x"2
f.ashow)

print ("Power sgerles expansion around x=1:")
a{x) = f.geriecg({x==1, 3)

2. ahow()

print ("Sum of alternating harmonic =series:")
hik) = (-1)%(k + 1) * 1 / k

print h.sum(k, 1, infinity)

print ("Sum of bincmial series:™)

hik) = binomialin, k)

print h.sum({k, 1, infinity)

print ("Sum of harmonic seriesg:™)
hik) =1 / k
print h.sum(k, 1, infinity) # Diverges

The results are shown in the following screenshot:

sin (x)

X =
x2

Power series expansion around x=1:

x > (sin (1)) + (=2 sin (1) + cos (1))(x - 1) + (g sin (1) -2 cos (1))(x - 1)* + o((x - 1)3)

Alternating harmonic series:

k |--> log(2)

Binomial series:

k |[--> 2"°n - 1

Harmonic series:

Traceback (click to the left of this block for traceback)

.-

ValueError: Sum is divergent.

What just happened?

We started by defining a function and using the series method to compute a power series
around the point x=1. The first argument to series is the point at which to create the
series, and the second argument is the order of the computed series. Notice that Sages uses
"big O" notation to denote the order of the series.

We then created several infinite series and computed their sums. Sage can compute the sum
of any convergent series using the sum method. The first argument to sumis the summation
variable, the second argument is the lower endpoint, and the third argument is the upper
endpoint of the series. We used this method to compute the sum of the alternating
harmonic series and the binomial series. However, we ran into trouble when we tried to
compute the sum of the harmonic series, which is divergent. Fortunately, Sage handled this
problem gracefully.

Jaoa sl al yia) Ja el i iz (Oliilea Dl L

A8) 4L 9 Cowd (il 4o Cradia K) 230 caly

S0 035 pa 5 (s 3o A A4S (Sl aS sk Dl 4
(glite a8 L ol O Gl gad (g0 5 i] 4
Ladll s Swa W

«su& Lalilgay

