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Abstract

A t-spanner of a point set V is a undirected weighted graph G such that
for each pair of points p, q ∈ V , there exist a path between p and q in G of
length at most t times the distance between p and q (t-path). The diameter
(t-diameter) of a t-spanner is the smallest integer d such that for any pair of
vertices, there is a t-path in the graph between them containing at most d
edges. As far as we know there is no known algorithm on how to compute
the diameter of a t-spanner. In this paper we will give some algorithms for
computing the diameter of a t-spanner. The time complexity of the most
efficient algorithm is O(dmn), where n is the number of vertices, m is the
number of edges and d is the diameter of the input graph, and it requires
O(n) space.

AMS subject classifications: 05C85, 05C12, 68W01.

1 Introduction

Consider a set V of n points. A network on V can be modeled as an undirected
graph G with vertex set V and an edge set E of size m where every edge e = (u, v)
has a weight |uv|. Let P be a path in G between u and v. The weight of P is
defined as the sum of the weight of the edges of P . Let t > 1 be a real number. We
say that G is a t-spanner for V , if for each pair of points u, v ∈ V , there exists a
path in G of weight at most t times the distance between u and v. We call such a
path a t-path between u and v.

Complete graphs represent ideal communication networks, but they are expen-
sive to build; sparse spanners represent low-cost alternatives. Spanners find appli-
cations in robotics, network topology design, distributed systems, design of parallel
machines, and many other areas and have been a subject of considerable research.
Recently spanners found interesting practical applications in areas such as metric
space searching [10] and broadcasting in communication networks [3]. For wireless
ad hoc networks it is often desirable to have small diameter since it determines the
maximum number of times a message has to be transmitted in a network. If a graph
has diameter d then it is said to be a d-hop network. The problem of constructing
spanners has received considerable attention from a theoretical perspective, see the
surveys [4, 11].

2 Main Results

Let G(V,E) be a t-spanner. The problem at hand is to compute the diameter of G.
As far as we know there is no known algorithm on how to compute the diameter of
a t-spanner, below we present a dynamic programming approach for the problem.

Notation. For each p and q in V , let δk(p, q) be the shortest path between p
and q with at most k edges. In the case when we have more than one such a path
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we consider the path with minimum number of edges. Also assume that Lk[p, q] is
the length of δk(p, q). If there is no such path, we set Lk[p, q] to ∞.

So the diameter of G is the smallest integer k such that Lk[p, q] ≤ t · |pq|, for all
points p and q in V . Obviously

Lk(p, q) = min

{
Lk−1(p, q), min

( i+j=k
r∈V \{p,q})

{Li(p, r) + Lj(r, q)}

}
.

See also [7, 8, 2, 5, 9, 1, 6].
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