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@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.
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Simple Polygon
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@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.

@ Question: How many cameras do we need to guard

a simple polygon?

Answer: Depends on the polygon.
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@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.

@ Question: How many cameras do we need to guard
a simple polygon?
Answer: Depends on the polygon.

@ One solution: Decompose the polygon to parts which
are simple to guard.
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@ diagonals:

not diagonal
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Triangulating Polygons @

Definitions
@ diagonals: S Uni
@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting e
diagonals.
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Triangulating Polygons

Definitions

@ diagonals:

@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting
diagonals.
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Triangulating Polygons

Definitions

@ diagonals:

@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting
diagonals.
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@ Guarding after triangulation:
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Triangulating Polygons

Definitions

@ Guarding after triangulation:
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Triangulating Polygons

Definitions

@ Guarding after triangulation:
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@ Guarding after triangulation:
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@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?
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Questions:
@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any
triangulation of a simple polygon with n vertices consists
of exactly n — 2 triangles.

Proof. By induction.
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Questions:
@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any
triangulation of a simple polygon with n vertices consists
of exactly n — 2 triangles.

Proof. By induction.

()

%,

Yazd Univ.

Computational
Geometry



@ 7p: Atriangulation of a simple polygon P.
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@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.
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Guarding a triangulated polygon

@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.
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Guarding a triangulated polygon

@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.

@ In a 3-coloring of Tp, every triangle has a blue, a red,
and a black vertex. Hence, if we place cameras at all
red vertices, we have guarded the whole polygon.

()

%,

Yazd Univ.

Computational
Geometry

7/1



Guarding a triangulated polygon

@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.

@ In a 3-coloring of Tp, every triangle has a blue, a red,
and a black vertex. Hence, if we place cameras at all
red vertices, we have guarded the whole polygon.

@ By choosing the smallest color class to place the
cameras, we can guard P using at most [n/3]
cameras.
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Does a 3-coloring always exist?
Dual graph:
@ This graph G(7p) has a node for every triangle in 7p.

@ There is an arc between two nodes v and p if ¢(v)
and t(u) share a diagonal.

@ G(Tp) is atree.
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Does a 3-coloring always exist?
For 3-coloring:
@ Traverse the dual graph (DFS).
@ Invariant: so far everything is nice.
@ Start from any node of G(7p); color the vertices.

@ When we reach a node v in G, coming from node .

Only one vertex of ¢(v) remains to be colored.
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Art Gallery Theorem

Theorem 3.2 (Art Gallery Theorem)

For a simple polygon with n vertices, |n/3] cameras are
occasionally necessary and always sufficient to have
every point in the polygon visible from at least one of the
cameras.

Ln/gj prongs
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How to compute a triangulation in O(n logn) time.

Therefore:

Let P be a simple polygon with n vertices. A set of |n/3]
camera positions in P such that any point inside P is
visible from at least one of the cameras can be computed
in O(nlogn) time.
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How can we compute a triangulation of a given polygon? J
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Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a
diagonal, each takes O(n) time. Time complexity:
O(n?).

@ A better naive algorithm: find an ear in O(n) time,
then recurse. Total time: O(n?).

@ First non-trivial algorithm: O(nlogn) (1978).

@ A long series of papers and algorithms in 80s until
Chazelle produced an optimal O(n) algorithm in
1991.

@ Linear time algorithm insanely complicated; there are
randomized, expected linear time that are more
accessible.

@ Here we present a O(nlogn) algorithm.
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@ Partition polygon into monotone polygons.
© Triangulate each monotone piece.
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P is called monotone w. r. t. £ if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a
point, or empty).
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).
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P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).
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P is called monotone w. r. t. £ if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a
point, or empty).

@ A point p is below another point ¢ if p, < ¢, or p, = ¢y
and p; > g

@ pis above ¢ if py > g, Of py = gy and p, < g,.
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V10

V11

V13

O =start vertex
B —end vertex
o =regular vertex

A =split vertex

v —=merge vertex
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P is y-monotone if it has no split or merge vertices. '

Proof. Assume P is not y-monotone.
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P is y-monotone if it has no split or merge vertices. '

Proof. Assume P is not y-monotone.

(a) split vertex (b)

merge verte
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Partition P into monotone pieces @

Lemma 3.4 o,
P is y-monotone if it has no split or merge vertices. vazd Univ

Computational

Proof. Assume P is not y-monotone. Geometry
(a) 8% split vertex (b) . s
’ S ( =
\ \
) 1 e L .
[ 4 \
p q ri p=r q r o1
P I/
N\
. 1 \
d ’
merge vertex * > o ‘

P has been partitioned into y-monotone pieces once we
get rid of its split and merge vertices.



‘Removing split vertices:
@ A sweep line algorithm. Events: all the points
@ Goal: To add diagonals from each split vertex to a

vertex lying above it.

@ helper(e;): The lowest vertex above the sweep line
such that the horizontal segment connecting the

vertex to e; lies inside P.
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@ A sweep line algorithm. Events: all the points

@ Goal: To add diagonals from each split vertex to a
vertex lying above it.

@ helper(e;): The lowest vertex above the sweep line
such that the horizontal segment connecting the
vertex to e; lies inside P.
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Removing split/merge vertices: @

Removing split vertices:
@ A sweep line algorithm. Events: all the points e,

@ Goal: To add diagonals from each split vertex to a Yaza i
vertex lying above it.

Computational
Geometry

@ helper(e;): The lowest vertex above the sweep line
such that the horizontal segment connecting the
vertex to e; lies inside P.




‘Removing merge vertices:
@ Connect each merge vertex to the highest vertex
below the sweep line in between ¢; and e..
@ But we do not know the point.

@ When we reach a vertex v,,, that replaces the helper
of e;, then this is the vertex we are looking for.
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‘Removing merge vertices:
@ Connect each merge vertex to the highest vertex
below the sweep line in between ¢; and e..
@ But we do not know the point.

@ When we reach a vertex v,,, that replaces the helper
of e;, then this is the vertex we are looking for.
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Removing split/merge vertices:
Removing merge vertices:

@ Connect each merge vertex to the highest vertex
below the sweep line in between e; and ey.

@ But we do not know the point.

@ When we reach a vertex v,, that replaces the helper
of e;, then this is the vertex we are looking for.

diagonal will be added
when the sweep line
reaches v,,.
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Data Structure:

For this approach, we need to find the edge to the left of
each vertex. To do that:

@ We store the edges of P intersecting the sweep line
in the leaves of a dynamic binary search tree 7.
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Data Structure: @
For this approach, we need to find the edge to the left of

%,

each vertex. To do that: v

@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. SE2ELy

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.



Data Structure: @
For this approach, we need to find the edge to the left of

%,

each vertex. To do that: v

@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. SE2ELy

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.

© With each edge in T we store its helper.



Data Structure: @
For this approach, we need to find the edge to the left of

%,

each vertex. To do that: v

@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. SE2ELy

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.

© With each edge in T we store its helper.

© We store P in DCEL form and make changes such
that it remains valid.



Make Monotone Algorithm:

Algorithm MAKEMONOTONE (P )
Input: A simple polygon P stored in a DCEL D.
Output: A partitioning of P into monotone subpolygons,

1.

> W

stored in D.
Construct a priority queue Q on the vertices of P,
using their y-coordinates as priority. If two points
have the same y-coordinate, the one with smaller
x-coordinate has higher priority.
Initialize an empty binary search tree 7.
while Q is not empty
Remove the vertex v; with the highest priority
from Q.
Call the appropriate procedure to handle the
vertex, depending on its type.
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Algorithm HANDLESTARTVERTEX (v;)
1. Inserte; in T and set helper(e;) to v;.
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Algorithm HANDLEENDVERTEX (v;)

1. if helper(e;—1) is a merge vertex

2. then Insert the diagonal connecting v; to
helper(e;—1) in D.

3. Delete e¢;_; from T.
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Algorithm HANDLESPLITVERTEX (v;)

1. Search in T to find the edge e; directly left of v;.

2. Insert the diagonal connecting v; to helper(e;) in D.
3.  helper(e;) < vj.

4. Inserte; in T and set helper(e;) to v;.

Us V3
U L]
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Algorithm HANDLEMERGEVERTEX (v;)

Nookrwh =

if helper(e;—1) is a merge vertex
then Insert the diag. v; to helper(e;—1) in D.
Delete e;—; from 7.
Search in 7 to find e; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diag. v; to helper(e;) in D.
helper(e;) < v;.
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Algorithm HANDLEREGULARVERTEX(v;)
if the interior of P lies to the right of v;
then if helper(e;—1) is a merge vertex
then Insert the diag. v; to helper(e;—1) in D.
Delete e;—; from 7.
Insert e; in 7 and set helper(e;) to v;.
else Search in 7 to find e; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diag. v; to helper(e;) i |n D
helper(e;) + v;

©CONOO AWM~
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Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No intersection between v;v,, and edges of P.
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Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No intersection between v;v,, and edges of P.
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Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No intersection between v;v,, and edges of P.

@ No intersection between v;v,,, and previous edges.
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Running time/ Space complexity

Running time:
@ Constructing the priority queue @: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.
@ at most one query on 7: O(logn) time.

© one insertion, and one deletion on 7: O(log n) time.

©Q we insert at most two diagonals into D: O(1) time.
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Running time/ Space complexity

Running time:
@ Constructing the priority queue @: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.
@ at most one query on 7: O(logn) time.

© one insertion, and one deletion on 7: O(log n) time.

©Q we insert at most two diagonals into D: O(1) time.

Space Complexity:

The amount of storage used by the algorithm is clearly
linear: every vertex is stored at most once in @), and
every edge is stored at most once in 7.
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A simple polygon with n vertices can be partitioned into
y-monotone polygons in O(nlogn) time with an algorithm
that uses O(n) storage.
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Triangulating a Monotone Polygon

vvvey




Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of
decreasing y-coordinate. (Left to right for points with
same y-coordinate).
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Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of
decreasing y-coordinate. (Left to right for points with
same y-coordinate).

@ The algorithm requires a stack S as auxiliary data
structure. It keeps the points that handled but might
need more diagonals.
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Triangulating a Monotone Polygon @

Triangulation Algorithm: W,
@ The algorithm handles the vertices in order of Yaza tnlv

decreasing y-coordinate. (Left to right for points with Computational
same y-coordinate). Geometry

@ The algorithm requires a stack S as auxiliary data
structure. It keeps the points that handled but might
need more diagonals.

© When we handle a vertex we add as many diagonals
from this vertex to vertices on the stack as possible.



Triangulating a Monotone Polygon @

Triangulation Algorithm: W,

@ The algorithm handles the vertices in order of Yaza tnlv
decreasing y-coordinate. (Left to right for points with Computational

same y-coordinate). Geometry

@ The algorithm requires a stack S as auxiliary data
structure. It keeps the points that handled but might
need more diagonals.

© When we handle a vertex we add as many diagonals
from this vertex to vertices on the stack as possible.

© Algorithm invariant: the part of P that still needs to
be triangulated, and lies above the last vertex that
has been encountered so far, looks like a funnel
turned upside down.
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Triangulating a Monotone Polygon

Algorithm TRIANGULATEMONOTONEPOLYGON(P)
Input: A strictly y-monotone polygon P stored in D.
Output: A triangulation of P stored in D.

1.

SRS RN

® ~

10.
11.

Merge the vertices on the left chain and the vertices on the right
chain of P into one sequence, sorted on decreasing
y-coordinate. Let w4, ..., u, denote the sorted sequence.
Initialize an empty stack S, and push w; and u2 onto it.
forj« 3ton—1
if u; and the vertex on top of S are on different chains
then Pop all vertices from S.
Insert into D a diagonal from w; to each popped
vertex, except the last one.
Push w;_, and u; onto S.
else Pop one vertex from S.
Pop the other vertices from S as long as the
diagonals from u; to them are inside P . Insert
these diagonals into D. Push the last vertex that
has been popped back onto S.
Push u; onto S.
Add diagonals from u,, to all stack vertices except the first and
the last one.
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A simple polygon with n vertices can be triangulated in
O(nlogn) time with an algorithm that uses O(n) storage.
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Polygon Triangulation
Theorem 3.8

A simple polygon with n vertices can be triangulated in
O(nlogn) time with an algorithm that uses O(n) storage.

Theorem 3.9

A planar subdivision with n vertices in total can be
triangulated in O(n log n) time with an algorithm that uses
O(n) storage.
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