A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision probler

The reduction

References

A lower bound for computing geometric spanners

Abolfazl Poureidi

Combinatorial and Geometric Algorithms Lab., Department of Computer Science, Yazd University.

poureidi@stu.yazd.ac.ir

November 29, 2015

イロト イポト イヨト イヨト 三日

1/16

Outline

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem

References

Introduction

2 The unit gap decision problem

3 The reduction

Geometric network

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem

The reduction

References

Definition

- Geometric network on $P \subset \mathbb{R}^d$
- The length of a path
- t-spanner path between two points
- t-spanner on P
- Steiner *t*-spanner on *P*

Spanners and a lower bound

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem The reduction References Given $p = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$, where d is a constant, and a constant t > 1

A sparse *t*-spanner on *P* in $\mathcal{O}(n \log n)$,

Question: Compute a sparce *t*-spanner on *P* in $o(n \log n)$?

In 2001, Chen, Das, and Smid gave a lower bound $\Omega(n \log n)$ on a point set from \mathbb{R} in the algebraic computation tree model

4/16

If $P \subset \mathbb{R}^d$, where d > 1

General position

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem The reduction

Definition

General position for a point set $P \subset \mathbb{R}^d$

Conjecture: Let $d \ge 2$ be an integer constant. In the algebraic computation tree model, any algorithm that, given a set P of n points in \mathbb{R}^d that are in general position, and a real number t > 1, constructs a Steiner *t*-spanner for P, takes $\Omega(n \log n)$ time in the worst case.

The algebraic computation tree model

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem The reduction

References

Definition

computation problem: $A : \mathbb{R}^n \to S$, for example sorting problem

Definition

n: a positive integer, S: a solution space.

An algebraic computation-tree on s_1, s_2, \ldots, s_n is a finite tree T:

- Each leaf is labeled with the combinatorial description, in terms of s_1, s_2, \ldots, s_n , of an element in S.
- Each node *u* having one child is labeled with *Z*(*u*)
 (a) *Z*(*u*) := *A*₁&*A*₂, where & ∈ {+, -, ×, /}, or
 (b) *Z*(*u*) := √*A*₁,
 (i) *A_i* = *Z*(*u'*), (ii) *A_i* ∈ {*s*₁,..., *s_n*}, or (iii) *A_i* is a constant.
- Each node u having two children of the form A ≤ 0 or A > 0
 (i) A_i = Z(u'), (ii) A_i ∈ {s₁,..., s_n}

The algebraic computation tree model

The algebraic computation tree model

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision probler

The reduction

References

Definition

A computation problem $A : \mathbb{R}^n \to S$ is solvable in the algebraic computation tree model if exists a T that for any $(s_1, \ldots, s_n) \in \mathbb{R}^n$ returns $A(s_1, \ldots, s_n)$.

(ロ) (同) (E) (E) (E)

8/16

Definition

The time complexity of a problem

The unit gap decision problem

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem

The reduction

References

Definition

Given $S = (x_1, \ldots, x_n) \in \mathbb{R}^n$, if for all $i \neq j$, $|x_i - x_j| \ge 1$.

This computation problem has an $\Omega(n \log n)$ time complexity.

Theorem

Let W be any set in \mathbb{R}^n and let \mathcal{D} be any algorithm that accepts W. Let #W denotes the number of connected components of W. Then the worst-case running time of \mathcal{D} in the algebraic computation tree model is $\Omega(\log \#W - n)$.

The time complexity of the unit gap problem

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem

The reduction

References

Lemma

Proof.

The unit gap problem has an $\Omega(n \log n)$ time complexity.

$(x_1, \ldots, x_i, \ldots, x_n) \coloneqq (1, \ldots, i, \ldots, n)$ Let π and ρ be two distinct permutation of $1, \ldots, n$. $p \coloneqq (x_{\pi(1)}, \ldots, x_{\pi(n)}), r \coloneqq (x_{\rho(1)}, \ldots, x_{\rho(n)}),$ There are $i \neq j, \pi(i) < \pi(j)$ and $\rho(i) > \rho(j),$ Hence, any curve between p and r contains $q = (q_1, \ldots, q_n)$ s.t. $q_i = q_j.$ Hence, solution space of the problem has at least n! differnt component.

Hence, the problem has an $\Omega(n \log n)$ time complexity.

The reduction

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem

The reduction

References

Let STEINER-SPANNER be an algorithm,

Input: A set S of points in general position and t > 1.

Output: A Steiner *t*-spanner on *S* with $o(|S|\log |S|)$ and a label to each vertex as orginal or Steiner.

(ロ) (同) (E) (E) (E)

$$S = \{x_1, \dots, x_n\}, x_{min} = \min\{x_i\}, y_i := x_i + |x_{min}| + 1 \ge 1, \\ p_i := (y_i, y_i^2, \dots, y_i^d).$$

Lemma

Points $P = \{p_i\}$ are in general position.

The reduction

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision probler

The reduction

References

 $x_i \in S \rightarrow p_i \in \mathbb{R}^d$,

STEINER-SPANNER(P, 1.1)

for each point p, traverse the graph in a breath-first search all points inside the ball C_{p_i} centered at p_i with radius $2|p_ip'_i|$, where $p'_i := ((y_i - 1), (y_i - 1)^2, \dots, (y_i - 1)^d)$

If finds a $p_i \in C_{p_i}$ s.t $|(p_i)_1(p_j)_1| < 1$ return NO, otherwise return YES

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The reduction

13/16

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem

The reduction

References

Lemma

If the distance between the closest pair in the set of all input numbers of the reduction is greater than or equal to 1, then each ball C_p , $p \in P$, overlaps $\mathcal{O}(d)$ balls C_{p_i} .

Theorem

The time complexity of any algorithm for computing Steiner spanner in the algebraic computation tree model is $\Omega(n \log n)$.

(ロ) (同) (E) (E) (E)

14/16

For Further Reading

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision problem

The reduction

References

- M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC '83, pages 80-86, New York, NY, USA, 1983. ACM.
- O. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners and approximate shortest paths. Discrete Applied Mathematics, 110:151-167, 2001.
- G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge University Press, 2007.
- F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, USA, 1985.

A lower bound for computing geometric spanners

Abolfazl Poureidi

Introduction

The unit gap decision proble

The reduction

References

Thanks!

<ロ><日><日><日><日><日><日><日><日><日><日</td>16/16