1390-2

A A A a

¢

o mmmo

vvovy

S

W @ o

£t

2/1

N)

Lt it

?

2/1

@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.

.2

Simple Polygon

W @ o

Pl
Q

Non-Simple Polygons 5

3/1

@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.

@ Question: How many cameras do we need to guard

a simple polygon?

Answer: Depends on the polygon.

&

¢ B o

Star-shaped

Convex

N)
Pl
Q

3/1

@ Simple polygon: Regions enclosed by a single
closed polygonal chain that does not intersect itself.

@ Question: How many cameras do we need to guard
a simple polygon?
Answer: Depends on the polygon.

@ One solution: Decompose the polygon to parts which
are simple to guard.

i

N)
L
Q

3/1

@ diagonals:

not diagonal

N
N N

4/1

Triangulating Polygons @

Definitions
@ diagonals: S Uni
@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting e
diagonals.

AN

Triangulating Polygons

Definitions

@ diagonals:

@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting
diagonals.

()

e,

Yazd Univ.

Computational
Geometry

Triangulating Polygons

Definitions

@ diagonals:

@ Triangulation: A decomposition of a polygon into
triangles by a maximal set of non-intersecting
diagonals.

N

()

e,

Yazd Univ.

Computational
Geometry

@ Guarding after triangulation:

W @ o

N)
Pl
Q

5/1

Triangulating Polygons

Definitions

@ Guarding after triangulation:

()

%,

Yazd Univ.

Computational
Geometry

Triangulating Polygons

Definitions

@ Guarding after triangulation:

%,

Yazd Univ.

Computational
Geometry

Triangulating Polygons

Definitions

@ Guarding after triangulation:

()

%,

Yazd Univ.

Computational
Geometry

@ Guarding after triangulation:

o B0

L

5/1

@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?

W @ o

Pl

6/1

Questions:
@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any
triangulation of a simple polygon with n vertices consists
of exactly n — 2 triangles.

Proof. By induction.

()

%,

Yazd Univ.

Computational
Geometry

Questions:
@ Does a triangulation always exist?
@ How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any
triangulation of a simple polygon with n vertices consists
of exactly n — 2 triangles.

Proof. By induction.

()

%,

Yazd Univ.

Computational
Geometry

@ 7p: Atriangulation of a simple polygon P.

W @ o

N)
£t
Q

7/1

@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

W @ o

N)
Pl
Q

7/1

Guarding a triangulated polygon

@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.

()

e,

Yazd Univ.

Computational
Geometry

7/1

Guarding a triangulated polygon

@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.

@ In a 3-coloring of Tp, every triangle has a blue, a red,
and a black vertex. Hence, if we place cameras at all
red vertices, we have guarded the whole polygon.

()

%,

Yazd Univ.

Computational
Geometry

7/1

Guarding a triangulated polygon

@ 7p: Atriangulation of a simple polygon P.

@ Select S C the vertices of P, such that any triangle in
Tp has at least one vertex in S, and place the
cameras at vertices in S.

@ To find such a subset: find a 3-coloring of a
triangulated polygon.

@ In a 3-coloring of Tp, every triangle has a blue, a red,
and a black vertex. Hence, if we place cameras at all
red vertices, we have guarded the whole polygon.

@ By choosing the smallest color class to place the
cameras, we can guard P using at most [n/3]
cameras.

()

%,

Yazd Univ.

Computational
Geometry

7/1

Does a 3-coloring always exist?
Dual graph:
@ This graph G(7p) has a node for every triangle in 7p.

@ There is an arc between two nodes v and p if ¢(v)
and t(u) share a diagonal.

@ G(Tp) is atree.

()

%,

Yazd Univ.

Computational
Geometry

Does a 3-coloring always exist?
For 3-coloring:
@ Traverse the dual graph (DFS).
@ Invariant: so far everything is nice.
@ Start from any node of G(7p); color the vertices.

@ When we reach a node v in G, coming from node .

Only one vertex of ¢(v) remains to be colored.

()

%,

Yazd Univ.

Computational
Geometry

Art Gallery Theorem

Theorem 3.2 (Art Gallery Theorem)

For a simple polygon with n vertices, |n/3] cameras are
occasionally necessary and always sufficient to have
every point in the polygon visible from at least one of the
cameras.

Ln/gj prongs

()

%,

Yazd Univ.

Computational
Geometry

How to compute a triangulation in O(n logn) time.

Therefore:

Let P be a simple polygon with n vertices. A set of |n/3]
camera positions in P such that any point inside P is
visible from at least one of the cameras can be computed
in O(nlogn) time.

W @ o

N)
Pl
Q

11/1

How can we compute a triangulation of a given polygon? J

¢ B o

N)
Pl
Q

12/1

Triangulation algorithms

@ A really naive algorithm: check all (};) choices for a
diagonal, each takes O(n) time. Time complexity:
O(n?).

@ A better naive algorithm: find an ear in O(n) time,
then recurse. Total time: O(n?).

@ First non-trivial algorithm: O(nlogn) (1978).

@ A long series of papers and algorithms in 80s until
Chazelle produced an optimal O(n) algorithm in
1991.

@ Linear time algorithm insanely complicated; there are
randomized, expected linear time that are more
accessible.

@ Here we present a O(nlogn) algorithm.

()

%,

Yazd Univ.

Computational
Geometry

@ Partition polygon into monotone polygons.
© Triangulate each monotone piece.

W @ o

Pl

14/1

P is called monotone w. r. t. £ if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a
point, or empty).

W @ o

£t

15/1

P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).

/ y—axis

W @ o

N)
£t
Q

15/1

P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).

y—axis

W @ o

N)
£t
Q

15/1

P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).

y—axis

W @ o

N)
£t
Q

15/1

P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).

y—axis

W @ o

N)
£t
Q

15/1

P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).

y—axis

W @ o

N)
£t
Q

15/1

P is called monotone w. r. t. / if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a

point, or empty).

y—axis

W @ o

N)
£t
Q

15/1

P is called monotone w. r. t. £ if V¢’ perpendicular to ¢ the
intersection of P with 7 is connected (a line segment, a
point, or empty).

@ A point p is below another point ¢ if p, < ¢, or p, = ¢y
and p; > g

@ pis above ¢ if py > g, Of py = gy and p, < g,.

W @ o

N)
Pl
Q

15/1

V10

V11

V13

O =start vertex
B —end vertex
o =regular vertex

A =split vertex

v —=merge vertex

o mwo @ o

16/1

P is y-monotone if it has no split or merge vertices. '

Proof. Assume P is not y-monotone.

W @ o

N)
Pl
Q

17/1

P is y-monotone if it has no split or merge vertices. '

Proof. Assume P is not y-monotone.

(a) split vertex (b)

merge verte

17/1

Partition P into monotone pieces @

Lemma 3.4 o,
P is y-monotone if it has no split or merge vertices. vazd Univ

Computational

Proof. Assume P is not y-monotone. Geometry
(a) 8% split vertex (b) . s
’ S (=
\ \
) 1 e L .
[4 \
p q ri p=r q r o1
P I/
N\
. 1 \
d ’
merge vertex * > o ‘

P has been partitioned into y-monotone pieces once we
get rid of its split and merge vertices.

‘Removing split vertices:
@ A sweep line algorithm. Events: all the points
@ Goal: To add diagonals from each split vertex to a

vertex lying above it.

@ helper(e;): The lowest vertex above the sweep line
such that the horizontal segment connecting the

vertex to e; lies inside P.

W @ o

N)
Pl
Q

18/1

@ A sweep line algorithm. Events: all the points

@ Goal: To add diagonals from each split vertex to a
vertex lying above it.

@ helper(e;): The lowest vertex above the sweep line
such that the horizontal segment connecting the
vertex to e; lies inside P.

W @ o

Pl
Q

18/1

Removing split/merge vertices: @

Removing split vertices:
@ A sweep line algorithm. Events: all the points e,

@ Goal: To add diagonals from each split vertex to a Yaza i
vertex lying above it.

Computational
Geometry

@ helper(e;): The lowest vertex above the sweep line
such that the horizontal segment connecting the
vertex to e; lies inside P.

‘Removing merge vertices:
@ Connect each merge vertex to the highest vertex
below the sweep line in between ¢; and e..
@ But we do not know the point.

@ When we reach a vertex v,,, that replaces the helper
of e;, then this is the vertex we are looking for.

W @ o

N)
Pl
Q

19/1

‘Removing merge vertices:
@ Connect each merge vertex to the highest vertex
below the sweep line in between ¢; and e..
@ But we do not know the point.

@ When we reach a vertex v,,, that replaces the helper
of e;, then this is the vertex we are looking for.

W @ o

N)
Pl
Q

19/1

Removing split/merge vertices:
Removing merge vertices:

@ Connect each merge vertex to the highest vertex
below the sweep line in between e; and ey.

@ But we do not know the point.

@ When we reach a vertex v,, that replaces the helper
of e;, then this is the vertex we are looking for.

diagonal will be added
when the sweep line
reaches v,,.

()

e,

Yazd Univ.

Computational
Geometry

Data Structure:

For this approach, we need to find the edge to the left of
each vertex. To do that:

@ We store the edges of P intersecting the sweep line
in the leaves of a dynamic binary search tree 7.

()

%,

Yazd Univ.

Computational
Geometry

Data Structure: @
For this approach, we need to find the edge to the left of

%,

each vertex. To do that: v

@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. SE2ELy

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.

Data Structure: @
For this approach, we need to find the edge to the left of

%,

each vertex. To do that: v

@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. SE2ELy

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.

© With each edge in T we store its helper.

Data Structure: @
For this approach, we need to find the edge to the left of

%,

each vertex. To do that: v

@ We store the edges of P intersecting the sweep line Computational
in the leaves of a dynamic binary search tree 7. SE2ELy

© Because we are only interested in edges to the left of
split and merge vertices we only need to store edges
in 7 that have the interior of P to their right.

© With each edge in T we store its helper.

© We store P in DCEL form and make changes such
that it remains valid.

Make Monotone Algorithm:

Algorithm MAKEMONOTONE (P)
Input: A simple polygon P stored in a DCEL D.
Output: A partitioning of P into monotone subpolygons,

1.

> W

stored in D.
Construct a priority queue Q on the vertices of P,
using their y-coordinates as priority. If two points
have the same y-coordinate, the one with smaller
x-coordinate has higher priority.
Initialize an empty binary search tree 7.
while Q is not empty
Remove the vertex v; with the highest priority
from Q.
Call the appropriate procedure to handle the
vertex, depending on its type.

()

%,

Yazd Univ.

Computational
Geometry

21

Algorithm HANDLESTARTVERTEX (v;)
1. Inserte; in T and set helper(e;) to v;.

¢ B o

N)
Pl
Q

22/1

Algorithm HANDLEENDVERTEX (v;)

1. if helper(e;—1) is a merge vertex

2. then Insert the diagonal connecting v; to
helper(e;—1) in D.

3. Delete e¢;_; from T.

23/1

Algorithm HANDLESPLITVERTEX (v;)

1. Search in T to find the edge e; directly left of v;.

2. Insert the diagonal connecting v; to helper(e;) in D.
3. helper(e;) < vj.

4. Inserte; in T and set helper(e;) to v;.

Us V3
U L]

24/1

Algorithm HANDLEMERGEVERTEX (v;)

Nookrwh =

if helper(e;—1) is a merge vertex
then Insert the diag. v; to helper(e;—1) in D.
Delete e;—; from 7.
Search in 7 to find e; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diag. v; to helper(e;) in D.
helper(e;) < v;.

25/1

Algorithm HANDLEREGULARVERTEX(v;)
if the interior of P lies to the right of v;
then if helper(e;—1) is a merge vertex
then Insert the diag. v; to helper(e;—1) in D.
Delete e;—; from 7.
Insert e; in 7 and set helper(e;) to v;.
else Search in 7 to find e; directly left of v;.
if helper(e;) is a merge vertex
then Insert the diag. v; to helper(e;) i |n D
helper(e;) + v;

©CONOO AWM~

26/1

Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No intersection between v;v,, and edges of P.

()

e,

Yazd Univ.

Computational
Geometry

Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No intersection between v;v,, and edges of P.

()

e,

Yazd Univ.

Computational
Geometry

Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No intersection between v;v,, and edges of P.

()

e,

Yazd Univ.

Computational
Geometry

Lemma 3.5

Algorithm MAKEMONOTONE adds a set of
non-intersecting diagonals that partitions P into
monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
@ No intersection between v;v,, and edges of P.

@ No intersection between v;v,,, and previous edges.

()

%,

Yazd Univ.

Computational
Geometry

Running time/ Space complexity

Running time:
@ Constructing the priority queue @: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.
@ at most one query on 7: O(logn) time.

© one insertion, and one deletion on 7: O(log n) time.

©Q we insert at most two diagonals into D: O(1) time.

()

e,

Yazd Univ.

Computational
Geometry

Running time/ Space complexity

Running time:
@ Constructing the priority queue @: O(n) time.
@ Initializing 7: O(1) time.
@ To handle an event, we perform:

@ one operation on Q: O(logn) time.
@ at most one query on 7: O(logn) time.

© one insertion, and one deletion on 7: O(log n) time.

©Q we insert at most two diagonals into D: O(1) time.

Space Complexity:

The amount of storage used by the algorithm is clearly
linear: every vertex is stored at most once in @), and
every edge is stored at most once in 7.

()

e,

Yazd Univ.

Computational
Geometry

A simple polygon with n vertices can be partitioned into
y-monotone polygons in O(nlogn) time with an algorithm
that uses O(n) storage.

W @ o

Pl

29/1

Triangulating a Monotone Polygon

vvvey

Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of
decreasing y-coordinate. (Left to right for points with
same y-coordinate).

()

%,

Yazd Univ.

Computational
Geometry

Triangulating a Monotone Polygon

Triangulation Algorithm:

@ The algorithm handles the vertices in order of
decreasing y-coordinate. (Left to right for points with
same y-coordinate).

@ The algorithm requires a stack S as auxiliary data
structure. It keeps the points that handled but might
need more diagonals.

()

%,

Yazd Univ.

Computational
Geometry

Triangulating a Monotone Polygon @

Triangulation Algorithm: W,
@ The algorithm handles the vertices in order of Yaza tnlv

decreasing y-coordinate. (Left to right for points with Computational
same y-coordinate). Geometry

@ The algorithm requires a stack S as auxiliary data
structure. It keeps the points that handled but might
need more diagonals.

© When we handle a vertex we add as many diagonals
from this vertex to vertices on the stack as possible.

Triangulating a Monotone Polygon @

Triangulation Algorithm: W,

@ The algorithm handles the vertices in order of Yaza tnlv
decreasing y-coordinate. (Left to right for points with Computational

same y-coordinate). Geometry

@ The algorithm requires a stack S as auxiliary data
structure. It keeps the points that handled but might
need more diagonals.

© When we handle a vertex we add as many diagonals
from this vertex to vertices on the stack as possible.

© Algorithm invariant: the part of P that still needs to
be triangulated, and lies above the last vertex that
has been encountered so far, looks like a funnel
turned upside down.

not yet

triangulated -

triangles
split off

.

W @ o

N)
£t

32/1

33/1

top of stack 4«

DA

33/1

[m]

DA

33/1

[m]

DA

33/1

[m]

DA

33/1

DA

33/1

popped and
pushed

7

popped

o/

% %
pushed -

DA

34/1

popped and
pushed

pushed

20
34/1

Triangulating a Monotone Polygon

Algorithm TRIANGULATEMONOTONEPOLYGON(P)
Input: A strictly y-monotone polygon P stored in D.
Output: A triangulation of P stored in D.

1.

SRS RN

® ~

10.
11.

Merge the vertices on the left chain and the vertices on the right
chain of P into one sequence, sorted on decreasing
y-coordinate. Let w4, ..., u, denote the sorted sequence.
Initialize an empty stack S, and push w; and u2 onto it.
forj« 3ton—1
if u; and the vertex on top of S are on different chains
then Pop all vertices from S.
Insert into D a diagonal from w; to each popped
vertex, except the last one.
Push w;_, and u; onto S.
else Pop one vertex from S.
Pop the other vertices from S as long as the
diagonals from u; to them are inside P . Insert
these diagonals into D. Push the last vertex that
has been popped back onto S.
Push u; onto S.
Add diagonals from u,, to all stack vertices except the first and
the last one.

e,

Yazd Univ.

Computational
Geometry

w
O

A simple polygon with n vertices can be triangulated in
O(nlogn) time with an algorithm that uses O(n) storage.

W @ o

Pl

36/1

Polygon Triangulation
Theorem 3.8

A simple polygon with n vertices can be triangulated in
O(nlogn) time with an algorithm that uses O(n) storage.

Theorem 3.9

A planar subdivision with n vertices in total can be
triangulated in O(n log n) time with an algorithm that uses
O(n) storage.

()

%,

Yazd Univ.

Computational
Geometry

o
pz
L

	The Art Gallery Problem
	Guarding and Triangulations

	Computing triangulation
	Partitioning a Polygon into Monotone Pieces
	Triangulating a Monotone Polygon

