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Geometric network

Definition

Geometric network on P ⊂ Rd

The length of a path

t-spanner path between two points

t-spanner on P

Steiner t-spanner on P

p1

p2 p3

p4
p5

p6

s1

s2

s3

s4 s6

s7

3 / 16



A lower bound
for computing
geometric
spanners

Abolfazl Poureidi

Introduction

The unit gap
decision problem

The reduction

References

Spanners and a lower bound

Given p = {p1, . . . ,pn} ⊂ Rd , where d is a constant, and a constant
t > 1

A sparse t-spanner on P in O(n log n),

Question: Compute a sparce t-spanner on P in o(n log n)?

In 2001, Chen, Das, and Smid gave a lower bound Ω(n log n) on a
point set from R in the algebraic computation tree model

If P ⊂ Rd , where d > 1
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General position

Definition

General position for a point set P ⊂ Rd

Conjecture: Let d ≥ 2 be an integer constant. In the algebraic
computation tree model, any algorithm that, given a set P of n points
in Rd that are in general position, and a real number t > 1, constructs
a Steiner t-spanner for P, takes Ω(n log n) time in the worst case.
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The algebraic computation tree model

Definition

computatiom problem: A ∶ Rn → S , for example sorting problem

Definition

n: a positive integer, S : a solution space.
An algebraic computation-tree on s1, s2, . . . , sn is a finite tree T :

Each leaf is labeled with the combinatorial description, in terms
of s1, s2, . . . , sn, of an element in S .

Each node u having one child is labeled with Z(u)
(a) Z(u) ∶= A1&A2, where & ∈ {+,−,×, /}, or
(b) Z(u) ∶=

√
A1,

(i) Ai = Z(u′), (ii) Ai ∈ {s1, . . . , sn}, or (iii) Ai is a constant.

Each node u having two children of the form A ≤ 0 or A > 0
(i) Ai = Z(u′), (ii) Ai ∈ {s1, . . . , sn}
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The algebraic computation tree model

Example

Sort given (a,b, c)

a > b

b > c a > c

(a, b, c) a > c

(a, c, b) (c, a, b)

(b, a, c) b > c

(b, c, a) (c, b, a)

YES

YES

YES

YES

YES NO

NO

NO

NO

NO
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The algebraic computation tree model

Definition

A computation problem A ∶ Rn → S is solvable in the algebraic
computation tree model if exists a T that for any (s1, . . . , sn) ∈ Rn

returns A(s1, . . . , sn).

Definition

The time complexity of a problem
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The unit gap decision problem

Definition

Given S = (x1, . . . , xn) ∈ Rn, if for all i /= j , ∣xi − xJ ∣ ≥ 1.

This computation problem has an Ω(n log n) time complexity.

Theorem

Let W be any set in Rn and let D be any algorithm that accepts W .
Let #W denotes the number of connected components of W . Then
the worst-case running time of D in the algebraic computation tree
model is Ω(log #W − n).
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The time complexity of the unit gap problem

Lemma

The unit gap problem has an Ω(n log n) time complexity.

Proof.

(x1, . . . , xi , . . . , xn) ∶= (1, . . . , i , . . . ,n)
Let π and ρ be two distinct permutation of 1, . . . ,n.
p ∶= (xπ(1), . . . , xπ(n)), r ∶= (xρ(1), . . . , xρ(n)),
There are i /= j , π(i) < π(j) and ρ(i) > ρ(j),
Hence, any curve between p and r contains q = (q1, . . . ,qn) s.t.
qi = qj .
Hence, solution space of the problem has at least n! differnt
component.
Hence, the problem has an Ω(n log n) time complexity.
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The reduction

Let Steiner-Spanner be an algorithm,

Input: A set S of points in general position and t > 1.

Output: A Steiner t-spanner on S with o(∣S ∣ log ∣S ∣) and a label to
each vertex as orginal or Steiner.

S = {x1, . . . , xn}, xmin = min{xi}, yi ∶= xi + ∣xmin∣ + 1 ≥ 1,
pi ∶= (yi , y

2
i , . . . , y

d
i ).

Lemma

Points P = {pi} are in general position.
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The reduction

xi ∈ S → pi ∈ Rd ,

Steiner-Spanner(P,1.1)

for each point p, traverse the graph in a breath-first search all points
inside the ball Cpi centered at pi with radius 2∣pip

′
i ∣, where

p′i ∶= ((yi − 1), (yi − 1)2, . . . , (yi − 1)d)

If finds a pj ∈ Cpi s.t ∣(pi)1(pj)1∣ < 1 return NO, otherwise return YES
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The reduction

(1, 1)

(2, 4)

(3, 9)

(4, 16)

(5, 25)

(6, 36)

S = {1, 2, 3, 4, 5, 6}
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Lemma

If the distance between the closest pair in the set of all input
numbers of the reduction is greater than or equal to 1, then each ball
Cp, p ∈ P, overlaps O(d) balls Cpi .

Theorem

The time complexity of any algorithm for computing Steiner spanner
in the algebraic computation tree model is Ω(n log n).
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