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Abstract

A t-spanner of a point set V' is a undirected weighted graph G such that
for each pair of points p,q € V, there exist a path between p and ¢ in G of
length at most ¢ times the distance between p and ¢ (t-path). The diameter
(t-diameter) of a t-spanner is the smallest integer d such that for any pair of
vertices, there is a t-path in the graph between them containing at most d
edges. As far as we know there is no known algorithm on how to compute
the diameter of a t-spanner. In this paper we will give some algorithms for
computing the diameter of a ¢-spanner. The time complexity of the most
efficient algorithm is O(dmn), where n is the number of vertices, m is the
number of edges and d is the diameter of the input graph, and it requires
O(n) space.
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1 Introduction

Consider a set V of n points. A network on V can be modeled as an undirected
graph G with vertex set V and an edge set E of size m where every edge e = (u,v)
has a weight |uv|. Let P be a path in G between u and v. The weight of P is
defined as the sum of the weight of the edges of P. Let t > 1 be a real number. We
say that G is a t-spanner for V, if for each pair of points u,v € V', there exists a
path in G of weight at most ¢ times the distance between u and v. We call such a
path a t-path between u and v.

Complete graphs represent ideal communication networks, but they are expen-
sive to build; sparse spanners represent low-cost alternatives. Spanners find appli-
cations in robotics, network topology design, distributed systems, design of parallel
machines, and many other areas and have been a subject of considerable research.
Recently spanners found interesting practical applications in areas such as metric
space searching [10] and broadcasting in communication networks [3]. For wireless
ad hoc networks it is often desirable to have small diameter since it determines the
maximum number of times a message has to be transmitted in a network. If a graph
has diameter d then it is said to be a d-hop network. The problem of constructing
spanners has received considerable attention from a theoretical perspective, see the
surveys [4, 11].

2 Main Results

Let G(V, E) be a t-spanner. The problem at hand is to compute the diameter of G.
As far as we know there is no known algorithm on how to compute the diameter of
a t-spanner, below we present a dynamic programming approach for the problem.
Notation. For each p and ¢ in V, let dx(p, ¢) be the shortest path between p
and ¢ with at most k edges. In the case when we have more than one such a path



we consider the path with minimum number of edges. Also assume that Ly[p, q] is
the length of dx(p, ¢). If there is no such path, we set Li[p, q] to co.

So the diameter of G is the smallest integer k such that Li[p, q] < t-|pg|, for all

points p and ¢ in V. Obviously

iti=
revi{r.q}

Li(p, q) = min {Lk_l(p, @), min  {Li(p,7) + L;(r, q)}} :

See also [7, 8,2, 5,9, 1, 6].
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