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Abstract. We investigate the continuity of principal eigenvalues

(i.e., eigenvalues corresponding to positive eigenfunctions ) for the

boundary value problem⎧⎨
⎩

−Δu(x) = λg(x)u(x) x ∈ BR(0)

u(x) = 0 |x| = R

,where BR(0) is a ball in RN , and g is a smooth function, and we

show that λ+
1 (R) and λ−

1 (R) are continuous functions of R.

1. Introduction

We study the function R → λ+1 (R) where λ+1 (R) being the unique

positive principal eigenvalue (i.e., eigenvalue corresponding to positive

eigenfunction) for the boundary value problem

{
−Δu(x) = λg(x)u(x) x ∈ BR(0)

u(x) = 0 |x| = R
(1)

where Δ is the standard Laplace operator, BR(0) is a ball in RN , and

g : BR(0) → R is a smooth function with changes sign on BR(0).

In recent years there has been interest in such problems since Fleming

[1] studied the following equation which arises in population genetics
1
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ut(x, t) = Δu+ λg(x)f(u), x ∈ D (2)

where D is a bounded domain with smooth boundary, g changes sign on

D and f is some function of class C1 such that f(0) = 0 = f(1).

Fleming,s results suggested that nontrivial steady-state solutions were

bifurcating off the trivial solutions u ≡ 0 and u ≡ 1. In order to inves-

tigate these bifurcation phenomena it was necessary to understand the

eigenvalues and eigenfunctions of the corresponding linearized problem

−Δu(x) = λg(x)u(x) x ∈ D (3)

The ordinary differential equation versions of (3) were studied by Sturm,

Picone[2] and Bocher[3]. Motivated by Fleming,s paper Brown and

Lin[4] and Hess and Kato[5] studied the eigenvalues and eigenfunctions

of (3) in the partial differential equation case. Since in population ge-

netics the unknown function u represents the frequency of a population

only solutions u ≥ 0 are of interest.

In order that nontrivial solutions bifurcating off the zero solution are

positive it is necessary that the eigenfunction of the corresponding eigen-

value is positive. Such eigenvalues and eigenfunctions are called principal

eigenvalues and eigenfunctions.

The existence of principal eigenvalues of (1) has been studied previously

in [4,5,6]. It is well known (see[5]) that there exists a double sequence

of eigenvalues for (1)

. . . λ−2 < λ+1 < 0 < λ+1 < λ+2 < . . .

λ+1 (λ
−
1 ) being the unique positive(negative) principal eigenvalue, i.e.,

(1) has solution u(v) which are positive in BR(0), and we call principal

eigenfunction corresponding to principal eigenvalue λ+1 (λ
−
1 ).
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The variational characterizations of λ+1 (R) and λ
−
1 (R) are proved in [8],

Theorem 1. We have

λ+1 (R) = inf{
∫
BR(0) |∇u|2dx∫
BR(0) g(x)u

2dx
: u ∈ H1

0 (BR(0)),

∫
BR(0)

g(x)u2dx > 0}

and

λ−1 (R) = sup{
∫
BR(0) |∇u|2dx∫
BR(0) g(x)u

2dx
: u ∈ H1

0 (BR(0)),

∫
BR(0)

g(x)u2dx < 0}.

Also it is proved that (see [8])

Theorem 2. λ+1 (R) can be characterized as

λ+1 (R) = inf{
∫
BR(0) |∇u|2dx∫
BR(0) g(x)u

2dx
: u ∈ C∞0 (BR(0)),

∫
BR(0)

g(x)u2dx > 0},

and similarly for λ−1 (R).

2. On the continuity of λ+1 (R) and λ−1 (R) with respect to R

First we prove that λ+1 (R)(λ
−
1 (R)) is a strictly decreasing(increasing)

function of R

Theorem 3. R→ λ+1 (R) is a strictly decreasing function.

Proof. It is proved in [8] that R → λ+1 (R) is a decreasing function

of R, so it is sufficient to show the strictly of it. We prove it by a con-

tradiction argument. On the contrary, suppose there exists R and R′
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such that R < R′ but λ+1 (R) = λ+1 (R
′). Then there exist two positive

functions u and v on BR(0) and BR′(0), respectively, such that{
−Δu(x) = λ+1 (R)g(x)u(x) x ∈ BR(0)

u(x) = 0 |x| = R
(4)

and {
−Δv(x) = λ+1 (R

′)g(x)v(x) x ∈ BR′(0)

v(x) = 0 |x| = R′
(5)

From (5) we have{
−Δv(x) = λ+1 (R

′)g(x)v(x) x ∈ BR(0)

v(x) > 0 |x| = R
(6)

Multiplying (4) by v and integrating over BR(0) we obtain∫
BR(0)

∇u(x)∇v(x)dx −
∫
|x|=R

v(x)
∂u

∂n
(x)ds = λ+1 (R)

∫
BR(0)

g(x)u(x)v(x)dx

(7)

also by multiplying (6) by u and integrating over BR(0) we obtain∫
BR(0)

∇u(x)∇v(x)dx −
∫
|x|=R

u(x)
∂v

∂n
(x)ds = λ+1 (R

′)
∫
BR(0)

g(x)u(x)v(x)dx

(8)

Now by subtracting (8) from (7) we obtain

−
∫
|x|=R

v(x)
∂u

∂n
(x)ds = [λ+1 (R)− λ+1 (R

′)]
∫
BR(0)

g(x)u(x)v(x)dx

(9)

By (4) and (6) we have ∫
|x|=R

v(x)
∂u

∂n
(x)ds < 0

and so by (9) we obtain λ+1 (R)−λ+1 (R′) �= 0, and this is a contradiction.

�

Also by a similar argument we can obtain
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Theorem 4. λ−1 (R) is a strictly increasing function of R.

Theorem 5. R→ λ+1 (R) is a continuous function of R.

Proof. Let ε > 0 is given. Let R1 > R and sufficiently close to R,

it is enough to show that

λ+1 (R) < λ+1 (R1) + ε.

Let ϕ1 ∈ H1
0 (BR1(0)) is such that{

−Δϕ1(x) = λ+1 (R1)g(x)ϕ1(x) x ∈ BR1(0)

ϕ1(x) = 0 |x| = R1

We define y = R1
R x and ϕ̂(x) = ϕ1(y) for x ∈ BR(0). We have ϕ̂ ∈

H1
0 (BR(0)) and we have

∣∣∣∣∣
∫
BR1 (0)

g(x)ϕ2
1(x)dx −

∫
BR(0)

g(x)ϕ̂2(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
BR(0)

g(x)ϕ2
1(x)dx −

∫
BR(0)

g(x)ϕ̂2(x)dx +

∫
BR1 (0)−BR(0)

g(x)ϕ2
1(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
BR(0)

g(x)ϕ2
1(x)dx −

∫
BR(0)

g(x)ϕ̂2(x)dx| + |
∫
BR1 (0)−BR(0)

g(x)ϕ2
1(x)dx

∣∣∣∣∣
≤

∫
BR(0)

|g(x)||ϕ2
1(x) − ϕ̂2(x)|dx +

∫
BR1 (0)−BR(0)

|g(x)ϕ2
1(x)|dx

≤ (

∫
BR(0)

|ϕ2
1(x)− ϕ2

1(
R1

R
x)|dx) sup

x∈BR(0)

|g(x)|

+ |BR1(0)−BR(0)| sup
x∈BR1(0)−BR(0)

|g(x)ϕ2
1(x)|

Since
∫
BR(0) |ϕ2

1(x) − ϕ2
1(

R1
R x)|dx → 0 and |BR1(0) − BR(0)| → 0 as

R1 → R we have ∫
BR(0)

g(x)ϕ̂2(x)dx > 0.
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So

λ+1 (R) ≤
∫
BR(0) |∇ϕ̂(x)|2dx∫
BR(0) g(x)ϕ̂

2(x)dx

= (R1/R)
2

∫
BR1

(0) |∇ϕ1(y)|2dy∫
BR1

(0) g(y)ϕ1
2(y)dy

= (R1/R)
2λ+1 (R1)

< λ+1 (R1) + ε.

The last inequality hold if we choose R1 such that R1 > R and suffi-

ciently close to R. If a such R1 is chosen then for every R′ ∈ (R,R1) we

have

λ+1 (R)− λ+1 (R
′) < λ+1 (R)− λ+1 (R1) < ε.

Hence λ+1 (R) is a continuous function of R. �

Also by a quite similar argument we can prove the following theorem

Theorem 6. R→ λ−1 (R) is a continuous function of R.

Theorem 7. Let λ−1 (R) < λ < λ+1 (R), then there exists R′ > R

such that

λ−1 (R
′) < λ < λ+1 (R

′)

Proof. Let ε = λ+1 (R)−λ, so ε > 0. By using the continuity of the func-

tion R → λ+1 (R), there exists R1 > R such that λ+1 (R) − λ+1 (R1) < ε.

Then we have

λ < λ+1 (R1).
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Similarly with the continuity of the function R → λ−1 (R), there exists

R2 > R such that

λ > λ−1 (R2).

Now let R′ = min{R1, R2}, we have

λ−1 (R
′) ≤ λ−1 (R2) < λ < λ+1 (R1) ≤ λ+1 (R

′)

and so the proof is complete. �
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Abstract. We show that a closed subspace S(E,F ) of L(E,F ) in

which weak operator topology and weak topology on sequences are

coincide would be uncomplemented in both L(E,F ) and W (E,F ).

1

Let E and F be Banach spaces (real or complex). The symbols

L(E,F ), K(E,F ) and W (E,F ) denote the Banach spaces of bounded

operators (bounded linear maps), those are which compact, and those

are which weakly compact. Many papers see ([2], [7], [8], and [9]) have

been devoted to the question of uncomplementability of some subspaces

of L(E,F ) in it.

In [1], we introduced and studied some operator spaces with the

K-property, i.e. subspaces of L(E,F ) in which weak operator topol-

ogy and weak topology on sequences are coincide. It is well known

1AMS 1991 Mathematics subject classification : 46A32.

9
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that Kw∗(E∗, F ) the space of all compact weak∗-weak continuous op-

erators from E∗ to F has the K-property [10]. We reserve the symbol

S(E,F ) for an arbitrary subspace of L(E,F ) containing E∗ ⊗ F with

the K-property. The present note deals with the question of uncomple-

mentability of S(E,F ) in L(E,F ) and W (E,F ). As a consequence we

show cca(Σ, E) is uncomplemented in ca(Σ, E). All notions and termi-

nologies used and not defined in this note can be found in [4] and [5].

Our purpose is to prove the following results.

Theorem 1. Suppose that F has a copy of �1 and E is not a Grothendieck

space. Then S(E∗∗, F ) is uncomplemented in Lw∗(E∗∗, F ).

Theorem 2. Suppose that E has a complemented copy of �1 and

�∞ ⊗ �∞ ⊆ S(�1, �∞). Then S(E, �∞) is uncomplemented in L(E, �∞).

Proof of Theorem 1. By the assumption there is an �1-basic se-

quence (yn)n in F , i.e., there are C1, C2 > 0 such that

C1

∞∑
n=1

| ηn |≤‖
∞∑
n=1

ηnyn ‖≤ C2

∞∑
n=1

| ηn |, (η = (ηn)n ∈ �1).

Assume that (x∗n)n is a normalized, weak∗ null but not weakly null se-

quence in E∗. There is z∗∗ ∈ BF ∗ such that z∗∗x∗n ≥ ε (n ∈ N). Define

ϕ : �1 → L(E∗∗, F ) by ϕ(η)x∗∗ =
∑∞

i=1 ηix
∗∗(x∗i )yi, which is a linear

map. ϕ is well defined since (yn) is an �1-basic sequence. We now show

that ϕ(η) belongs to Lw∗(E∗∗, F ). To this aim, it will be enough to

consider a weak∗-null net (x∗∗α )α in BE∗∗ and an element y∗ of BF ∗ , and

proving that

limα | ϕ(η)(x∗∗α )y∗ |= 0. (1)
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Since
∑
ηnx

∗
ny
∗(yn) is unconditionally converging in E, we have

limpsupx∗∗∈BE∗∗ |
∞∑

n=p+1

ηnx
∗∗(x∗n)y

∗(yn) |= 0. (2)

Thanks to (2), given ε > 0 for any y∗ ∈ BF ∗ we can find p ∈ N such

that

supα |
∞∑

n=p+1

ηnx
∗∗
α (x∗n)y

∗(yn) |< ε

2
. (3)

On the other hand

limα

p∑
n=1

ηnx
∗∗
α (x∗n)y

∗(fn) = 0 (4)

since x∗n(.)yn ∈ Lw∗(E∗∗, F ) for all n ∈ N. The formulas (2) and (3)

together give (1). Furthermore, using the closed graph Theorem we

can prove easily that the linear map ϕ : �1 → Lw∗(E∗∗, F ) is con-

tinuous. Now assume on the contrary, there is a bounded projection

P : Lw∗(E∗∗, F ) → S(E∗∗, F ). Boundedness of the sequence (yn) shows

that Pϕ(en) = ϕ(en) = x∗n(.)yn is pointwise weakly null sequence, where

en is the nth unit vector basis of �1. Therefore, it must be a weakly null

sequence. By a theorem of Mazur ([4], page 4) there is a convex combi-

nation Sn =
∑qn

i=pn+1 αn,iϕ(ei) of (ϕ(en)n) converging to zero in norm.

Hence for enough large n, ‖ Sn ‖< C1ε. On the other hand

C1ε < C1

qn∑
pn+1

αn,i(z
∗∗x∗i ) ≤ supx∗∗∈BE∗∗ ‖

qn∑
i=pn+1

αn,ix
∗∗(x∗i )yi ‖≤‖ Sn ‖

which is a contradiction. �

Theorem 1 has the following Corollaries.

Corollary 3. Suppose E is not a Grothendieck space and F has a

copy of �1. Then K(E,F ) is uncomplemented in W (E,F ).
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Proof. Theorem 1 together with the two identifications Lw∗(E∗∗, F ) 	
W (E,F ), and Kw∗(E∗∗, F ) 	 K(E,F ) give the result. �

Corollary 4. Suppose E is not a Grothendieck space. Then cca(Σ, E∗)

is uncomplemented in ca(Σ, E∗), where Σ is the σ-algebra of all Borel

subsets of an infinite compact Hausdorff space Ω.

Proof. We recall that

cca(Σ, E∗) 	 Kw∗(E∗∗,ca(Σ)), ca(Σ, E∗) 	 Lw∗(E∗∗, ca(Σ)),

also ca(Σ) 	 C(Ω)∗ [4]. From [3], C(Ω) has a copy of c0. Therefore,

ca(Σ) has a complemented copy of �1. Now, an appeal to Theorem 1

completes the proof. �

Before we proceed to prove Theorem 2, we need the following lemma.

Lemma 5. Suppose S(E, �∞) is complemented in L(E, �∞) and ϕ :

�∞ → L(E, �∞) is an operator such that ϕ(en) ∈ S(E, �∞) where en is

the nth unit vector basis of c0 in �∞. Then for any infinite subset M of

N, there is an infinite subset M0 of M such that, ϕ(η) ∈ S(E, �∞) for

each η ∈ �∞(M0).

Proof. Let Γ : L(E, �∞) → S(E, �∞) be a bounded projection.

Without loss of generality we can assume M = N. It is easy to see that

Γϕ(en) = ϕ(en), (n ∈ N). Hence by Proposition 5 of [9], there exists

an infinite subset M0 of N with ϕ(η) ∈ S(E, �∞) for each η ∈ �∞(M0).

�

We are now in the position to prove Theorem 2.

Proof of Theorem 2. Suppose Γ : L(E, �∞) → S(E, �∞) and

P : E → H are bounded projections where H is a closed subspace of E

isomorphic with �1. We define Δ : L(H, �∞) → S(H, �∞) by Δ(T )h =

Γ(TP )h, (h ∈ H) so Δ is a bounded projection. Therefore, we can
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assume E = �1. Let (fn) ⊆ B�∞ and z∗ ∈ B�∗∞ with z∗(fn) ≥ ε.

Consider ϕ : �∞ → L(�1, �∞) defined by ϕ(η)x =
∑
ηnxnfn, where

(xn) ∈ �1 which is an operator. By Lemma 5, we can assume ϕ(η) lies

in S(E, �∞) for each η ∈ �∞. Let Sn =
∑qn

i=pn+1 αn,iφ(ei) be the same

as in the proof of Theorem 1, by the same method for enough large n,

‖ Sn ‖< ε. Define x = 1
qn−pnχ{pn+1,...,qn} ∈ �1 where χ{pn+1,...,qn} is the

characteristic function on {pn + 1, . . . , qn}. Then

ε < (z∗ ⊗ x)(Sn) ≤ ε

which is a contradiction. �

Theorem 2 has the following Corollary.

Corollary 6. If E∗ has a copy of c0, then K(E, �∞) is uncomple-

mented in L(E∗∗, �∞).

Proof. The fact that in this case E∗∗ has a complemented copy of

�1 [4], and the identifications used in the proof of Corollary 3 completes

the proof. �
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FUZZY SG-COMPACT SETS IN FUZZY TOPOLOGICAL

SPACES
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Abstract. In this paper, we define the concept of a fuzzy Sg-

open, fuzzy Sg-closed and fuzzy Sg-Compact sets in fuzzy topolog-

ical spaces. Then we state and prove some results.
1

1. Introduction

The concept of a fuzzy subset was first introduced by Zadeh in [2].

Since its inception, the theory of fuzzy subsets has developed in many

directions and found applications in a wide variety of fields. The study

of fuzzy, subsets and its application to various mathematical contexts

has given rise to what is now commonly called fuzzy mathematics.

Fuzzy topological spaces (fts) is an important branch of fuzzy mathe-

matics.

Fuzzy Topological Spaces first were introduced by C.L.chang in 1968

[3]. Up to now many researchers have been working on this field and

developed it.

Sg-closed and Sg-open sets in general topology, were introduced for the

11999 Mathematics Subject Classifications: primary 54A40; secondary 54A05,

54A10.

key words: fuzzy topological spaces, fuzzy Sg-Open, fuzzy Sg-closed and fuzzy Sg-

Compact.
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first time by Bhattacharyya and Lahiri in 1987 [7]. In 1995, Sg-compact

spaces were introduced independently by Caldas [5], and by Devi, Bal-

achandra and Maki.

The purpose of this paper is:

(i) To contribute to he development of fts as introduced in [7].

(ii) To characterize and incerpret some properties by concepts peculiar

to fuzzy Sg-closed and fuzzy Sg-Compact in fts only.

(iii) To manifest some departures between general topology (Sg-closed

and Sg-Compact of topologies [4,7]) and fuzzy topology spaces(fts).

Therefore, in this paper We introduce the concept of Sg-Open and some

general properties for Sg-Compact fts are obtained.

2. Preliminaries

Before we enter into the intended investigations properly, let us clarify

some definitions, notations and results relevant to this paper, further

details of which and other notations of the theory of fts can be found in

references.

Let X be a spaces of points. A fuzzy set A in X is characterized by a

membership function μA(x) from X to [0, 1].

Definition 1-1. Let A and B be fuzzy sets in X. Then

A = B ⇐⇒ μA(x) = μB(x) for all x ∈ X,

A ⊆ B ⇐⇒ μA(x) ≤ μB(x) for all x ∈ X,

C = A ∪B ⇐⇒ μC(x) = max{μA(x), μB(x)} for all x ∈ X,

D = A ∩B ⇐⇒ μD(x) = min{μA(x), μB(x)} for all x ∈ X,

E = Ac ⇐⇒ μE(x) = 1− μA(x) for all x ∈ X.

more generally, for a family of fuzzy sets A = {A〉 | 〉 ∈ I}, the Union

C = ∪i∈IAi and the intersection, D = ∩i∈IAi, are defined by

μC(x) = Supi∈I{μAi(x)}, x ∈ X,

μD(x) = infi∈I{μAi(x)}, x ∈ X.
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The symbol Φ will be used to denote an empty, fuzzy set (μφ(x) = 0 for

all x ∈ X).

For X, we have by definition μX(x) = 1 for all x in X.

Definition 1-2. A fuzzy topology is a family τ of fuzzy sets in X which

satisfies the following conditions:

(a) Φ,X ∈ τ

(b) if A,B ∈ τ then A ∩B ∈ τ

(c)If Ai ∈ τ for each i ∈ I, then ∪I(Ai) ∈ τ .

τ is called a fuzzy topology for X, and the pair (X, τ) is a fuzzy topo-

logical space or fts for short.

Every member of τ is called a τ -open fuzzy set (or simply open fuzzy

set). A fuzzy set is τ -closed or simply closed fuzzy set, if and only if its

complement is τ -open.

Definition 1-3. Let f be a function from X to Y . Let B be a fuzzy set

in Y with membership function μB(y). Then the inverse of B, written

as f−1[B] is fuzzy set in X whose membership function is defined by

μf−1[B](x) = μB(f(x)) for all x in X

Conversely, Let A be a fuzzy set in X with membership function μA(x).

The image of A, written as f [A], is a fuzzy set in Y whose membership

function is give by

μf [A](y) =

{
Supz∈f−1(y){μA(z)}, if f−1[y] is not empty;

0 otherwise.

for all y in Y , where f−1[y] = {x : f(x) = y}.
Definition 1-3. A fuzzy set U in a fts (X, τ) is a neighborhood of

a fuzzy set A if and only if there is an open fuzzy set O such that

A ⊆ O ⊆ U . Where as for two fuzzy sets A and B, A ≤ B means

μA(x) ≤ μB(x), for all x ∈ X.

Definition 1-4. A fuzzy point in a set X is a fuzzy set p : X → I, I
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being the closed unit interval in X, such that

p(x) =

{
t for x = xp;

0 otherwise.

where t ∈ (0, 1), xp is called the support p and t, its value.

Also, a fuzzy point p is said to belong to a fuzzy set A in X (notation:

p ∈ A) if and only if p(xp) ≤ μA(xp). If A is a subset of X, we shall

denote the characteristic function of A, also by A.

Definition 1-5. Let A and B be fuzzy sets in a fts (X, τ), and let

B ≤ A then B is called an interior fuzzy set of A if and only if A is a

neighborhood of B the interior of A and is denoted by A0. The closure

and interior of a fuzzy set A in a fts (X, τ) are defined respectively by:

A = inf{D : D ≥ A,D ∈ τ},
A0 = sup{D:D≤A,D∈ τ}.

It is easily seen the A is the smallest closed fuzzy set larger than A and

A0 is the largest open fuzzy set smaller than A.

Definition 1-7. A family V of fuzzy sets is a cover of a fuzzy set A if

and only if B ≤ ∪{v : v ∈ V }. It is an open cover if and only if each

member of V is an open fuzzy set. A subcover of V is a subfamily of V

which is also a cover.

Definition 1-8.A fts (X, τ) is compact if and only if each open cover

has a finite subcover.

Definition 1-9. If τ is fts on a set X and Y ⊆ X, then τ |Y denotes

the restriction of τ to Y .

τ |Y = {Y ∩ U : U ∈ τ} = {μ |Y : μ ∈ τ}
The closure operator in a space is denoted by [0]. When we wish to

underscore that the closure is taken in a space (X, τ), we write [0](X,τ)

instead of [0]. Fuzzy points with different supports will be called dis-

tinct.
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Srivastava [9] defined a ”fuzzy T1 -topological space” as follows.

Definition 1-10. An fts (X, τ) is fuzzy T1 if and only if for any two

distinct fuzzy points p, q in X,∃U, V ∈ τ such that p ∈ U, q /∈ U, q ∈
V, p /∈ V .

3. MAIN DEFINITIONS:

Definition 2-1. A fuzzy set A in an fts X is said to be:

(i) A fuzzy semiopen set of X if A ≤ cl(IntA),

(ii) A fuzzy α-open set of X if A ≤ Int(cl(IntA)),

(iii) A fuzzy preopen set of X if A ≤ Int(cl(A)).

The family of all fuzzy semiopen (resp. fuzzy α-open, fuzzy preopen)

sets of a fts X is denoted by FSO(X), (resp. Fα(X), FPO(X)).

Definition 2-2. A fuzzy set A is called fuzzy semiclosed (or FSC(X))

(resp. fuzzy α-closed, fuzzy preclosed) if Ac ∈ FSO(X) (resp. Fα(X),

FPO(X)).

Remark. Every fuzzy open set is fuzzy α-open and every fuzzy α-open

set is fuzzy semiopen as well as fuzzy peropen, but the separate con-

verses need not be true.

Definition 2-3.Let A be is a fuzzy set in a fts X, the fuzzy semi-interior

of A, denoted by FSInt(A), the fuzzy semi-closure of A, denoted by

FSCL(A) and the fuzzy semi-kernel of A denoted by Fsker(A) and are

defined as follows:

FSInt(A) = ∨{U : U ∈ FSO(X) and U ≤ A}.
FSCL(A) = ∧{U : U ∈ FSCL(X) and A ≤ U}.
FSKer(A) = ∧{U : U ∈ FSO(X) and A ≤ U}.

It is well known that FSIn(A) = A ∧ cl(IntA) and FSCL(A) = A ∨
Int(clA).
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Recall that a fuzzy setA of a ftsX, called fuzzy Sg−open (or, FSGO(X))

is every fuzzy semiclosed subset of A included in the fuzzy semi-interior

of A.

Definition 2-4. A mapping f : X → Y is called fuzzy Sg-continuous,

(or fuzzy Sg-irresolute) if f−1(u) ∈ FSGO(X) (or FSGC(X)) for every

open set (or fuzzy Sg-closed) u of Y .

Theorem 2-5.

I) If A is fuzzy Sg-closed and B is fuzzy closed set Then A ∨ B is also

fuzzy Sg-closed.

II) The intersection of a fuzzy Sg-open and an fuzzy open set is always

fuzzy Sg-open.

III) The union of a fuzzy Sg-closed set and a fuzzy semi-closed set need

not be fuzzy Sg-closed set, in particular even finite union of fuzzy Sg-

closed sets need not be fuzzy Sg-closed set.

Proof. Assertions (I), (II) and (III) are obvious.

We prove that arbitrary intersection of fuzzy Sg-closed sets is fuzzy Sg-

closed.

In order to do that, we need first the following lemma.

Lemma 2-6. Let (X, τ) be a fts, then:

(i) A fuzzy subset A of X is fuzzy Sg-closed if and only if fscl (A) ≤
fsker (A).

(ii) Every singleton {xp} is either nowhere dense or fuzzy preopen.

Theorem 2-7. Arbitrary intersection of fuzzy Sg-closed sets is a fuzzy

Sg-closed set.

proof: Let {Ai : i ∈ I} be an fts (X, τ) and let A =
∧

i∈I Ai. Let

xp ∈ fsc(A).

In the notion of Lemma 2-6 (ii), we consider the following tow cases:

Case 1. {xp} is nowhere dense. If x /∈ A, then for some j ∈ Iwe

have xp /∈ Aj . Since nowhere dense sets are fuzzy semi-closed, then
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xp /∈ fsker(Aj). On the other hand, by Lemma 2-6 (i), xp ∈ fscl(A) ≤
fscl(Aj) ≤ fsker(Aj), since Aj is fuzzy Sg-closed. By contradiction,

xp ∈ A and hence xp ∈ fsker(A).

Case 2. {xp} is fuzzy preopen. Set F = int(cl{xp}).
Assume that x /∈ fsker(A). Then there exists a fuzzy semi-closed set

S containing xp such that S
∧
A = φ. Now, xp ∈ F = int(cl{xp}) ≤

int(cl(S)) ≤ S,

Since S is fuzzy semi-closed. Since F is fuzzy semiopen set containing xp

and since xp ∈ fscl(A), then F
∧
A �= φ. Since F ≤ S, then S

∧
A �= φ.

By contradiction, xp ∈ fsker(A).

Thus, in both cases xp ∈ fsker(A). By Lemma 2-6 (i), A is fuzzy Sg-

closed.

Corollary 2-8. (i) Any Union of fuzzy Sg-open is a fuzzy Sg-open set.

(ii) A fuzzy subset A of a fts (X, τ) is fuzzy Sg-closed if and only if A is

intersection of fuzzy Sg-closed sets.

If B ≤ A and A is fuzzy open and fuzzy Sg-closed, then B is fuzzy

Sg-closed in the fuzzy subspace A if and only if B is fuzzy Sg-closed in

X.

Since a fuzzy subset is fuzzy regular open if and only if is fuzzy α-open

and fuzzy Sg-closed.

We obtain the following result:

Proposition 2-9. Let B be a fuzzy regular open subset of a fts (X, τ).

If A ≤ B and A is fuzzy Sg-open in (B, τ |B), then A is fuzzy Sg-open in

X.

Definition 2-10. let X be a fts and A be a fuzzy set in X. A collec-

tion C of fuzzy sets in X is said to be a fuzzy cover of A if and only if

[
∨{c : c ∈ C}](x) = 1, for all x ∈ A. If the members of C are fuzzy open

(resp, fuzzy semiopen, fuzzy Sg-open), C is called a fuzzy open (resp,
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fuzzy semiopen, fuzzy Sg-open) cover of A.

A fuzzy open (resp, fuzzy semiopen, fuzzy Sg-open) cover C of a fuzzy

set A in X said to have a finite subcover C0 for A if and only if there

exists a finite subcollection C0 = {c1, c2, ..., cn} (say) of C such that

[
∨n

i=1{ci}] ≥ A. A fuzzy set A in X is fuzzy compact (resp, fuzzy semi-

compact, fuzzy Sg-compact) if and only if every fuzzy open (resp, fuzzy

semiopen, fuzzy Sg-open) cover of A has a finite subcover for A.

Definition 2-11. A fuzzy subset B of a fts X is said to be fuzzy Sg-

compact if B is fuzzy Sg-compact as a fuzzy subspace of X.

Definition 2-12. A fuzzy subset B of a fts X is said to be fuzzy Sg-

compact relative to X if, for every collection {ci | i ∈ J} of Sg-open

subsets of X such that B ≤ {ci : i ∈ J}, there exists a finite subset J0

of J such that B ≤ {ci : i ∈ J0}.
Theorem 2-13. Every fuzzy Sg-closed subset of a fuzzy Sg-compact

space X is fuzzy Sg-compact relative to X.

proof. Let A be fuzzy Sg-closed subset of X, then Ac is fuzzy Sg-open

in X. Let M = {Gi : i ∈ J} be a cover of A by fuzzy Sg-open sub-

sets in X, then M∗ = M ∨ Ac is a fuzzy Sg-open cover of X, i.e.,

X = (∨{Gi : i ∈ J})∨Ac. By hypothesis, X is fuzzy Sg-compact, hence

M∗ is reducible to finite cover of X, say X = Gi1 ∨Gi2 ∨ ...∨Gim ∨Ac,

Gik ∈ M . But A and Ac are disjoint, hence A Gi1 ∨ Gi2 ∨ ... ∨ Gim ,

Gik ∈ M . We have just shown that any fuzzy Sg-open cover M of A

contains a finite subcover, i.e., A is fuzzy Sg-compact relative to X.

Theorem 2-14.

i) A fuzzy Sg-continuous image of a fuzzy Sg-compact space is fuzzy

compact.

ii) If a map f : X −→ Y is fuzzy Sg-irresolute and a fuzzy subset B of X

is fuzzy Sg-compact relative to X, the image f(B) is fuzzy Sg-compact

relative to Y .
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Proof.

i) Let f : X −→ Y be a fuzzy Sg-continuous map from a fuzzy Sg-

compact space X onto a fts Y . Let {Ai : i ∈ J} be an fuzzy open

cover of Y . Then {f−1(Ai) : i ∈ J} is a fuzzy Sg-open cover of

X. Since X is fuzzy Sg-compact, it has a finite fuzzy subcover, say

{f−1(A1), ..., f
−1(An)}. Since f is onto {A1, ..., An} is a fuzzy cover of

Y and so Y is fuzzy compact.

ii) Let {Ai : i ∈ J} be any collection of fuzzy Sg-open fuzzy subsets of

Y such that f(B) ≤ ∨{Ai : i ∈ J}, then
B ≤ ∨{f−1(Ai) : i ∈ J} holds.

By hypothesis there exists a finite fuzzy subset J0 of J such that

B ≤ ∨{f−1(Ai) : i ∈ J0}. Therefore, we have f(B) ≤ ∨{Ai : i ∈ J0}
which shows that f(B) is fuzzy Sg-compact relative to Y .
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Abstract. Let G be a finitely connected domain in the complex

plane C, and K1, · · ·KN be the bounded components of C\G such

that at least one Ki has a nonempty interior.

In this note, we show that if f ∈ H∞(G0), where G0 = G∪K1 ∪
· · · ∪KN then f is not a cyclic vector for H∞(G0) in the weighted

Bergman space Lp
a(G,wdm), 1 ≤ p < ∞, where w is a positive

continuous function in L1(G), the Hardy space Hp(G), (1 ≤ p <

∞), and the Dirichlet space D(G). In particular, in this case, the

polynomials are not dense in Lp
a(G,wdm),Hp(G), (1 ≤ p < ∞),

and D(G).
1

1. Introduction

Let G be a domain in the complex plane C. An analytic function f

in G belongs to the weighted Bergman space Lp
a(G,wdm), 1 ≤ p <∞ if∫

G |f |pwdm <∞, where m is the area measure on C. In [5], it is shown
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that if w is a positive continuous function in L1(G) then Lp
a(G,wdm)(1 ≤

p <∞) is a Banach space.

The Hardy space Hp(G) consists of all analytic functions f defined on

G such that there is a harmonic function u : G→ [0,+∞) with |f |p ≤ u

on G. It is well known that Hp(G)(1 ≤ p <∞) is a Banach space. Also,

the Dirichlet space D(G) is the Hilbert space of functions f analytic in

G whose derivative f ′ lies in L2
a(G, dm), [9, 10].

Let H∞(G) denote the space of bounded analytic functions on G

with the supremum norm. Clearly H∞(G) is a subset of Lp
a(G,wdm)

and Hp(G). Suppose G is a finitely connected domain in the complex

plane C and K1, · · · ,KN are the bounded components of C\G. Put

G0 = G ∪ K1 ∪ · · · ∪ KN . A function f in Lp
a(G,wdm) (or Hp(G)) is

cyclic for H∞(G0), if the vector subspace {ϕf : ϕ ∈ H∞(G0)} is dense

in Lp
a(G,wdm) (or Hp(G)). Also a function f in D(G) is cyclic for

H∞(G0) ∩D(G) if the vector subspace {ϕf : ϕ ∈ H∞(G0) ∩ D(G)} ∩
D(G) is dense in D(G).

Main Result

Theorem. Suppose G is a finitely connected domain in the complex

plane C and K1, · · · ,KN are the bounded components of C\G such

that at least one Ki has a nonempty interior. If f ∈ H∞(G0) then

f is not a cyclic vector for H∞(G0) in the weighted Bergman space

Lp
a(G,wdm), 1 ≤ p < ∞, where w is a positive continuous function in

L1(G), the Hardy space Hp(G), 1 ≤ p < ∞, and the Dirichlet space

D(G).

Proof. We only prove the theorem for the weighted Bergman space

Lp
a(G,wdm). The proofs for the Hardy and Dirichlet spaces are similar.

On the contrary, suppose f ∈ H∞(G0) is a cyclic vector for H∞(G0)

in Lp
a(G,wdm). Let ϕ ∈ H∞(G) ⊆ Lp

a(G,wdm) [for Dirichlet space let
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ϕ ∈ H∞(G) ∩D(G)]. So there exists a sequence {ϕn} in H∞(G0) such

that ϕnf → ϕ in Lp
a(G,wdm). Therefore, ϕnf converges uniformly on

compact subsets of G [5, lemma 2]. We can choose a closed rectifiable

curve γ in G such that Ki ⊂ Intγ, i = 1, · · ·N , where Intγ is the interior

points of γ. Now, by Cauchy’s Integral formula,

|ϕn(z)f(z)− ϕm(z)f(z)| ≤
∫
γ
|ϕn(w)f(w) − ϕm(w)f(w)

w − z
||dw|

z ∈ K1 ∪ . . . ∪KN .

Since {ϕnf} converges uniformly on γ, it is uniformly Cauchy on K1 ∪
. . . ∪ Kn. Therefore, it is uniformly convergent on compact subsets of

G0. Let ψ be the limit of {ϕnf}. In fact, ψ is the analytic extension of

ϕ on G0. By the maximum modulus Theorem,

sup
z∈G0

|ψ(z)| = sup
z∈G

|ϕ(z)| <∞.

Without loss of generality, suppose IntK1 is nonempty. Choose z1 in

IntK1 and put g(z) = 1
z−z1 . It is obvious that g(z) ∈ H∞(G), but does

not have any analytic extension on G0. This contradiction shows that

f is not a cyclic vector for Lp
a(G,wdm).�

Corollary 1. Suppose G is a finitely connected domain in the com-

plex plane C and K1, · · · ,KN are the bounded components of C\G
such that at least one Ki has a nonempty interior. If G0 = G ∪ K1 ∪
· · · ∪ KN , then H∞(G0) is not dense in the weighted Bergman space

Lp
a(G,wdm), (1 ≤ p < ∞), where w is a positive continuous function in

L1(G), and the Hardy space Hp(G)(1 ≤ p <∞). Also H∞(G0) ∩D(G)

is not dense in the Dirichlet space D(G).

Proof. Put f ≡ 1, the constant function, in the theorem. �

Remark. It follows from [10, Proposition 12] that H∞(G)∩D(G) is

dense in D(G).
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Density of polynomials in H2(G) for crescents G have been inves-

tigated in [1,2,3]. Also [4] contains results about cyclic vectors for the

Hardy operators. Moreover it is an old problem that for which w and for

which G, the polynomials or rational functions are dense in Lp
a(G,wdm)

or not [6, 7, 8, 11, 12]. The following corollary, follows immediately from

the theorem.

Corollary 2. Suppose G is a finitely connected domain in the com-

plex plane C and K1, · · · ,KN are the bounded components of C\G such

that at least one Ki has a nonempty interior. Then the polynomials are

not dense in the weighted Bergman space Lp
a(G,wdm), (1 ≤ p < ∞),

where w is a positive continuous function in L1(G), the Hardy space

Hp(G), (1 ≤ p <∞), and the Dirichlet space D(G). �
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Abstract. In this short note, we have given a short proof for the

existence of the Haar measure on commutative locally compact hy-

pergroups based on functional analysis methods by using Markov-

Kakutani fixed point theorem.

1. Introduction

A fundamental open question about hypergroups is the existence of

Haar measure for any hypergroup. If a hypergroup K is compact or

discrete, then K possesses a Haar measure. All known examples have a

Haar measure [6, §5]. Spector in [11] claims that any commutative hy-

pergroup possesses a Haar measure but as Ross in [9] mentioned there are

several technical problems in his proof. Ross in [9] has given a lengthy

proof for existence of Haar measure on commutative hypergroups. Re-

cently Izzo in [5] has given a short proof of the existence of Haar measure

on a commutative locally compact group by using the Markov-Kakutani

fixed-point theorem [1, pp. 155-156]. Based on his idea, we give a short

proof of the existence of Haar measure on commutative hypergroups.

For the reader’s convenience, we include the Markov-Kakutani fixed

point theorem. Let S be a compact convex subset of a Hausdorff topo-

logical vector space and F be a commutative family of continuous affine
31
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mappings of S into S. Then there exists p ∈ S such that Λ(p) = p for

all Λ ∈ F (for a proof see [1]).

Note 1.1. For a vector space X, let X# be the space of all linear func-

tionals on X with the weak topology induced by X. Then, if C is a

closed subset of X# such that the set {Λx : Λ ∈ C} is bounded, for any

x ∈ X, then C is compact (see [3, PP. 423-424]).

Lemma 1.2. Let K be a hypergroup and U a symmetric neighborhood

of the identity e ∈ K. Then there exists a subset M of K such that for

any finite subset {g1, g2, · · · gn} of K, the set g1 ∗ g2 ∗ · · · ∗ gn ∗ U ∗ U

contains at least one element of M and the set g1∗g2∗· · ·∗gn∗U contains

at most one element of M.

Proof: Let

A = {T ⊆ K : for any p �= q ∈ T, there is a finite subset{g1, g2, · · · , gn}
of K such that p /∈ q ∗ A ∗ Ă, where Ă = U ∗ ğn ∗ · · · ∗ ğ1}.

Then A is non-empty and any chain {Tα}α∈I in A has an upper bound

∪α∈ITα. So by Zorn’s Lemma A has a maximal element M. By using

[6, 4.1A, 4.1B], we have M ∩ g ∗ U ∗ U �= ∅. Now for {g1, g2, · · · , gn} an

arbitrary finite subset of K, we have

M ∩ g1 ∗ g2 ∗ · · · ∗ gn ∗ U ∗ U = M ∩ (∪x∈g1∗g2∗···∗gn x ∗ U ∗ U) =

∪x∈g1∗g2∗···∗gn (M ∩ x ∗ U ∗ U) �= ∅.

To show that M intersects g1, g2, · · · , gn ∗ U at most at one point, let

there are s1 and s2 in M that s1 �= s2 and si ∈ g1 ∗ g2 ∗ · · · ∗ gn ∗ U for

i = 1, 2. Then by using [6, 4.1A, 4.1B] we have s1 ∈ s2 ∗ A ∗ Ă, where

A is U ∗ ğn ∗ · · · ∗ ğ2 and this contradicts M ∈ A. So the proof of the
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Lemma is complete. �

Theorem 1.3. Every commutative hypergroup K has a left Haar mea-

sure.

Proof: Let C00(K)# be the space of all linear functionals on C00(K).

We consider on C00(K)# the weak topology generated by C00(K). It

is clear that if there exists a Λ ∈ C00(K)# such that f(Λ) = 0 for all

f ∈ C00(K), then Λ = 0. So C00(K)# with this topology is a locally

convex space (see[4, P. 50]) . Let U be a fixed symmetric neighborhood

of the identity e ∈ K with compact closure. Let S be the set of all

positive linear functionals Λ on C00(K) that satisfy the following two

conditions:

(i) Λ(f) ≤ 1 whenever f ≤ 1 in C+
00(K) and sptf ⊆ a1 ∗ a2 ∗ · · · ∗

ar ∗ U for some finite subset {a1, a2, · · · , ar} in K,

(ii) Λ(f) ≥ 1 whenever f ≤ 1 in C+
00(K) and f = 1 on a1 ∗a2 ∗ · · · ∗

ar ∗ U ∗ U for some finite subset {a1, a2, · · · , ar} in K.

Then one can easily check that S is closed and convex. Moreover, any

f ∈ C+
00(K) can be written as a finite sum of non-negative continuous

functions, each of which has support in a ∗ U for some a ∈ K. To see

this, let sptf = C, (compact set). Then C ⊆ ∪1≤i≤n ai ∗ U for some

ai ∈ K, 1 ≤ i ≤ n. By the partition of unity on compact sets, there

are hi ∈ C+
00(K) such that 0 < hi

f ≤ 1 on C. That is for any x ∈ C,

0 < hi(x) ≤ f(x) and h1(x)+h2(x)+ · · ·+hn(x) = f(x). Now it follows

from (i) that the set {Λ(f) : Λ ∈ S} is bounded. So by Note 1.1, S is

compact.

To see S is non-empty, let M be as in Lemma 1. Put Λ(f) =
∑

s∈M f(s),

then Λ ∈ S. Indeed, if f ∈ C+
00(K) and f ≤ 1 with sptf ⊆ a1 ∗ a2 ∗ · · · ∗

an ∗ U for some ai ∈ K, 1 ≤ i ≤ n, then by Lemma 1, M intersects
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a1 ∗a2 ∗ · · · ∗an ∗U at most at one point. Hence Λ(f) ≤ 1. If f ∈ C+
00(K)

and f = 1 on a1 ∗ a2 ∗ · · · ∗ an ∗U ∗U for some ai ∈ K, 1 ≤ i ≤ n, then

again by Lemma 1, M intersects a1 ∗ a2 ∗ · · · ∗ an ∗U ∗U at least at one

point. So Λ(f) ≥ 1.

For each x ∈ K, let Tx : C00(K)# → C00(K)# is defined by TxΛ(f) =

Λ( xf) for f ∈ C00(K). Then it is easy to see that Tx is affine and

Tx(S) ⊆ S. Indeed, let Λ ∈ S. If f ∈ C+
00(K) and f ≤ 1 with sptf ⊆

a1 ∗ a2 ∗ · · · ∗ an ∗ U for some ai ∈ K, 1 ≤ i ≤ n, then xf ∈ C+
00(K)

(see [6, 4.2E]) and xf ≤ 1 with spt(xf) ⊆ x̆ ∗ a1 ∗ a2 ∗ · · · ∗ an ∗U. So by

(i) Λ(xf) ≤ 1. If f ∈ C+
00(K) and f = 1 on a1 ∗ a2 ∗ · · · ∗ an ∗ U ∗ U

for some ai ∈ K, 1 ≤ i ≤ n, then xf ∈ C+
00(K) and xf = 1 on

x̆ ∗ a1 ∗ a2 ∗ · · · ∗ an ∗ U ∗ U . So by (ii), Λ(xf) ≥ 1.

Also Tx is continuous, since if limα Λα = Λ in S, then for any f ∈
C00(K),

lim
α

|TxΛα(f)− TxΛ(f)| = lim
α

|Λα(xf)− Λ(xf)| = 0.

Moreover for x, y ∈ K,

Tx(TyΛ) = Tx∗y Λ = Ty∗x Λ = Ty(TxΛ)

for any Λ ∈ C00(K)#. This shows that the family F = {Tx : x ∈ K}
and S (as above) have all properties in Markov-Kakutani fixed-point

theorem. So there exists Λ0 ∈ S such that Tx Λ0 = Λ0 for all x ∈ K. In

another words

Tx(Λ0f) = Λ0(xf) = Λ0(f) for all a ∈ K and f ∈ C00(K).

Now since all elements of S are non-zero positive linear functionals on

C00(K), by [6, §5.2] the proof is complete. �
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Remark 1.4. Can the above proof be modified to show that every

amenable hypergroup has a left Haar measure, using Day’s generaliza-

tion of Markov-Kakutani fixed-point theorem [2, Theorem 1] (see also

[7, Theorem 4.2])?

(For an extension to hypergroups see [10, Theorem 3.3.1].)

It is attempted such modification, but there is a problem in the conti-

nuity of action of hypergroup K on S (Page 33) defined by

(x,Λ) �−→ TxΛ where TxΛ(f) = Λ(xf) for f ∈ C00(K) (Page 34).
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Abstract. Let A be a Banach algebra and A∗∗ be the second

dual of A. Tow Arens multiplications on A∗∗ are indicated by

(A∗∗,�) and (A∗,�). In this paper, we study amenability and weak

amenability on the second dual of A∗∗ with two Arens multiplica-

tions. First, we investigate the links between amenability and Arens

regularity such that amenability of A∗∗ implies the Arens regularity

of A. Also, we study, with some conditions on a Banach algebra

of A, which ensure that (A∗∗,�) is amenable (weakly amenable) if

and only if (A∗∗,�) is amenable (weakly amenable).
1

1. Introduction.

Let A be a Banach algebra and let X be a Banach A-bimodule. Thus

there are bilinear maps (a, x) −→ a.x and (a, x) −→ x.a from A × X

into X such that, for a, b ∈ A, x ∈ X, (ab).x) = a.(b.x), x.(ab) = (x.a).b,

a.(x.b) = (a.x).b and

‖a.x‖ ≤ ‖a‖‖x‖, ‖x.a‖ ≤ ‖x‖‖a‖.
12000 Mathematics Subject Classification: Primary 46H20, Secondary 43A20.

Key words and phrases: amenability, weakly amenability, Arens regularity second

dual.
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If X is a Banach A-bimodule, then the dual space X∗ is a Banach A-

bimodule with the actions defined by the following way:

For a in A, x in X, and x∗ in X∗,

< a.x∗, x >=< x∗, x.a >,< x∗.a, x >=< x∗, a.x > .

Let A∗ be the dual space of A. For f ∈ A∗, a ∈ A, we denote fa and af

the elements of A∗ by

< fa, b >=< f, ab >,< af, b >=< f, ba >

where, <,> is used the dual pairing between elements of A∗ and A. A

derivation into an A-bimodule X is a linear map D;A −→ X such that

D(ab) = a.D(b) +D(a).b (a, b ∈ A).

If x ∈ X, define

δx(a) = a.x− x.a.

Then δx is a derivations into X, such derivations are called inner. The

Banach algebra A is amenable if, for every Banach A-bimodule X, every

continuous derivation D;A −→ X∗ is inner. If X∗ = A∗, we say that A

is weakly amenable. See ([6], Section 5).

If A has a bounded approximate identity then A∗A and AA∗ are closed

linear subspace of A∗. As is well-known [1], the second dual A∗∗ of A

endowed with the either Arens multiplications is a Banach algebra. The

Arens multiplications can be determined in the following way.

For m ∈ A∗∗ and n ∈ A∗∗, if we regard A as a subspace of the second

dual A∗∗, we can find bounded nets (mα) and (nβ) in A with m̂α −→ m

and n̂β −→ n, in the weak∗ topology σ(A∗∗,A∗) [Â is image of A in

A∗∗ under the canonical mapping]. So, the first Arens multiplications

indicated by m�n is given by

m�n = w∗ − lim
α
w∗ − lim

β
m̂αn̂β.
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The second Arens multiplication indicated by m�n is given by

m�n = w∗ − lim
β
w∗ − lim

α
m̂αn̂β.

Thus, the order in which the limits are taken distinguishes between the

multiplications. Moreover, the first (resp. second) Arens multiplication

is characterized by the two properties:

(i) for each n ∈ A∗∗, the mapping m −→ m�n (resp. m −→ n�m) is

weak∗-weak∗ continuous on A∗∗.

(ii) for each a ∈ A, the mapping m −→ â�m (resp. m −→ m�â) is

weak∗-weak∗ continuous on A∗∗.

However, for certain n ∈ A∗∗, the mapping m −→ n�m (resp. m −→
m�n) is, in general, not weak∗-weak∗ continuous on A∗∗. Whence the

topological center of A∗∗ with respect to first and second left and right

Arens multiplication are defined by

Z1 = {m ∈ A∗∗ : n −→ m�n is weak∗-weak∗ continuous}.
Z2 = {m ∈ A∗∗ : n −→ n�m is weak∗-weak∗ continuous}.

It is clear that Â ⊆ Z1∩Z2 and that Zi (i = 1, 2) is closed subalgebra

of A∗∗.

The algebra A is said to be Arens regular if, for each n and m in A∗∗,

n�m = n�m. In this case Z1 = Z2 = A∗∗.

The following lemma follows easily from the definitions.

Lemma 1. Let Z1 and Z2 be the left and right topological centers of

A∗∗. Then

(i) m ∈ Z1 if and only if m�n = m�n for all n ∈ A∗∗.

(ii) m ∈ Z2 if and only if n�m = n�m for all n ∈ A∗∗.

Proof. We shall prove only the assertion (i), the proof of the assertion

(ii) is similar. For all n ∈ A∗∗, we can find a net (nα) in A such that

w∗ − lim n̂α = n. If m ∈ Z1 then the map n −→ m�n weak∗-weak∗
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continuous on A∗∗. So,

m�n = w∗ − lim
a
lpham�n̂α = w∗ − lim

a
lpham�n̂α = m�n.

Conversely. Suppose that for all n ∈ A∗∗, m�n = m�n. So,

m�n = m�n = w∗ − lim
α
m�n̂α = w∗ − lim

α
m�n̂α

Hence, the map n −→ m�n is weak∗-weak∗ continuous, so, m ∈ Z1. �

Corollary 2. Let A be a Banach algebra and n ∈ A∗∗ such that

n�Â = Â�n then

(i) n ∈ Z1 (resp. n ∈ Z2) if and only if n�m = m�n (resp. n�m =

m�n) for all m ∈ A∗∗.

(ii) If A is commutative then Z1 = Z2.

Proof. Suppose thatm ∈ A∗∗ and (mα) is a net in A so that converges

weak∗ to m. So, we have

m�n = w∗ − lim
α
m̂α�n = w∗ − lim

α
n�m̂α

= w∗ − lim
α
n�m̂α = n�m.

By lemma 1, the result follows.

(ii) if A is commutative then n�m = m�n. �

For a Banach algebra A, the Aop is the algebra obtained by reversing

the order of multiplication in A; i.e. for a, b in A,Aop has the product

“◦”by
a ◦ b = ba

For m,n ∈ A∗∗, the first and second Arens multiplication in (A∗∗)op, are

indicated by m�opn = n�m, m�opn = n�m.

Theorem 3. Let A be a Banach algebra. Then, A is Arens regular,

amenable, weakly amenable if and only if is so Aop

Proof. It is clear that A = (Aop)op. So, the proof of the converse

implication is clear.
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Let A be Arens regular and n,m in A∗∗. Suppose (nα) (mβ) be

two nets inA which converge to n,m in the weak∗ topology of A∗∗,

respectively. We have

n�m = w∗ − lim
α
w∗ − lim

β
(nαmβ )̂

= w∗ − lim
α
w∗ − lim

β
(mβ ◦ nα)̂ = m�n = n�opm

Similarly, n�m = n�opm. So, we have

(A∗∗,�) = ((Aop)∗∗)op,�), (A∗∗,�) = (((Aop)∗∗)op,�)

Hence, Aop is Arens regular.

Now, let A be amenable and Xop be a Banach Aop-bimodule. We

define a constracture on X which shows that X is a Banach A-bimodule.

We need some definitions:

For a, b ∈ A and x in X

< a.x, b >=< x, a ◦ b >,< x.a, b >=< x, b ◦ a >

so, we have, a.x = x ◦ a and x.a = a ◦ x and then

a.(b.x) = a.(x ◦ b) = (x ◦ b) ◦ a = x ◦ (b ◦ a) = x ◦ (ab) = (ab).x

Similarly, (x.b).a = x.(ba), (a.x).b = a.(x.b). So, X is a Banach A-

bimodule. Suppose that D : Aop −→ (Xop)∗ is a bounded derivation.

We define Δ : A −→ X by

Δ(ab) = D(b ◦ a).

Hence, Δ is a bounded derivation; because

Δ(ab) = D(b ◦ a) = D(b) ◦ a+ b ◦D(a)

= D(a).b+ a.D(b) = Δ(a).b+ a.Δ(b)

A is amenable. So, there is f in X∗ such that

Δ(a) = a.f − f.a
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so, we have

D(a) = Δ(a) = f ◦ a− a ◦ f = a ◦ (−f)− (−f) ◦ a

so, D is inner. Therefor, Aop is amenable.

Suppose that A is weakly amenable. We know that A∗ is a Banach

A-bimodule in natural way, we shall also consider that (A∗∗)∗ is also

Aop-bimodule.

For a, b in A, f ∈ A∗, we know that af and fa belong to A∗. Now,

we define

< a ◦ f, b >=< f, ab >,< f ◦ a, b >=< f, ba > .

So, fa = a◦f , af = f ◦a. If D : Aop −→ (Aop)∗ is a bounded derivation

then Δ : A −→ A∗ define by

Δ(ab) = D(b ◦ a)

is a bounded derivation. A is weakly amenable. So, Δ is inner. There

is a f ∈ A∗ such that,

D(a) = af − fa for a ∈ A.

So, we have

Δ(a) = a ◦ (−f)− (−f) ◦ a.

Hence, Aop is weakly amenable. �

It can be wonder, if amenability is also linked to Arens regularity.

If we have amenability A∗∗ implies Arens regularity A, then there is

nothing to prove. So, we have the following theorem. The proof of

theorem followed the method of [3], Theorem 1.3.

Theorem 4. Let A be a Banach algebra such that A∗∗ = Z1⊕I (resp.

A∗∗ = Z2 ⊕ I) for a weak∗-closed ideal I. If (A∗∗,�) (resp. (A∗∗,�)) is

amenable then A is Arens regular.



Amenability and Weak Amenability on the Second Dual of a Banach ... 43

Proof. We shall only give the proof of assertion (A∗∗,�), that of

(A∗∗,�) is very similar. Since I is a complemented ideal in the amenable

algebra A∗∗, it is itself amenable. So, I has a bounded approximated

identity (ei). Let E be a weak∗-cluster point of (ei) in A∗∗. Without

loss of generality, we can assume that (ei) converges weak∗ to E. By

hypothesis E ∈ I. If n ∈ I,

E�n = w∗ − lim ei�n = lim ei�n = n

n�E = lim
i
(n�E)�ei = lim

i
n�(E�ei) = lim

i
n�ei = n

So, E is an identity for I. For all n ∈ A∗∗, E�n and n�E belong to I.

Thus, for n ∈ A∗∗

E�n = (E�n)�E = E�(n�E) = n�E

By Goldstme’s Theorem, we can find (nα) in A converges weak∗ to n.

Thus

E�n = n�E = w∗−lim
α
n̂α�E = w∗−lim

α
E�n̂α = w∗−limE�n̂α = E�n

By the corollary 2(i), E ∈ Z1. Thus, E ∈ Z1 ∩ I = {0}. Hence E = 0

and I = {0}. So, we have A∗∗ = Z1. �

Theorem 5. Let A be a Banach algebra and Z1 (resp. Z2) be a left

or right ideal A∗∗. If (A∗∗,�) (resp. (A∗∗,�)) is amenable then A is

Arens regular.

Proof. Suppose that A∗∗ is amenable then A∗∗ has a bounded ap-

proximate identity. By ([3], Lemma 1.1) A∗∗ has an identity, say E.

Let n ∈ A∗∗. By using Goldestine’s Theorem, we can find a net (nα)

in A with converges weak∗ to n. So, by weak∗-continuous second Arens

multiplication, we have
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E�n = w∗ − limE�n̂α = w∗ − lim
α
E�n̂α

= w∗ − lim
α
n̂α = n

Therefore, for all n ∈ A∗∗, E�n = E�n. By lemma 1, E ∈ Z1. By

hypothesis, Z1 is a left or right ideal of A∗∗, then Z1 = A∗∗. Hence, A is

Arens regular. �

If A is a commutative Banach algebra then the following theorem has

given the links made between the amenability or weakly amenability

(A∗∗,�) and the amenability or weakly amenability (A∗∗,�).

Theorem 6. Let A be a commutative Banach algebra. Then (A∗∗,�)

is amenable (weakly amenable) if and only if (A∗∗,�) is amenable (weakly

amenable).

Proof. For n ∈ A∗∗, m ∈ A∗∗, we take two nets (nα) and (mβ) in A

which converge to n,m in the weak∗-topology in A∗∗, respectively. Then

n�m = w∗ − lim
α
w∗ − lim

β
(nαmβ )̂

= w∗ − lim
α
w∗ − lim

β
(mβnα)̂

= m�n

Similarly, n�m = m�n. So, we have,

(A∗∗,�) = ((A∗∗)op,�), (A∗∗,�) = ((A∗∗)op,�)

From Theorem 3 the implication of this theorem also follows. �

Now, let A have a continuous involution. So, there is a continuous

anti-homomorphism from A into A.

The following lemma plays a key role in next Theorem.
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Lemma 7. Let T : X −→ Y be a continuous surjective anti-homomorphism

between two Banach spaces X and Y . Then

T ∗∗ : (X∗∗,�) −→ ((Y ∗∗)op,�), T ∗∗ : (X∗∗,�) −→ ((Y ∗∗)op,�)

are also both continuous surjective, homomorphism

Proof. For m,n ∈ (X∗∗,�), by using the Goldstine’s theorem, we

can find two bounded nets (mα), (nβ) in X which converge to m,n in

the weak∗ topology X∗∗. So, we have

T ∗∗(m�n) = w∗ − lim
α
w∗ − lim

β
T ∗∗(m̂α�n̂β)

= w∗ − lim
α
w∗ − lim

β
(T (mαnβ))̂

= w∗ − lim
α
w∗ − lim

β
(T (nβ))̂�(T (mα))̂

= w∗ − lim
α
w∗ − lim

β
T ∗∗(n̂β)�T ∗∗(m̂α)

= T ∗∗(n)�T ∗∗(m) = T ∗∗(m)�opT ∗∗(n)

Similarly, T ∗∗(m�n) = T ∗∗(m)�opT ∗∗(n).

Now, we shows that T ∗∗ is surjective. If m ∈ Y ∗∗, the Goldstine’s

theorem gives a bounded net (mα) in Y which converges to m in the

weak∗ topology. By the open mapping theorem, there is a bounded net

(nα) in X with T (nα) = mα. Suppose that n is a weak∗-cluster point of

(n̂α) in X
∗∗. So, by weak∗-weak∗ continuity of T ∗∗, we have

T ∗∗(n) = w∗ − lim
α
T ∗∗(n̂α) = w∗ − lim

α
(T (nα))̂ = w∗ − lim

α
m̂α = m.�

Lemma 8. Let (X,�) and (Y,�) be Banach algebras and let T be an

anti-homomorphism of X on to a dense subset of Y . If D : Y −→ Y ∗

is non-zero derivation then D̄ = T ∗DT : X −→ X∗ is a noon-zero

derivation:
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Proof. First we show that D̄ is non-zero derivation. If D̄ = 0 then

for all x, t in X,

< D̄(x), t >= 0.

Thus,

0 =< T ∗DT (x), t >=< DT (x), T (t) > .

So, by density T (X) in Y , DT (X) = 0, and then, D = 0.

Now, we prove that D̄ is a derivation. For a, b in X,

T (a�b) = T (b)�T (a)

suppose x ∈ X. We have

< D̄(a�b), x > =< T ∗DT (a�b), x >

=< D(T (b)�T (a)), T (x) >

=< DT (b)�T (a) + T (b)�DT (a), T (x) >

=< DT (b)�T (a), T (x) > + < T (b)�DT (a), T (x) >

=< DT (b), T (a)�T (x) > + < DT (a), T (x)�T (b) >

=< DT (b), T (x�a) > + < DT (a), T (b�x) >

=< T ∗DT (b), x�a > + < T ∗DT (a), b�x >

=< a�D̄(b), x > + < D̄(a)�b, x >

=< a�D̄(b) + D̄(a)�b, x > .

Thus,

D̄(a�b) = D̄(a)�b+ a�D̄(b)

we conclude that D̄ is a derivation �

Lemma 9. Let A be a dense subset in the Banach algebra of B. Then
A∗∗ is w∗-dense in B∗∗.
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Proof. Suppose that n ∈ B∗∗. Then n = w∗ − limα n̂α, for some a

net (nα) in B. Since, A is dense in B, there is a net (m(α,β))β in A such

that

lim
β
m(α,β) = nα

Now, for each open neighborhood U of nα, there is α(U) such that for

each β > α(U), we have

m(α,β) ∈ U

Turn the family (m(α,β,u)) into a net by directing the index set in the

obvious way. Then m(α,β,u) ∈ A and

w∗ − lim
(α,β,u)

α̂(α,β,u) = n

Hence, A∗∗ is w∗-dense in B∗∗. �

Theorem 10. Let A be a Banach algebra and T : A −→ A be con-

tinuous an anti-homomorphism.

(i) If the range T is dense in A then (A∗∗,�) is amenable if and only

if (A∗∗,�) is amenable.

(ii) If TT (x) = x then (A∗∗,�) is weakly amenable if and only if

(A∗∗,�) is weakly amenable.

Proof. (i). Suppose that T ∗∗ is second adjoint of T . So, T ∗∗ is weak∗-

weak∗ continuous and by Lemma 7,

T ∗∗ : (A∗∗,�) −→ ((A∗∗)op,�)

T ∗∗ : (A∗∗,�) −→ ((A∗∗)op,�)

and T ∗∗ is a continuous homomorphism. By the Lemma 9, the rang

of T ∗∗ is weak∗ dense in A∗∗. We conclude from ([6], Theorem 5.3),

(A∗∗,�) [resp. (A∗∗,�)] is amenable if and only if ((A∗∗)op,�) [resp.

((A∗∗)op,�) is so. By Theorem 3, (A∗∗,�) [resp. (A∗∗,�)] is amenable.
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Suppose that (A∗∗,�) is weakly amenable. By Theorem 3, ((A∗∗)op,�)

is weakly amenable. It is clear that

(((A∗∗)op)∗,�) = ((A∗∗∗)op,�)

(((A∗∗)op)∗,�) = ((A∗∗∗)op,�)

Because, if ξ ∈ A∗∗∗ and m ∈ A∗∗ then; m�opξ ∈ ((A∗∗∗)op,�) if and

only if ξ�m ∈ (A∗∗∗,�) if and only if m�opξ ∈ (((A∗∗)op)∗,�).

Now, let D be a derivation from (A∗∗,�) into (A∗∗∗,�). Then

(A∗∗,�)
D

(A∗∗∗,�)

�

T ∗∗

�

T ∗∗∗

((A∗∗)op,�) (((A∗∗)op)∗,�) = ((A∗∗∗)op,�)
D

�

�

By lemma 8, we conclude that D̄ = T ∗∗∗DT ∗∗ is a derivation from

((A∗∗)op,�) into (((A)∗∗)op)∗,�). By ((A∗∗)op,�) is amenable. So, there

is ξ ∈ ((A∗∗)op)∗ = (A∗∗∗)op such that for all n ∈ ((A∗∗)op,�)

D̄(n) = n�opξ − ξ�nop = ξ�n− n�ξ

Since, TT = I. We have T ∗∗∗T ∗∗∗ = I∗∗∗, T ∗∗T ∗∗ = I∗∗. If n ∈ (A∗∗,�)

then T ∗∗(n) ∈ ((A∗∗)op,�), T ∗∗T ∗∗(n) ∈ (A∗∗,�). Also,

D(n) ∈ (A∗∗∗,�), T ∗∗∗(D(n)) ∈ ((A∗∗∗)op,�),

T ∗∗∗T ∗∗∗(D(n)) ∈ (A∗∗∗,�).

we claim that,

(I) T ∗∗∗(ξ�T ∗∗(n)) = n�T ∗∗∗(ξ)

(II) T ∗∗∗(T ∗∗(n)�ξ) = T ∗∗∗(ξ)�n
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we prove (I), it is routine to check that (II). For m ∈ (A∗∗,�)

< T ∗∗∗(ξ�T ∗∗(n)),m > =< ξ�T ∗∗(n), T ∗∗(m) >

=< ξ, T ∗∗(n)�T ∗∗(m) >

=< ξ, T ∗∗(m�n) >

=< T ∗∗∗(ξ),m�n >

=< n�T ∗∗∗(ξ),m >

Hence, we have (1). Now, suppose that n ∈ (A∗∗,�) So,

D(n) = T ∗∗∗((T ∗∗∗DT ∗∗)T ∗∗(n))

= T ∗∗∗(D̄T ∗∗(n))

= T ∗∗∗(ξ�T ∗∗(n)− T ∗∗(n)�ξ)

= T ∗∗∗(ξ�T ∗∗(n))− T ∗∗∗(T ∗∗(n)�ξ)

= n�T ∗∗∗(ξ)− T ∗∗∗(ξ)�n

So, D is inner. Thus (A∗∗,�) weakly amenable The converse is similar.

�

Corollary 11. Let A be a Banach algebra with continuous involution

then (A∗∗,�) is amenable (weakly amenable) if and only if (A∗∗,�) is

amenable (weakly amenable).
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Abstract. In this article, sublinear functions of Rn are generalized

to topological groups and their relations are inspected with convex

functions. These functions are generalization of homomorphism

too, along the above notable objects are mentioned.
1

1. Introduction

A linear function T from Rn to R or a linear form on Rn is primarily

defined as a function satisfying for all (x1, x2) ∈ Rn ×Rn and (t1, t2) ∈
R×R

T (t1x1 + t2x2) = t1T (x1) + t2T (x2) (1)

A corresponding definition for a sublinear function f from Rn into R is:

for all (x1, x2) ∈ Rn ×Rn and (t1, t2) ∈ R+ ×R+

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2) (2)

Definition 1. A function f : Rn → (−∞,+∞] is said to be sublinear if

it is convex and positively homogeneous (of degree 1): i.e. f ∈ conv(Rn)

11991 Mathematics Subjects Classification. 26A51, 22A10

key words and phrases. sublinear-positively homogeneous.

The author is supported in part by the University of Zanjan.

51



52 11th Seminar on Mathematical Analysis and Its Applications

and

f(tx) = tf(x) for all x ∈ Rn and t > 0. (3)

Remark 2. Inequality in (3) would be enough to define positive homo-

geneity: a function f is positivety homogeneous if and only if it satisfies

f(tx) ≤ tf(x) for all x ∈ Rn and t > 0 (4)

In fact (4) implies (tx ∈ Rn and t−1 > 0)

f(x) = f(t−1tx) ≤ t−1f(tx)

which together with (4) shows that f is positively homogeneous. The

following result is a geometrical characterization of sublinear functions.

Proposition 3. A function f : Rn → (−∞,∞] is sublinear if and only

if its epigraph epi(f) is a nonempety convex cone in Rn ×R.

Proposition 4. A function f : Rn → (−∞,∞] not identically equal to

∞, is sublinear if and only if one of the following two properties holds:

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2) for all x1, x2 ∈ Rn and t1, t2 > 0

(5)

or f is positively homogeneous and subadditive.

Corollary 5. If f is sublinear then

f(x) + f(−x) ≥ 0 for all x ∈ Rn. (6)

Proposition 6. Let f be sublinear and suppose that there exist x1, x2, ..., xm

in Df such that

f(xj) + f(−xj) = 0 for j = 1, 2, ...,m (7)

then f is linear on the subspace spanned by x1, x2, ..., xm.

Definition 7. Let S be a nonempty set in Rn the function fs : Rn →
(−∞,∞] defined by

fs(x) = sup{< s, x >; s ∈ S}
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is called the support functions of S.

Proposition 8. A support function is sublinear.

2. Sublinear function on groups

In this section, some properties of subadditivity and sublinearity func-

tions will be inspected which are shown in the introduction on topolog-

ical groups.[1]

Definition 1. Let G be a group and Ω is an open set. A function

f : Ω → (−∞,∞] is subadditive if for all x1, x2 ∈ Ω such that x1x2 ∈ Ω,

f(x1x2) ≤ f(x1) + f(x2) (8)

and f is midhomogeneity, if for all a ∈ Ω such that a2 in Ω,

f(a2) = 2f(a) (9)

the f is midsublinear if is subadditive and midhomogeneity.

Remark. Rgarding to (9) by induction we show that f(x2
n
) = 2nf(x)

when x, x2, x4, ..., x2
n ∈ Ω. Let m be an integer then an integer n exist

such that m < 2n thus,

2nf(x) = f(x2
n
) = f(xmx2

n−m)

≤ f(xm) + f(x2
n−m) ≤ f(xm) + (2n −m)f(x)

mf(x) ≤ f(xm)

on the other hand f(xm) ≤ mf(x) therefore mf(x) = f(xm). In addi-

tion, if G has square root property [1], [2] (i.e. for all a ∈ G there exist

b ∈ G such that b2 = a. For example Gl(n;C) has square root property.)

hence for all x ∈ G and n ∈ N there exist a y ∈ G such that y2
n
= x

thus we define y = x1/2
n
,since f(x) = f(y2

n
) = 2nf(y) therefore

f(x1/2
n
) =

1

2n
f(x), and f(xm/2n) =

m

2n
f(x).
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If G is rootapproximable then for all t > 0 there exists a sequence {qi}
of the form qi =

mi
2ni such that qi → t.We define xt := limi→∞xqi . If f

is midsublinear and continuous function then

f(xt) = limi→∞f(xqi) = limi→∞qif(x) = tf(x).

Definition 2. A function f : Ω → (−∞,∞] is sublinear if is midsub-

linear and continuous on Ω.

Proposition 3. Let G be a rootapproximable,abelian group, and Ω is an

open set in G, f : Ω → (−∞,∞] midconvex and midhomogeneity then

f is midsublinear.

Proof. It’s sufficient to show that f is subadditive,

f(x+y) = 2f(
x+ y

2
) ≤ 2[f(

x

2
)+f(

y

2
)] = 2(

f(x) + f(y)

2
) = f(x)+f(y).

Since f(e) = f(2e) = 2f(e) thus f(e) = 0 or f(e) = ∞ hence 0 ≤ f(e) =

f(xx−1) ≤ f(x) + f(x−1). If f(e) = 0, define H = {x;x ∈ G, f(x) +

f(x−1) = 0} then H ≤ G because, if x, y ∈ H then f(x) + f(x−1) =

f(y) + f(y−1) = 0

0 ≤ f(xy−1) + f((xy−1)−1) = f(xy−1) + f(yx−1)

≤ f(x) + f(y−1) + f(y) + f(x−1) = 0

therefore f(xy−1) + f((xy−1)−1) = 0 and then xy−1 ∈ H.

Hence the following results:

Proposition 4. suppose f : G → (−∞,∞] is midsublinear function

and f(e) = 0, then H = {x; f(x) + f(x−1) = 0} is sublinear of G.

Corollary. If f : G→ R is midsublinear and H is above subgroup, then

we have for all x, y ∈ H, f(xy) = f(x) + f(y).

Because f(y) = f(yxx−1) ≤ f(yx) + f(x−1) = f(yx)− f(x) and hence

f on H is linear.

Proposition 5. If f : G → R be a midsublinear, such that H = {e},
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define ||x||f := Max{f(x), f(x−1)} then ||.||f has the following proper-

ties:

i) ||x||f ≥ 0 for all x in G

ii) ||x||f = 0 iff x = e

iii) ||xt||f = |t| ||x||f (In the case G is rootapproximable and f sublin-

ear.)

iv) ||xy||f ≤ ||x||f + ||y||f
Remark. If G is abelian group, then tx and x + y substitute with xt

and xy respectively.

Proof.

||xt||f = Max{f(xt), f(x−t)} =

Max{tf(x), tf(x−1)} if t ≥ 0

Max{−tf(x−1),−tf(x)} if t < 0

therefore

||xy||f = Max{f(xy), f(y−1x−1)} ≤ Max{f(x)+ f(y), f(x−1)+ f(y−1)}

≤ Max{f(x), f(x−1)}+Max{f(y), f(y−1)} = ||x||f + ||y||f .

Proposition 6. Let {ϕα} be the collection of midsublinear (res. sub-

linear) function on G then ϕ = supϕα is midsublinear (res. sublinear)

function on G.

Proof. Since for all α, ϕα(xy) ≤ ϕα(x) + ϕα(y) ≤ ϕ(x) + ϕ(y) thus

ϕ(xy) ≤ ϕ(x) + ϕ(y) and ϕα(x
t) = tϕα(x) hence ϕ(x

t) = tϕ(x).

Example. Suppose thatG = Gl(n;C) ϕ(A) = log|det(A)| then ϕ(AB) =

ϕ(A) + ϕ(B) and ϕ(Aq) = qϕ(A) for all q ∈ Q+ since ϕ is continuous

therefore ϕ(At) = tϕ(A) for all t > 0 [2] hence ϕ is linear function.



56 11th Seminar on Mathematical Analysis and Its Applications

References

[1] Chademan A. & Mirzapour F., Boundedness properties of midconvex functions

in locally compact groups, (Proc. of the 26-th AIMC, March 1995, Published by

the Iranian Math. Society and University of Kerman, Kerman Iran)(1995) 45-51.

[2] Chademan A. & Mirzapour F., Midconvex functions in locally compact groups,

Proc. Amer. Math. Soc. 127, no. 10,(1999) 2961-2968.

[3] Roberts A.W & Varberg D.A, Convex functions, Academic Press, New

York,(1973).

[4] Jean-Baptiste, Hiriart-Urruty Claude Lemarechal,Convex Analysis and Mini-

mization Algorithms, Springer-verlag (1996).



ON COMPACTNESS AND WEAKLY COMPACTNESS

OF THE BEST APPROXIMANT SET

H. MOHEBI AND H. MAZAHERI

FACULTY OF MATHEMATICS,

SHAHID BAHONAR UNIVERSITY OF KERMAN,

KERMAN, IRAN.

AND

DEPARTMENT OF MATHEMATICS,

YAZD UNIVERSITY,

YAZD, IRAN.

Abstract. Weakly-Chebyshev subspaces of a Banach space X are

defined as those in which the set of best approximants of any vector

x in X is non-empty and weakly compact. Moreover, it is shown

that there exists a proximinal subspace G of X which is weakly-

Chebyshev, but is not quasi-Chebyshev in X. Also, some other

related results are presented.

1. Introduction and Preliminaries

Let X be a (complex or real) Banach space and let G be a linear

subspace of X. A point y0 ∈ G is said to be a best approximation for

x ∈ X if

‖x− y0‖ = d(x,G) = inf{‖x− y‖ : y ∈ G}.

If each x ∈ X has at least one best approximation in G, then G is

called a proximinal subspace of X. If each x ∈ X has a unique best

approximation in G, then G is called a Chebyshev subspace of X. For

x ∈ X, put

PG(x) = {y ∈ G : ‖x− y‖ = d(x,G)},
57
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and

Ĝ = P−1G (0) = {x ∈ X : ‖x‖ = d(x,G)}.

It is clear that PG(x) is a closed, bounded and convex subset of X. For

an arbitrary non-empty convex set A in X we shall denote by

�(A) = {αx+ (1− α)y : x, y ∈ A;α is scalar}

the linear manifold spanned by A. For every fixed y ∈ A the set �(A)−
y = {x − y : x ∈ �(A)} is a linear subspace of X satisfying �(A − y) =

�(A)− y. The dimension of A is defined by dimA = dim�(A). Then, for

every y ∈ A we have

dimA = dim�(A) = dim[�(A) − y] = dim�(A− y) = dim(A− y).

(For more details see [10].)

We say that G is a pseudo-Chebyshev subspace of X if PG(x) is a

non-empty and finite-dimensional set in X for every x ∈ X.

We say that G is a quasi-Chebyshev subspace of X if PG(x) is a non-

empty and compact set in X for every x ∈ X. Every pseudo-Chebyshev

subspace is quasi-Chebyshev, but the converse is not true (see [4]). The

properties of pseudo-Chebyshev and quasi-Chebyshev subspaces have

investigated in [4], [5], [6], [7] and [9].

In the following we give a definition which extends the definition of

quasi-Chebyshev subspace.

1.1. Definition. Let X be a Banach space. A linear subspace G ofX

is called weakly-Chebyshev if PG(x) is non-empty and weakly compact

set in X for every x ∈ X.

It is clear that every quasi-Chebyshev subspace is weakly-Chebyshev.

In the following we shall give an example in which the converse is not

true.
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Let X∗ be the dual space of the Banach space X. For 0 �= f ∈ X∗,

put

Mf = {x ∈ X : f(x) = ‖f‖, ‖x‖ = 1}.

We say that a Banach space X is quasi-strictly convex if for every

0 �= f ∈ X∗ the set Mf is compact (see [7]). Every k-strictly convex

Banach space is quasi-strictly convex (k = 1, 2, . . . ).

We recall that for a topological space Y one denotes by 2Y the col-

lection of all bounded closed subsets of Y . A mapping U : X −→ 2Y is

called upper semi-continuous (u.s.c.) if the set

{x ∈ X : U(x) ⊂M}

is open for every open subset M of Y , or the set

{x ∈ X : U(x) ∩N �= ∅}

is closed for every closed subset N of Y . (For more details see [10].)

It is clear that PG is upper semi-continuous if and only if for every

closed subset A of G the set A+ Ĝ is closed, or if and only if for every

closed subset A of Ĝ the set G+A is closed (see [2]).

We conclude this section by a list of known lemmas needed in the

proof of the main results.

1.2. Lemma ([9,10]). Let X be a normed linear space, G be a linear

subspace of X,x ∈ X\G and F be a subset of G. Then F is a subset of

PG(x) if and only if there exists f ∈ X∗ such that ‖f‖ = 1, f |G = 0 and

f(x− y) = ‖x− y‖ for every y ∈ F .

1.3. Lemma ([4]). Let X be a Banach space and let G be a proximinal

subspace of X with codimension one, then the following are equivalent:

1) G is quasi-Chebyshev in X.

2) Each sequence {yn}n≥1 in X with ‖yn‖ = 1 and 0 ∈ PG(yn) (n =

1, 2, . . . ) has a convergent subsequence.
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1.4. Lemma ([4]). Let X be a Banach space and let G be a proximinal

subspace of X. Then the following are equivalent:

1) G is quasi-Chebyshev in X.

2) In every linear subspace Yx ⊂ X (x ∈ X\G) of the form Yx =

G ⊕ 〈x〉 each sequence {yn}n≥1 in Yx with ‖yn‖ = 1 and 0 ∈ PG(yn)

(n = 1, 2, . . . ) has a convergent subsequence.

1.5. Lemma ([7]). Let X be a Banach space. Then all closed linear

subspaces of X are quasi-Chebyshev if and only if X is reflexive and

quasi-strictly convex.

2. Characterizations of Weakly-Chebyshev Subspaces

In this section we shall give a characterization of weakly-Chebyshev

subspaces in Banach spaces.

2.1. Theorem. Let X be a Banach space, then all closed linear

subspaces of X are weakly-Chebyshev if and only if X is reflexive.

Proof. Suppose that all closed linear subspaces of X are weakly-

Chebyshev, then all closed linear subspaces of X are proximinal, and

hence by [5; Corollary 2.4] X is reflexive.

Conversely, assume that X is reflexive and G is any closed linear

subspace of X. Then SX the unit ball of X and hence rSX = {x ∈ X :

‖x‖ ≤ r} is weakly compact for every r > 0.

Let x ∈ X\G. Since PG(x) is a bounded set, therefore there exists

r > 0 such that PG(x) ⊆ rSX . But PG(x) is weakly closed because it is

closed and convex. Then PG(x) is weakly compact. It follows that G is

a weakly-Chebyshev subspace of X.

We know that every quasi-Chebyshev subspace ofX is weakly-Chebyshev

subspace of X. The following example shows that there exists a weakly-

Chebyshev subspace of a Banach space X which is not quasi-Chebyshev.
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2.2. Example. LetW = �2 with the basis {en}n≥1 and letW0 = �∞.

Put, X =W ⊕W0 and define a norm on X by

‖x+ y‖ = max{‖x‖2, ‖y‖∞},

for all x ∈W and all y ∈W0.

It is clear that ‖ · ‖ is a norm on X, and X is a Banach space with

respect to this norm. It is not difficult to show that

PW (y) = {x ∈W : ‖x‖2 ≤ ‖y‖∞},

for every y ∈ W0. Let z ∈ X, z = x + y, where x ∈ W and y ∈ W0.

Since x ∈ W , PW (z) = PW (y) + x. It follows that PW (z) �= ∅ for all

z ∈ X, and hence W is a proximinal subspace of X.

Since W is a reflexive subspace of X, it follows that W is weakly-

Chebyshev.

Now, we show that W is not quasi-Chebyshev subspace of X. Let

y = {(−1)n}n≥1. Then, we have y ∈W0 and

PW (y) = {x ∈W : ‖x‖2 ≤ 1} = SW

where SW is the unit ball ofW , and hence PW (y) is not compact because

W is reflexive. Therefore, W is not quasi-chebyshev in X.

The following Theorem shows that in a reflexive Banach space which

is not quasi-strictly convex, there exists a closed linear subspace of X

which is weakly-Chebyshev but is not quasi-Chebyshev.

2.3. Theorem. Suppose X is a reflexive Banach space, but is not

quasi-strictly convex. Then there exists a subspace of X which is weakly-

Chebyshev, but is not quasi-Chebyshev.

Proof. Since X is not quasi-strictly convex, there exists 0 �= f0 ∈ X∗

such that Mf0 is not compact. It follows that there exists a sequence
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{yn}n≥1 in X without a convergent subsequence such that

f0(yn) = ‖f0‖ and ‖yn‖ = 1 , (n = 1, 2, . . . ).

Put, G0 = kerf0. Then G0 is a closed linear subspace of X. Let x0 = y1,

gn = x0− yn+1 (n = 1, 2, . . . ) and f =
f0

‖f0‖ , then {gn}n≥1 is a sequence

in G0, f ∈ X∗, ‖f‖ = 1, f |G0 = 0 and

f(x0 − gn) = f(x0) = ‖x0‖ = ‖x0 − gn‖, (n = 1, 2, . . . ).

By Lemma 1.2, {gn}n≥1 is a sequence in PG0(x0) without a convergent

subsequence. Therefore, G0 is not quasi-Chebyshev. But, X is reflexive

and hence by Theorem 2.1, G0 is weakly-Chebyshev.

2.4. Theorem. Let X be a Banach space and let G be a proximinal

subspace of X. If Mf is weakly compact for every 0 �= f ∈ G⊥, then G

is weakly-Chebyshev in X.

Proof. Let x ∈ X\G and {gn}n≥1 be an arbitrary sequence in PG(x).

Then, by Lemma 1.2, there exists f0 ∈ X∗, ‖f0‖ = 1, f0|G = 0 and

f0(x− gn) = ‖x− gn‖ (n = 1, 2, . . . ).

Let xn = x − gn (n = 1, 2, . . . ), then f0(xn) = ‖xn‖ = f0(x) for all

n ≥ 1. Put

zn =
xn
‖xn‖ =

xn
f0(x)

, (n = 1, 2, . . . ).

Then {zn}n≥1 is a sequence in Mf0 , ‖zn‖ = 1 and f0(zn) = 1 = ‖f0‖.
Since Mf0 is weakly compact, hence there exists a weakly-convergent

subsequence {znk
}k≥1 of {zn}n≥1 such that znk

w−→ z0 ∈ Mf0 . There-

fore, we have xnk

w−→ z0f0(x) and hence gnk

w−→ x− z0f0(x) ∈ G.

Now, we show that g0 = x − z0f0(x) ∈ PG(x). To do this, we have

f0(x− g0) = f0(z0f0(x)) = f0(x) and we also have

‖x− g0‖ = ‖z0f0(x)‖ = |f0(x)|‖z0‖ = f0(x).
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Therefore, f0(x − g0) = ‖x − g0‖, ‖f0‖ = 1 and f0|G = 0. Hence,

by Lemma 1.2, g0 ∈ PG(x). It follows that {gn}n≥1 have a weakly-

convergent subsquence in PG(x). Thus, G is weakly-Chebyshev in X.

2.5. Theorem. Let X be a Banach space and let G be a proximinal

subspace of X with codimension one. Then the following are equivalent:

1) G is weakly-Chebyshev in X.

2) Each sequence {yn}n≥1 in X with ‖yn‖ = 1 and 0 ∈ PG(yn) (n =

1, 2, . . . ) has a weakly-convergent subsequence.

3) Mf is weakly compact for every 0 �= f ∈ G⊥.

Proof. 1)⇒ 2). Assume that G is weakly-Chebyshev in X, {yn}n≥1
is any sequence in X with ‖yn‖ = 1 and 0 ∈ PG(yn). Since codimG = 1,

there exists x0 ∈ X such that X = G ⊕ 〈x0〉. Therefore, there exist

a sequence {zn}n≥1 in G and a sequence {βn}n≥1 of scalars (note that

βn �= 0 for all n = 1, 2, . . . ) such that

yn = zn + βnx0, (n = 1, 2, . . . ) ·

Now, we have

d(x0, G) = d(
1

βn
yn − 1

βn
zn, G)

= d(
1

βn
yn, G) =

1

|βn|d(yn, G)

=
1

|βn|‖yn‖ =
1

|βn| , (∗)

and

‖x0 + 1

βn
zn‖ =

1

|βn|‖yn‖ =
1

|βn| ,

for all n ≥ 1. It follows that {− 1

βn
zn}n≥1 is a sequence in PG(x0). Since

PG(x0) is weakly compact, { 1

βn
zn}n≥1 has a weakly-convergent subse-

quence. Also, it follows from (∗) that {βn}n≥1 is a bounded sequence
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of scalars. Hence {zn}n≥1 has a weakly-convergent subsequence. Thus,

{yn}n≥1 has a weakly-convergent subsequence in X.

2)⇒ 3). Suppose 0 �= f ∈ G⊥ and {yn}n≥1 is an arbitrary sequence

in Mf . Then we have

f(yn) = ‖f‖ and ‖yn‖ = 1, (n = 1, 2, . . . ).

Let f0 =
f

‖f‖ . It follows that f0 ∈ X∗, ‖f0‖ = 1, f0|G = 0 and

f0(yn) = 1 = ‖yn‖ for all n = 1, 2, . . . . Then, by Lemma 1.2, 0 ∈ PG(yn)

and ‖yn‖ = 1 (n = 1, 2, . . . ). Now, by hypothesis, {yn}n≥1 has a weakly-

convergent subsequence in X. That is, there exists {ynk
}k≥1 such that

ynk

w−→ y0 ∈ X. SinceMf is closed and convex, Mf is weakly closed and

hence y0 ∈Mf . Then, Mf is weakly compact.

3)⇒ 1). This is a consequence of Theorem 2.5.

2.6. Theorem. Let X be a Banach space and let G be a proximinal

subspace of X. Then the following are equivalent:

1) G is weakly-Chebyshev in X.

2) For every x ∈ X\G and every f ∈ X∗ there exists y0 ∈ PG(x) such

that |f(y)| ≤ |f(y0)| for all y ∈ PG(x).

3) There do not exist f ∈ X∗, x0 ∈ X and a sequence {xn}n≥1 in

X without a weakly convergent subsequence and with x0 − xn ∈ G (n =

1, 2, . . . ) such that ‖f‖ = 1, f |G = 0 and f(xn) = ‖xn‖, n = 0, 1, 2, . . . .

4) There do not exist f ∈ X∗, x0 ∈ X and a sequence {gn}n≥1 in

G without a weakly convergent subsequence such that ‖f‖ = 1, f |G = 0

and f(x0) = ‖x0‖ = ‖x0 − gn‖, n = 1, 2, . . . .

Proof. By Jame’s Theorem ([3]), (1) and (2) are equivalent. If we

replace compactness by weakly compactness and convergence by weakly

convergence in the proof [7; Theorem 2.5], then (1), (3) and (4) are

equivalent.
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3. Quasi-Chebyshev Subspaces

In this section we characterize the relation between upper semi-continuity

and quasi-Chebyshevity.

3.1. Theorem. Let X be a Banach space and let G be a proximinal

subspace of X with codimension one, then the following are equivalent:

1) G is quasi-Chebyshev in X.

2) Each sequence {yn}n≥1 in X with ‖yn‖ = 1 and 0 ∈ PG(yn) (n =

1, 2, . . . ) has a convergent subsequence.

3) PG is upper semi-continuous.

Proof. 1)⇒ 2). It has been proved in Lemma 1.3.

2)⇒ 3). Assume that (2) holds. Since codim(G) = 1, there exists

f ∈ X∗ such that G = {y ∈ X : f(y) = 0}. By [11; Lemma 1.2.] we

have

d(x,G) =
|f(x)|
‖f‖ , (x ∈ X\G).

Let N be an arbitrary closed subset of Ĝ. We shall show that the set

B = N +G is closed in X.

For this, let x ∈ B. Then there exists a sequence {xn}n≥1 in B such

that xn −→ x. It follows that there exists a sequence {yn}n≥1 in N such

that xn − yn ∈ G (n = 1, 2, . . . ). Hence f(xn) = f(yn) for all n ≥ 1 and

‖yn‖ = d(yn, G) (n = 1, 2, . . . ). Let

wn =
yn
‖yn‖ , (n = 1, 2, 3, . . . ).

Then ‖wn‖ = 1 and 0 ∈ PG(wn). Now, by hypothesis {wn}n≥1 has

a convergent subsequence {wnk
}k≥1 with limit w0. We have ‖ynk

‖ =
|f(xnk

)|
‖f‖ and {xnk

} converges to x. Therefore

lim
k→∞

‖ynk
‖ =

|f(x)|
‖f‖ ,
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and ynk
= wnk

‖ynk
‖ −→ w0

|f(x)|
‖f‖ =: y0. Since N is a closed set,

y0 ∈ N and hence x = y0 + (x − y0) ∈ N +G = B. Thus, PG is upper

semi-continuous.

3)⇒ 1). Let x ∈ X\G and let {yn}n≥1 be an arbitrary sequence in

PG(x). Then {x− yn}n≥1 is a sequence in Ĝ. Since

‖x− yn‖ = d(x− yn, G) = d(x,G) ≤ ‖x‖,

for all n ≥ 1. It follows that {x − yn}n≥1 is a bounded sequence in Ĝ.

But, by [9, Theorem 4.25], Ĝ is boundedly compact. Therefore, there

exists a convergent subsequence {x− ynk
}k≥1 with limit in Ĝ.

Now, since ynk
= x− (x− ynk

) and ‖x− ynk
‖ = d(x,G) for all k ≥ 1,

{ynk
}k≥1 converges to x0 ∈ PG(x). Thus, PG(x) is compact and hence

G is a quasi-Chebyshev subspace of X.

3.2. Theorem. Let X be a Banach space, G be a proximinal subspace

of X, and PG be upper semi-continuous. Then G is a quasi-Chebyshev

subspace of X.

Proof. Suppose that PG is upper semi-continuous on X. Then PG

is upper semi-continuous on every Yx = G ⊕ 〈x〉 (x ∈ X\G). Since

codim(G) = 1 in each Yx (x ∈ X\G), by Theorem 3.1 (the implication

3)⇒ 2)) each sequence {yn}n≥1 in Yx with ‖yn‖ = 1 and 0 ∈ PG(yn)

(n = 1, 2, . . . ) has a convergent subsequence and hence by Lemma 1.4,

G is quasi-Chebyshev in each Yx (x ∈ X\G). But X =
⋃

x∈X\G
Yx. It is

clear that G is quasi-Chebyshev in X.

3.3. Corollary. Let X be a Banach space and let G be a proximinal

subspace of X with codimension one. If G is pseudo-Chebyshev, then

PG is upper semi-continuous.

Proof. This is an immediate consequence of Theorem 3.1 and that

every pseudo-Chebyshev subspace is quasi-Chebyshev.
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Now, we shall give an example in which the converse of Corollary 3.3

is not true.

3.4. Example. Let X = �1 ⊕ 〈y0〉, ‖y0‖ = 1 and define a norm on

X by

‖x+ y‖ =

∞∑
n=1

[|cn| ∨ (2−n‖y‖)] <∞,

where
∞∑
n=1

cnen = x ∈W = �1, y ∈W0 = 〈y0〉 and a ∨ b = max(a, b).

It is clear that ‖ · ‖ is a norm on X, and X is a Banach space with

respect to this norm. In [7; Example 2.2] it is shown thatW = �1 is not a

pseudo-Chebyshev subspace of X, but is a quasi-Chebyshev subspace of

X. Since codimW = 1, by Theorem 3.1, PG is upper semi-continuous.

By [8; Theorem 4], it follows that if codim(G) > 1 and G is pseudo-

Chebyshev orG is quasi-Chebyshev, then PG is not upper semi-continuous,

and hence the converse of Theorem 3.2 is not true.
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Abstract. In this paper, we establish results related to lower

bound for the variance as an extended version of Chernoff-type in-

equalities. This subsume several of the earlier specialized results in

the literature and has linked with the lower bound for the variance

in Cacoullos & Papathanasiou (1997).
1

1. Introduction

There is an extensive literature dealing with upper and lower

bounds for the variance of a function of a random variable via Chernoff

(1981), which gives a bound for the variance of an absolutely continuous

function ( w.r.t. Lebesgue measure) of a normal random variable. Chen

(1982), Cacoullos (1982) and Klaassen (1985) obtained variations of the

inequality relative to other distributions and also gave the correspond-

ing lower bounds. Several papers have appeared on modified versions

or variants of the Chernoff inequality such as Borovkov & Utev (1983),

1Keywords: Chernoff-type Inequalities, Variance bounds, Characterization, Up-

per bounds, Lower bounds.

69
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Cacoullos & Papathanasiou (1985,1989), Koicheva (1993), Prakasa Rao

& Sreehari (1986,1987), Srivastava & Sreehari (1987,1990), Prakasa Rao

(1992), Prakasa Rao & Sreehari (1997), Purkayastha & Bhandari (1990),

Cacoullos & Papathanasiou (1992) and Hwang & Sheu (1987).

It is natural to ask whether one could extend the aforementioned

characterizations, involving exclusively purely absolutely continuous or

exclusively purely discrete distributions to a more general format where

a distribution has a singular continuous component or it is a non-trivial

mixture of a purely discrete distribution and a purely continuous distri-

bution.

We establish a general format for characterizations in this area which

is an extended version of that published by Alharbi & Shanbhag (1996)

and Mohtashami Borzadaran & Shanbhag (1998); these subsumes sev-

eral of the earlier specialized results in the literature. Cacoullos & Pa-

pathanasiou (1995) published a paper about the generalization of the

covariance identity and related characterizations. Cacoullos & Pap-

athanasiou (1997) found lower and upper bounds for the variance of

a real-valued function of an r.v. based on a generalization of the co-

variance identity. We shall establish a link between these results and

the results of Alharbi & Shanbhag (1996) and our results. The results

in Cacoullos & Papathanasiou (1995,1997) subsume most of the earlier

characterizations based on variance bounds. Obviously our findings now

will reveal that the results in Cacoullos & Papathanasiou (1995,1997)

are corollaries to those in our results.

2. Main Results

We establish here an extended version of Chernoff inequality where

lower variance bound in Alharbi& Shanbhag (1996) is a corollary of ours

via the following theorems :
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Theorem 2.1. Let F ∗ be a non-constant Lebesgue-Stieltjes measure func-

tion on � and νF ∗ be the measure on the Borel σ− field of � determined

by it, and let h∗ and Z be Borel measurable functions. Let X be an

r.v. with df F such that h∗(X) is integrable with μ∗ = E[h∗(X)] and

E(|Z(X)|I{X∈(a,b)}) <∞ for every −∞ < a < b <∞ and satisfying the

condition that lim infx→∞(h∗(x) − μ∗) > 0 if the right extremity of F

equals ∞, and the condition that lim infx→−∞(μ∗−h∗(x)) > 0 if the left

extremity of F equals −∞. Further let τ be the class of real-valued ab-

solutely continuous functions g with Radon-Nikodym derivative g′ w.r.t.

the measure νF ∗ (i.e. such that g(b) − g(a) =
∫
(a,b] g

′(x)dνF ∗(x) for all

a and b with a < b). Then, we have the condition

Cov{g(X), h∗(X)} = E{Z(X)g′(X)}, (1)

met for all g ∈ τ with E
( | Z(X)g′(X) | ) <∞, if and only if,

Z(x)dF (x) = {
∫
[x,∞)

[h∗(z)− μ∗]dF (z)}dνF ∗(x), x ∈ �. (2)

(We read (1) as the condition where the left hand side of the identity is

well defined and equals the right hand side of the identity.)

Proof: The “ if ” part can be proved via an extended version of

the argument as in Alharbi & Shanbhag (1996) by applying Fubini’s

theorem as follows :

(2) implies that if E(|Z(X)g′(X)|) <∞, then, for any a ∈ �,

E{Z(X)g′(X)} =

∫
�
g′(x){

∫
[x,∞)

[h∗(z)− μ∗]dF (z)}dνF ∗(x)

=

∫
(a,∞)

g′(x){
∫
[x,∞)

[h∗(z)− μ∗]dF (z)}dνF ∗(x)

+

∫
(−∞,a]

g′(x){
∫
(−∞,x)

[μ∗ − h∗(z)]dF (z)}dνF ∗ (x)

(3)
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Note that for sufficiently large positive number k, we have, in view of

the lim inf conditions concerning h∗,∫
[k,∞)

|g′(x)|( ∫
[x,∞)

|h∗(z) − μ∗|dF (z))dνF ∗(x)

=

∫
[k,∞)

|g′(x)|( ∫
[x,∞)

[h∗(z)− μ∗]dF (z)
)
dνF ∗(x) <∞ (4)

and ∫
(−∞,−k]

|g′(x)|( ∫
(−∞,x)

|μ∗ − h∗(z)|dF (z))dνF ∗(x)

=

∫
(−∞,−k]

|g′(x)|( ∫
(−∞,x)

[μ∗ − h∗(z)]dF (z)
)
dνF ∗(x) <∞. (5)

Also, in view of the absolute continuity of g, we get g′ to be νF ∗-

integrable on (−k, k) and we get for k > |a|∫
(a,k)

|g′(x)|( ∫
[x,∞)

|h∗(z) − μ∗|dF (z))dνF ∗(x)

+

∫
(−k,a]

|g′(x)|( ∫
(−∞,x)

|h∗(z)− μ∗|dF (z))dνF ∗(x)

≤ ( ∫
(−k,k)

|g′(x)|dνF ∗(x)
)
E
(|h∗(z)− μ∗|)

<∞
(6)

In view of (4), (5) and (6), it flows that the right hand side of (3) with

|g′(x)| in place of g′(x) and |h∗(z) − μ∗| in place of h∗(z) − μ∗ and

μ∗−h∗(z) is finite. Consequently, we can apply Fubini’s theorem to the

right hand side of (3) to get that it equals∫
(a,∞)

(
g(z) − g(a)

)
[h∗(z)− μ∗]dF (z)

+

∫
(−∞,a]

(
g(a)− g(z)

)
[μ∗ − h∗(z)]dF (z),

(7)
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which in turn, equals

E{(g(X) − g(a)
)(
h∗(X) − μ∗

)};
in view of the lim inf conditions concerning h∗ and the integrability

of
(
g(X) − g(a)

)(
h∗(X) − μ∗

)
it follows that g is integrable and the

expectation that we have above equals Cov{h∗(X), g(X)}. The “ only

if ” part could be proved as follows :

We have

E{Z(X)g′(X)} =

∫
�
g′(x)Z(x)dF (x)

and with a ∈ �,

Cov{g(X), h∗(X)} = E{g(X)[h∗(X) −E
(
h∗(X)

)
]}

=

∫
�
g(x)[h∗(x)− μ∗]dF (x)

=

∫
�

(
g(a) +

∫
(a,x]

g′(y)dνF ∗(y)
)
[h∗(x)− μ∗]dF (x)

=

∫
�

∫
(a,x]

g′(y)dνF ∗(y)[h∗(x)− μ∗]dF (x)

=

∫
(a,∞)

∫
(a,x]

g′(y)dνF ∗(y)[h∗(x)− μ∗]dF (x)

−
∫
(−∞,a]

∫
(x,a]

g′(y)dνF ∗(y)[h∗(x)− μ∗]dF (x)

=

∫
(a,∞)

( ∫
[y,∞)

[h∗(x)− μ∗]dF (x)
)
g′(y)dνF ∗(y)

+

∫
(−∞,a]

( ∫
[y,∞)

[h∗(x)− μ∗]dF (x)
)
g′(y)dνF ∗(y)

=

∫
�

( ∫
[y,∞)

[h∗(x)− μ∗]dF (x)
)
g′(y)dνF ∗(y),
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Let −∞ < a < b < ∞ and let g be absolutely continuous w.r.t. νF ∗

such that

g′(x) =

{
0 if x /∈ (a, b)

1 if x ∈ (a, b).

Hence∫
(a,b)

Z(x)dF (x) =

∫
(a,b)

( ∫
[x,∞)

[h∗(y)− μ∗]dF (y)
)
dνF ∗(x),

for all arbitrary a, b > 0. This implies that

( ∫
[x,∞)

(
h∗(t)− μ∗]

)
dF (t)

)
dνF ∗(x) = Z(x)dF (x),

which is (2).�

Theorem 2.2. Let X, g, τ, Z and h∗ be defined as in Theorem 2.1,

but additionally with h∗ absolutely continuous w.r.t. νF ∗ and h∗(X) as

nondegenerate square integrable satisfying

V ar{h∗(X)} = E
(
Z(X)h∗′(X)

)
. (8)

Furthermore, let τ∗ be the set of g ∈ τ for which g(X) is square integrable

and E{Z(X)g′(X)} is defined and nonzero. Then

inf
g∈τ∗

V ar[g(X)]V ar[h∗(X)]

E2{Z(X)g′(X)} = 1, (9)

if and only if (2) holds.

Proof: We shall first establish the “ if ” part; note that (9) is equiv-

alent to

V ar{g(X)}V ar{h∗(X)} ≥ E2{Z(X)g′(X)}, g ∈ τ∗, (10)

on noting that the equality in (10) holds for some g. Clearly, if we assume

(2), we have

E{Z(X)g′(X)} = Cov[g(X), h∗(X)], (11)
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as seen in Theorem 2.1. Note now that the equality in (10) holds if

g(.) = h∗(.). Hence, under the stated assumptions,

E2{Z(X)g′(X)} = {Cov[g(X), h∗(X)]}2

≤ V ar[g(X)]V ar[h∗(X)], (12)

with equality in (12) if g = h∗. This establishes the “ if ” part of the

theorem. The “ only if ” part may be proved by extending the method

of Alharbi & Shanbhag (1996) as follows :

Let (a, b) be a bounded open interval and

k(x) =

{
0 if x /∈ (a, b)

1 if x ∈ (a, b),

where −∞ < a < b <∞. For any real θ, we define

g(x) = h∗(x)− μ∗ + θ

∫
(−∞,x]

k(y)dνF ∗(y), x ∈ �.

Clearly, in view of the relations (8) and (9)

V ar{h∗(X)} + θ2V ar{
∫
(−∞,X]

k(y)dνF ∗(y)}

+ 2θCov{h∗(X) − μ∗,
∫
(−∞,X]

k(y)dνF ∗(y)}

≥ E[Z(X)h∗′(X)
)
] +

1

V ar[h∗(X)]
θ2E2[Z(X)k(X)]

+ 2θE[Z(X)k(X)]. (13)

We see that

θ2
(
V ar{

∫
(−∞,X]

k(y)dνF ∗(y)} − 1

V ar[h∗(X)]
{E2[Z(X)k(X)]})

+ 2θ
(
Cov{h∗(X)− μ∗,

∫
(−∞,X]

k(y)dνF ∗(y)}

− E[Z(X)k(X)]
) ≥ 0. (14)
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Because (14) holds for all θ, it implies

Cov{h∗(X) − μ∗,
∫
(−∞,X]

k(y)dνF ∗(y)} = E[Z(X)k(X)].

In view of Fubini’s theorem∫
(a,b)

Z(x)dF (x) =

∫
(a,b)

{
∫
[x,∞)

[h∗(z)− μ∗]dF (z)}dνF ∗(x),

which implies (2). Hence we have the theorem.�

Corollary 2.3. Let F ∗, Z and τ be as in Theorem 2.1, and X be an

r.v. with df F such that F ∗(X) is integrable with μ∗ = E(F ∗(X)) and

E(|Z(X)|I{X∈(a,b)}) <∞ for every −∞ < a < b <∞. Then

Cov{g(X), F ∗(X)} = E{Z(X)g′(X)}, (15)

for all g ∈ τ such that E{Z(X) | g′(X) |} <∞, if and only if (2) holds.

Proof: The corollary follows easily from Theorem 2.1 on taking

h∗(.) = F ∗(.) and noting that the assumptions of the theorem are met.

�

Corollary 2.4. (Alharbi & Shanbhag (1996)). Let X, h∗, Z and

τ∗ be as defined in Theorem 2.2, but with h∗ = F ∗. Then

inf
g∈τ∗

V ar[g(X)]V ar[F ∗(X)]

E2{Z(X)g′(X)} = 1, (16)

if and only if (2).

Proof: The corollary follows immediately from Theorem 2.2 on tak-

ing h∗ = F ∗.�

Cacoullos & Papathanasiou (1995) generalized the covariance iden-

tity for univariate random variables and used them to obtain several

characterizations. Some lower and upper variance bounds were derived
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by them using a generalization based on the covariance identity, appear-

ing in Cacoullos & Papthanasiou (1997). The paper provides one with a

further tool for characterizations in terms of Z (instead of w met earlier

in connection with characterizations based on the Chernoff inequality).

Remark 2.5. Let h∗(x) = x, then (1) in Theorem 2.1 reduces to

Cov
(
X, g(X)

)
= E

(
Z(X)g′(X)

)
,

for all g ∈ τ and

Z(x)dF (x) =
( ∫

[x,∞)
(z − μ)dF (z)

)
dνF ∗(x), (17)

in place of (2) where μ = E(X). In this case F ∗(x) = x and h(x) = x

implies that

Z(x)f(x) =

∫
[x,∞)

(z − μ)f(z)dz,

in place of (17) where f is the density of F w.r.t. Lebesgue measure.

Also, in this case, F ∗(x) = [x] , x ∈ � implies

Z(x)f(x) =
∑

{y:y≥x, y∈Z}
(y − μ)f(y),

in place of (17).

Remark 2.6. Using the operator Δβg(.) = g(.+β)−g(.)
β , β > 0, we can

obtain extended versions of certain results appearing in Cacoullos &

Papathansiou (1995, 1997). The results corresponding to the lattice

case involving the operator Δβ obviously are corollaries to our general

results.

Corollary 2.7. Let h and Z be absolutely continuous Borel measurable

functions (w.r.t. Lebesgue measure) and let X be an r.v. with df F such

that h(X) is integrable with μ = E[h(X)] and E{|Z(X)|I{X∈(a,b)}) <
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∞ for every −∞ < a < b < ∞ and satisfying the condition that

lim infx→∞(h(x) − μ) > 0 if the right extremity of F equals ∞, and

the condition that lim infx→−∞(μ − h(x)) > 0 if the left extremity of F

equals −∞. Further let τ be the class of real-valued absolutely continuous

functions g with Radon-Nikodym derivative g′ w.r.t. Lebesgue measure.

Then, we have the condition

Cov{g(X), h(X)} = E{Z(X)g′(X)}, (18)

met for all g ∈ τ with E
( | Z(X)g′(X) | ) <∞, if and only if

Z(x)dF (x) = {
∫
[x,∞)

[h(z) − μ]dF (z)}dx, x ∈ �. (19)

Corollary 2.8. Let X, τ, Z, and h be as defined in Corollary 2.7, but

additionally with h absolutely continuous w.r.t. Lebesgue measure, τ∗

as a subset of g ∈ τ for which g(X) is square integrable, Z(X)g′(X) is

integrable with E{Z(X)g′(X)} �= 0 and h2(X) integrable and V [h(X)] =

E[Z(X)h′(X)]. Then

V ar[g(X)] ≥ E2[Z(X)g′(X)]

E[Z(X)h′(X)]
, g ∈ τ∗, (20)

if and only if

Z(x)dF (x) = {
∫
[x,∞)

[h(y)− E(h(X))]dF (y)}dx, x ∈ �,
(21)

for all g ∈ τ∗.

Equality in (20) holds if g(.) = c1h(.) + c2.

Proof: The result follows from Theorem 2.2 on taking F ∗(x) = x, x ∈
�.
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Corollary 2.9. Let F ∗ be a non-constant Lebesgue-Stieltjes measure

function on � and νF ∗ be the measure on the Borel σ− field of � de-

termined by it, and let X be an r.v. with df F such that F is absolutely

continuous w.r.t. νF ∗ with Radon-Nikodym derivative f w.r.t. νF ∗ and

f(x) tends to zero as x→ ∞. Also, let f be absolutely continuous w.r.t.

νF ∗ with Radon-Nikodym derivative f ′ w.r.t. νF ∗ such that E[h∗(X)] = 0

and lim infx→∞ h∗(x) > 0 if the right extremity of F equals to ∞, and

lim infx→−∞ h∗(x) < 0 if the left extremity of F equals to −∞, where

h∗(x) = − f ′(x)
f(x) . Further let τ be the class of real-valued absolutely contin-

uous functions g with Radon-Nikodym derivative g′ w.r.t. the measure

νF ∗ (i.e. such that g(b) − g(a) =
∫
(a,b] g

′(x)dνF ∗(x) for all a and b with

a < b). Then, we have the condition

Cov{g(X−), h∗(X)} = E
(
g′(X)

)
, (22)

met for all g with E
( | g′(X) | ) <∞.

Proof: We have

E{g′(X)} =

∫
�
g′(x)dF (x)

=

∫
�
g′(x)f(x)dνF ∗(x)

=

∫
�
g′(x){

∫
(x,∞)

[h∗(z)]dF (z)}dνF ∗ (x)

=

∫
(a,∞)

g′(x){
∫
(x,∞)

[h∗(z)]dF (z)}dνF ∗(x)

+

∫
(−∞,a]

g′(x){
∫
(−∞,x]

[−h∗(z)]dF (z)}dνF ∗ (x)

=

∫
(a,∞)

(
g(z−)− g(a)

)
[h∗(z)]dF (z)

+

∫
(−∞,a]

(
g(a)− g(z−)

)
[−h∗(z)]dF (z)

= Cov{h∗(X), g(X−)} (23)
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Hence completed the proof.�

Remark 2.10. If F ∗ is a non-atomic measure, then the Corollary 2.9

is valid with Cov{g(X), − f ′(X)
f(X) } = E

(
g′(X)

)
in place of (22).

3. Further Possible Work

Chen (1982), Cacoullos & Papathanasiou (1989) and Prakasa Rao

& Sreehari (1986) set-up characterization results based on versions of the

Chernoff-type inequalities for multivariate normal distribution. Also,

Prakasa Rao (1993) obtained result related to probability bounds, mul-

tivariate normal distribution and integro-differential inequality for a ran-

dom vector.

An extension of the general results that are obtained here is applicable

to a multivariate set-up. The ideas are given for the future work of the

lower variance bounds as follows :

• A Lebesgue-Stieltjes measure on �n is a measure μ on B(�n) such

that μ(I) <∞ for each bounded interval I. Let μ be finite measure,

define

F (x1, x2, ..., xn) = μ
(({ω = (ω1, ω2, ..., ωn

) ∈ �n : ωi ≤ xi, i = 1, 2, ..., n}

This will turn out that μ(a, b] = F (b)−F (a) for n ≥ 2 is not correct.

Hence, introduce the difference operator Δ (for more details see

Ash (1972), pp. 27) as follows :

If G : �n → �, then,

ΔbiaiG(x1, x2, .., xn) = G(x1, .., xi−1, bi, xi+1, .., xn)−G(x1, .., xi−1, ai, xi+1, .., xn).

The following theorem gives us the idea for extending main the-

orems of this note to a multivariate set-up by using Δ operator.

(Note that the best way is that first of all, for n = 2 obtain the

result and then extend it to multivariate case.)
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Theorem 3.1. (Ash (1972), pp. 28)

Let μ be a finite measure on B(�n) and define F (x) = μ(−∞, x].

If a ≤ b, then

μ(a, b] = Δb1a1Δb2a2 ...ΔbnanF (x1, x2, ..., xn)

= F0 − F1 + F2 − F3 + ...+ (−1)nFn,

where Fi is the sum of all

⎛
⎝ n

i

⎞
⎠ terms of the form F (c1, c2, ..., cn)

with ck = ak for exactly i integer in {1, 2, ..., n} and ck = bk for

the remaining n− i integer.

Chou (1988) derived an identity as a property of exponential family in

�n (see page 130-132 of the Chou’s (1988)). We can have the following

result using the argument in the earlier paper :

• Theorems 2.1 and 2.2 are extendable to a multivariate version by

using a version of C-S inequality (see Cacoullos (1989), pp. 242)

and using the argument similar to the Theorem 2.1 in Chou (1988).

Also, the following result can be achieved as a representation in terms

of Z(.).

• In view of the argument of Theorem 2.1, giving a criterion un-

der which any distribution F satisfying (2) can be identified by

(h∗, F ∗, μ∗, Z).
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Abstract. Following a work of S. W. Brown [1] and A. Ü lger [8] we

will prove that for a closed subspace M ⊆ K(lp, lq), M∗ has the

Schur property if and only if all point evaluations M1(x) = {Tx :

T ∈ M1} ⊆ lq and M̃1(y
∗) = {T ∗y∗ : T ∈ M1} ⊆ lp′ are relatively

norm compact, where 1 < p ≤ q < ∞, x ∈ lp, y
∗ ∈ lq′ and p′ is

the conjugate number of p. Also for closed subspace M of either

K(lp, c0) with 1 < p < ∞ or K(c0), we will prove that relative

compactness of all point evaluations is also sufficient for the Schur

property of M∗.

1. Introduction.

A Banach space X has the Schur property if every weakly convergent

sequence in X converges in norm. By Schur’s theorem, the sequence

space l1 has the Schur property. In more general, Carne, Cole and

Gamelin in [2] have proved that L1(μ) has the Schur property if and

only if μ is an atomic measure.

85
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Unfortunately, the most of the well-known Banach spaces does not have

the Schur property. For example all infinite dimensional reflexive Ba-

nach spaces does not have the Schur property.

By Rosenthal’s l1- theorem [4], any infinite dimensional Banach space X

with the Schur property, contains a copy of l1. But if X is a dual space

with the Schur property, then its predual contains no copy of l1 [3].

If X and Y are Banach spaces such that X∗ and Y do not contain l1

and either X∗∗ or Y ∗ has the Radon-Nikodym property (in particular,

if X and Y are reflexive), then the Banach space K(X,Y ), of all com-

pact operators between X and Y , contains no copy of l1. This shows

that K(X,Y ) contains no infinite dimensional closed subspace with the

Schur property. But the dual of them can possess this property. So it

is natural to ask for which Banach spaces X and Y and which class of

closed subspaces M of K(X,Y ), M∗ have the Schur property.

In 1995, Scott W. Brown [1] has proved that if M is a closed subspace

of K(H), of all compact operators on a Hilbert space H, such that all

point evaluations M1(x) = {Tx : T ∈ M1 = the unit ball of M} and

M̃1(x) = {T ∗x : T ∈ M1} are relatively norm compact in H, then M∗

has the Schur property. Conversely, in 1997, A. Ü lger [8] by proving

that relatively norm compactness of all point evaluations is also a neces-

sary condition for the Schur property of M∗, has characterized all closed

subspaces of K(H) whose duals have the Schur property:

Theorem 1 (S. W. Brown [1] and A. Ü lger [8]). If H is a Hilbert space

and M is a closed subspace of K(H), then M∗ has the Schur property

if and only if for each x ∈ H, the point evaluations M1(x) and M̃1(x
∗)
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are relatively norm compact in H.

In the following, we will prove that the same conclusion is valid, where

M is a closed subspace of either K(lp, lq) with 1 < p ≤ q < ∞ or

K(lp, c0) with 1 < p < ∞ or K(c0). Note that if p > q, by Pitt’s

theorem, K(lp, lq) is reflexive and so has no infinite dimesional closed

subspace M such that either M or M∗ has the Schur property.

In the following (en) is the standard basis for both c0 and all lp, 1 <

p < ∞ and PV is the projection onto complemented closed subspace V

of the related space. Also X1 is the closed unit ball of arbitrary Banach

space X. We denote the conjugate number of p by p′. For the proof of

one of the main theorems we will first prove three lemmas:

Lemma 2. Let K1, ...,Kn ∈ K(lp, lq) and ε > 0 be given. Then there

are integers m0 and n0 such that

‖PW ′Ki‖ ≤ ε & ‖KiPV ′‖ ≤ ε , i = 1, 2, ..., n,

where V ′ = [en : n > m0] and W
′ = [en : n > n0] are closed subspaces of

lp and lq respectively.

Proof. We may assume, without loss of generality, that n = 1 and

K = K1 ∈ K(lp, lq). If {y1, ..., yl} is an ε/2- covering of K((lp)1) in

lq and each yi has a representation yi =
∑∞

k=1 αikek, choose an integer

n0 > 0 such that ‖∑k>n0
αikek‖ = (

∑
k>n0

|αik |q)1/q < ε/2, for all

1 ≤ i ≤ l.

Now for each x ∈ (lp)1 and suitable 1 ≤ i ≤ l,

‖PW ′Kx‖ ≤ ‖PW ′(Kx− yi)‖+ ‖PW ′yi‖



88 11th Seminar on Mathematical Analysis and Its Applications

≤ ‖Kx− yi‖+ ‖
∑
k>n0

αikek‖ < ε.

This shows that ‖PW ′K‖ < ε where W ′ = [en : n > n0].

As a corollary, since K∗ : lq′ → lp′ is compact, we can deduce that there

exists an integer m0 such that ‖PK∗‖ < ε where P is the canonical

projection of lp′ onto [en : n > m0] in lp′ . Set V ′ = [en : n > m0], as a

closed subspace of lp. Since P = (PV ′)∗ we have

‖KPV ′‖ = ‖(PV ′)∗K∗‖ = ‖PK∗‖ < ε.

Lemma 3. Let m0 and n0 be arbitrary integers, V = [e1, ..., em0 ] ⊆
lp, W = [e1, ..., en0 ] ⊆ lq and ε > 0 be given. If M ⊆ K(lp, lq) is a closed

subspace such that all point evaluations M1(x) = {Tx : T ∈ M1} ⊆ lq

and M̃1(y
∗) = {T ∗y∗ : T ∈ M1} ⊆ lp′ are relatively compact, then there

exists a closed subspace G of M of finite codimension such that

‖GPV ‖ ≤ ε and ‖PWG‖ ≤ ε, for all G ∈ G1.

Proof. We first construct a norm closed subspace E of M of finite

codimension such that ‖GPV ‖ ≤ ε, for all G ∈ E1 .

For each integer i, define φi : M → lq by φi(T ) = Tei. For each

fixed integer 1 ≤ i ≤ m0, if {y1, ..., yl} is an ε/3m0- covering of φi(M1)

and each yj has a representation yj =
∑∞

n=1 αjkek, we can choose an

integer N such that ‖∑k>N αjkek‖ < ε/3m0, for all 1 ≤ j ≤ l. Let

Hi = [en : n > N ] in lq. Then

sup{‖y‖ : y ∈ Hi ∩ φi(M1)} ≤ ε/m0.

It is easy to check that E := ∩m0
i=1φ

−1
i (Hi) is norm closed and of finite

codimension in M. Let now G ∈ E1. Then ‖Gei‖ ≤ ε/m0, for all
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1 ≤ i ≤ m0. If x =
∑∞

i=1 αiei ∈ lp and ‖x‖ ≤ 1 then

‖GPV x‖ = ‖G
m0∑
i=1

αiei‖ ≤
m0∑
i=1

|αi|.‖Gei‖ ≤ ε.

Thus ‖GPV ‖ ≤ ε, for all G ∈ E1. Similarly, using the relatively com-

pactness of all M̃1(y
∗) in lp′ , we construct a norm closed subspace F of

M of finite codimension such that ‖PWG‖ ≤ ε, for all G ∈ F1. Now set

G = E ∩ F .

Lemma 4. For each integers m and n and each operators T, S ∈
L(lp, lq), if 1 ≤ p ≤ q <∞ we have

‖PWTPV + PW ′SPV ′‖ ≤ max{‖PWTPV ‖, ‖PW ′SPV ′‖},

where V = [e1, ..., em] ⊆ lp, W = [e1, ..., en] ⊆ lq and V ′ and W ′are

complementary subspaces of V and W in lp and lq respectively.

Proof. It is clear that for arbitrary bounded operators U1 : X1 → Y1

and U2 : X2 → Y2, the direct sum operator U1 ⊕ U2 : X1 ⊕p X2 −→
Y1⊕q Y2 has norm equal to max{‖U1‖, ‖U2‖}, where X1⊕pX2 is the lp-

direct sum of X1 and X2.

Now for the bounded linear operators PWTPV |V : V → W (restriction

of PWTPV to V ) and PW ′SPV ′ |V ′ : V ′ → W ′ we have

‖PWTPV |V ⊕ PW ′SPV ′ |V ′‖ = max{‖PWTPV |V ‖, ‖PW ′SPV ′ |V ′‖}

≤ max{‖PWTPV ‖, ‖PW ′SPV ′‖}.
Since V ⊕p V

′ and W ⊕q W
′ are isometrically isomorphic to lp and lq

respectively, and the operator PWTPV |V ⊕ PW ′SPV ′ |V ′ as an operator

from lp to lq is equal to PWTPV + PW ′SPV ′ , the proof is completed.

We are ready to prove the main result:
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Theorem 5. Let M be a closed subspace of K(lp, lq). If all point evalua-

tions M1(x) and M̃1(y
∗) are relatively compact in lq and lp′ respectively,

then M∗ has the Schur property.

Proof. Let (Γi) ⊆ M∗ be a normalized weakly null sequence in M∗.

Let (εn) be a sequence of positive numbers such that
∑
nεn <∞. Sup-

pose that Λ1 = Γ1, and choose K1 ∈ M1 such that < K1,Λ1 >> 1/3.

Inductively, assume that Λ1, ...,Λn ∈ (Γi) and K1, ...,Kn ∈ M1 have

been chosen. To obtain Λn+1 and Kn+1, by lemmas 2 and 3 we find fi-

nite dimensional subspaces V and W of lp and lq respectively, and norm

closed subspace G of finite codimension in M such that

‖KiPV ′‖ ≤ εn+1 and ‖PW ′Ki‖ ≤ εn+1 , for all i = 1, 2, ..., n,

‖GPV ‖ ≤ εn+1 and ‖PWG‖ ≤ εn+1 , for all G ∈ G1.

By the technique given in the proof of theorem 1.1 of [1], we can choose

Λn+1 ∈ (Γi) and Kn+1 ∈ M1 such that

| < Ki,Λn+1 > | < 2−n−1 for i = 1, 2, ..., n,

< Kn+1,Λn+1 >> 1/3 and < Kn+1,Λj >= 0 for j = 1, 2, ..., n.

Also ‖Kn+1PV ‖ < εn+1 and ‖PWKn+1‖ < εn+1. These properties yield

that

‖PW

n∑
i=1

KiPV −
n∑

i=1

Ki‖ ≤ 3nεn+1 and ‖PW ′Kn+1PV ′ −Kn+1‖ ≤ 3εn+1.

Hence

‖
n+1∑
i=1

Ki‖ ≤ ‖
n∑

i=1

Ki − PW

n∑
i=1

KiPV ‖+ ‖Kn+1 − PW ′Kn+1PV ′‖+



Schur property of the dual closed subspaces of compact operators 91

‖PW

n∑
i=1

KiPV + PW ′Kn+1PV ′‖ ≤ 3(n + 1)εn+1 +max{‖
n∑

i=1

Ki‖, 1},

where the last inequality holds by lemma 4. This shows that the se-

quence Tn =
∑n

i=1Ki is bounded and so has a weak∗ limit point T ∈
M∗∗. For each j, choose an integer n > j such that | < T−Tn,Λj > | <
1/2j . Therefore

| < T,Λj > | ≥ |
j∑

i=1

< Ki,Λj > | − 1/2j ≥

| < Kj,Λj > | −
j−1∑
i=1

| < Ki,Λj > | − 1/2j ≥ 1/3 − j/2j > 1/4,

for sufficiently large j. Hence < T,Λj > and so < T,Γj > does not tend

to zero. This shows that the sequence (Γj) does not converge weakly to

zero and the proof is completed.

Remark. In 1999 E. Saksman and H. O. Tylli [7], by a different proof

have proved that the conclusion of theorem 5 is valid for the closed sub-

spaces M ofK(lp) with 1 < p <∞, which is a particular case of theorem

5. In the following we extend theorem 5 to closed subspaces M of the

non-reflexive case of Banach spaces. Namely in the case of K(lp, c0) and

K(c0).

By notice in the proof of theorem 5, one sees that for each Banach spaces

X and Y instead of lp and lq respectively, and each operator ideal be-

tween X and Y , if lemmas 2, 3 and 4 hold, then a similar result of

theorem 5 is also valid for that operator ideal. As a corollary, if we

repeat the proof of lemmas 2, 3 and 4 for closed subspaces M of either

K(lp, c0) with 1 < p < ∞ or K(c0), we have the following theorem. We
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agreement that for the closed subspace V = [e1, ..., en] of c0, V ⊕∞ V ′ is
the c0 direct sum of V and V ′.

Theorem 6. Let M be a closed subspace of K(lp, c0) with 1 < p < ∞
(resp. K(c0)). If all point evaluations M1(x) and M̃1(y

∗) are relatively

compact in c0 and lp′ (resp. l1) respectively, then M∗ has the Schur

property.

As another corollary, we will prove that if H is any Hilbert space, then

no analogous result of lemma 4 holds for the closed subspaces of the

Banach operator ideal N (H) of all nuclear operators on a Hilbert space

H:

Corollary 7. Let M ⊆ N (H) be an infinite dimensional closed linear

subspace of N (H). If all point evaluations M1(x) and M̃1(x) are rel-

atively norm compact in H, then there are finite dimensional subspaces

V and W of H and nuclear operators T, S ∈ M such that

‖PWTPV + PW ′SPV ′‖n > max{‖PWTPV ‖n, ‖PW ′SPV ′‖n}.

Proof. By the definition of nuclear norm, the analogous of lemmas 2

and 3 are valid for N (H) instead of K(lp, lq). If the conclusion is false,

then a similar result of lemma 4 is obtained and so M∗ has the Schur

property. This shows that M does not contain any copy of l1, while M
is non-reflexive. A contradiction with theorem 3 of [5].

The proof of lemma 4 is based on the fact that for each closed subspace

V ⊆ lp of the form V = [e1, ..., en], the Banach space lp is isometrically
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isomorphic to V ⊕pV
′. In general, if a Banach spaceX with Schauder ba-

sis (xn) has the property that for each integer n, there exists 1 ≤ p <∞
such that X = V ⊕p V

′, V = [x1, ..., xn]; then the proof of lemma 4 is

valid for L(X) instead of K(lp, lq).

In the following, we will prove that the Banach spaces lp, 1 ≤ p < ∞
and c0 are the only Banach spaces with the Schauder basis such that the

proof of lemma 4 and so the technique of the proof of theorem 5 valid

for them:

Theorem 8. Suppose that X is a Banach space inclined to Schauder

basis (xn), with the property that for each integer n there exists 1 ≤
pn ≤ ∞ such that X is isometrically isomorphic to V ⊕pn V

′, where

V = [x1, ..., xn]. Then X is isometrically isomorphic to either lp, for

some 1 ≤ p <∞ or c0.

Proof. As a first step we will prove that all pn’s are independent from

choicing of n. If all pn are less than to infinity, for each integer n ≥ 2

and each scalars an−1 and an+1 we have

‖an−1xn−1 + an+1xn+1‖pn = (‖an−1xn−1‖pn−1 + ‖an+1xn+1‖pn−1)
pn

pn−1 .

On the other hand,

‖an−1xn−1 + an+1xn+1‖pn = ‖an−1xn−1‖pn + ‖an+1xn+1‖pn .

So if we set an−1 = 1/‖xn−1‖ and an+1 = 1/‖xn+1‖, then 2
pn

pn−1 = 2.

This shows that for all n ≥ 2, pn = pn−1 and so all pn are equal. But if

for integers n < k, pn = ∞ and pk <∞. we have

‖anxn + ak+1xk+1‖ = max{‖anxn‖, ‖ak+1xk+1‖}

= (‖anxn‖pk + ‖ak+1xk+1‖pk)
1
pk ,



94 11th Seminar on Mathematical Analysis and Its Applications

and so 21/pk = 1. This contradiction shows that all pn are equal to ∞.

As the second step, let x =
∑∞

n=1 anxn ∈ X be arbitrary. If all pn are

equal to some 1 ≤ p <∞, then by induction on n and by hypothesis,

‖x‖p = ‖a1x1‖p + ‖
∞∑
n=2

anxn‖p

= ‖a1x1‖p + ‖a2x2‖p + ‖
∞∑
n=3

anxn‖p

= ... =
∞∑
n=1

‖anxn‖p =
∞∑
n=1

|an.‖xn‖|p.

Define T : X → lp by T (
∑∞

n=1 anxn) = (an.‖xn‖)∞n=1. Then T is an

isometrically isomorphism from X onto lp. Finally, if all pn are equal to

∞, then by a similar method, ‖x‖ = supn ‖anxn‖ and so the operator

∞∑
n=1

anxn �→ (an.‖xn‖)∞n=1

from X onto c0 is an isometrically isomorphism and the proof is com-

pleted.

Remark. Recently, the author in a joint work [6], generalized the main

results of this paper to a large class of Banach spaces.
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THE CONNECTION BETWEEN THE TURNING

POINTS AND THE DUAL EQUATION
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Abstract. In this paper we will study the dual equation of the

Sturm-Liouville with the dirichlet boundary condition. In most

differential equations with the boundary conditions it is possible

to obtain an the dual equation. In studying the dual equation of

Sturm-Liouville problem, necessarily we must to know the numbers

of turning points. In this paper at the first outset, if this problem

has one turning point, then by a theorem we find the dual equation.

In the second case, if this problem has two turning points, we will

determine the another dual equation in this case.
1

1. Introduction

By considering eigenvalues and infinite product of solutions the second

order differential equation

d2W

dζ2
+
(
λ(1− ζ2)−Ψ(ζ)

)
W = 0 −∞ < a < −1, 1 < b, ζ ∈ (−1, b)

(1)

with boundary conditions

W (a) = 0 =W (ζ) (2)

1AMS Subject classification:34E05

Keyword and Phrases: Turning point,dual equation Asymptotic approximation.
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and initial condition ∂W
∂ζ (λ, a) = 1, where λ is a large positive param-

eter and the function Ψ(ζ) is continuous, we first determine the dual

equations of (1) in one turning point case. In this regard we discuss the

equations (1) and (2), for case −1 < ζ < 1 and case 1 < ζ < b.

The solution of equation (1) have several infinite product representa-

tion (see [3]). Let ζ ∈ (−1, 0), then we have

W (λ, ζ) = A(ζ)

∞∏
n=1

(
1− λ

vn(ζ)

) ∞∏
n=1

(
1− λ

rn(ζ)

)
. (3)

In particular, if ζ ∈ (0, 1), the differential equation (1) has a solution

W (λ, ζ) given by

W (λ, ζ) = B(ζ)
∞∏
n=1

(
1− λ

vn(ζ)

) ∞∏
n=1

(
1− λ

rn(ζ)

)
. (4)

Now, if 1 < ζ < b, then the infinite product of solution is of the form

W (λ, ζ) = C(ζ)
∞∏
n=1

(
1− λ

vn(ζ)

) ∞∏
n=1

(
1− λ

rn(ζ)

)
. (5)

In equation (3), the function C(ζ) is

A(ζ) =
i3/2πf1/2(ζ)P 1/2(−1)

(a2 − 1)1/4(ζ2 − 1)1/4eP (−1)√λ+ 3πi
4

∞∏
n=1

f2(ζ)rn(ζ)

j̃2n

∞∏
n=1

P 2(−1)vn(ζ)

−j̃2n
where rn(ζ) and vn(ζ) are eigenvalues of equation (1) with the boundary

condition W (a) = 0 =W (ζ) and j̃n, n = 1, 2, 3, . . . be the positive zeros

of J ′1(z) and the functions P (ζ),f(ζ) are of the form

f(ζ) =

{ ∫ ζ
−1(1− τ2)1/2dτ −1 < ζ ≤ 0

π
2 − ∫ 1

ζ (1− τ2)1/2dτ 0 < ζ < 1

P (ζ) =

{ ∫ ζ
a (τ

2 − 1)1/2dτ ζ ≤ 1∫ −1
a (τ2 − 1)1/2dτ +

∫ ζ
a (τ

2 − 1)1/2dτ ζ > 1
.



The Connection between the turning points and the dual equation 99

Similar to that, in equation (4) the function B(ζ) is

D(ζ) =
i3/2f1/2(ζ)P 1/2(−1)

(a2 − 1)1/4(ζ2 − 1)1/4e
3πi
4

∞∏
n=1

f2(ζ)rn(ζ)

j̃2n

∞∏
n=1

P 2(−1)vn(ζ)

−j̃2n
,

and in equation (5) the function C(ζ)

C(ζ) =
4π

(Γ(1/2))2(a2 − 1)1/4(ζ2 − 1)1/4

∞∏
n=1

f2(1)rn(ζ)

ĩ2n

∞∏
n=1

P 2(ζ)vn(ζ)

−ĩ2n
,

ĩn, n = 1, 2, 3, . . . be the positive zeros of J−1/2(z). For more details of

equation (3) for ζ ∈ (0, 1), can be found in [4] and other cases, in [1], he

is proved.

2. The dual equation

Let ζ ∈ (−1, b), the equation (1) has an infinite number of positive and

negative eigenvalues, which we denote by {rn(ζ)}, {vn(ζ)} respectively.

By the implicit function theorem, the functions rn(ζ) and vn(ζ) are twice

continuously differentiable functions. Note that , if λn(ζ) (for n ≥ 1) is

eigenvalue, then we have

W (rn(ζ), ζ) = 0,

W (vn(ζ), ζ) = 0,

where rn(ζ) and vn(ζ) are eigenvalues of equation (1)(for n ≥ 1), there-

fore we have

2
∂2W

∂ζ∂λ
r′n +

∂2W

∂λ2
× (r′n)

2 +
∂W

∂λ
× r′′n = 0, (6)

2
∂2W

∂ζ∂λ
v′n +

∂2W

∂λ2
× (v′n)

2 +
∂W

∂λ
× v′′n = 0. (7)

Now by using the above results, we want to take the dual equations

of (1). The dual equations have different form on subintervals of (−1, b).

By taking the differentiation of equation (3) with respect to the variable
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λ at the point (rn(ζ), ζ), for ζ ∈ (−1, 0) the solution of equation (1) has

infinite product representation, from (3) we get

W (λ, ζ) = A(ζ)

∞∏
n=1

(
1− λ

vn(ζ)

) ∞∏
n=1

(
1− λ

rn(ζ)

)
.

we define Gn and Hn by

Gn = Gn(rn(ζ), ζ) =
∏

k≥1,k �1

(
1− rn(ζ)

rk(ζ)

)
,

Hn = Hn(rn(ζ), ζ) =
∏
k≥1

(
1− rn(ζ)

vk(ζ)

)
.

Therefore, we get

∏
k≥1,k �=i

(
1− rn(ζ)

vk(ζ)

)
= Hn ×

(
1− rn(ζ)

vi(ζ)

)−1
,

so, we have

∂W

∂λ
(rn(ζ), ζ) =

−A(ζ)HnGn

rn(ζ)
, (8)

similarly, for ∂2W
∂λ2 (rn(ζ), ζ), we write

∂2W

∂λ2
(rn(ζ), ζ) =

2A(ζ)HnGn

rn(ζ)

∑
1≤i

1

vi(ζ)− rn(ζ)
(9)

+
2A(ζ)HnGn

rn(ζ)

∑
1≤i,i �=n

1

ri(ζ)− rn(ζ)
,

and for ∂2W
∂λ∂x(rn(ζ), ζ) we write

∂2W

∂λ∂x
(rn(ζ), ζ) =

−A′(ζ)HnGn

rn(ζ)
+
A(ζ)HnGnr

′
n

r2n(ζ)
(10)

−A(ζ)HnGnr
′
n

rn(ζ)

∑
1≤i

1

vi(ζ)− rn(ζ)
−A(ζ)HnGn

∑
1≤i

v′i
vi

(vi(ζ)− rn(ζ))
−1

−A(ζ)HnGn

∑
1≤i,i �=n

r′i
ri

(ri(ζ)− rn(ζ))
−1−A(ζ)HnGnr

′
n

rn

∑
1≤,i �=n

1

ri(ζ)− rn(ζ)
.
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By substituting (8),(9) and (10) in (6) ,we have

r′′n +
2A′(ζ)r′n
A(ζ)

+ 2rnr
′
n

⎧⎨
⎩
∑

1≤i,i �=n

r′i
ri

(ri(ζ)− rn(ζ))
−1 (11)

+
∑
1≤i

v′i
vi

(vi(ζ)− rn(ζ))
−1

⎫⎬
⎭− 2

(r′n)2

rn
= 0,

similarly for negative eigenvalue vn(ζ), we have

v′′n +
2A′(ζ)v′n
A(ζ)

+ 2vnv
′
n

⎧⎨
⎩
∑

1≤i,i �=n

v′i
vi

(vi(ζ)− vn(ζ))
−1 (12)

+
∑
1≤i

r′i
ri

(ri(ζ)− vn(ζ))
−1

⎫⎬
⎭− 2

(v′n)2

vn
= 0.

Dividing the equation (11) by r′n, the equation (12) by v′n and integrating

from ζ up to 0, we obtain

r′n(ζ) =
r2n(ζ)

A2(ζ)
e2Tn(rn,vn,ζ), (13)

v′n(ζ) =
v2n(ζ)

A2(ζ)
e2Tn(vn,rn,ζ),

where

Tn(rn, vn, ζ) =
∑
i �=n

∫ 0

ζ

r′irn
rn

(ri − rn)
−1dt+

∑
i

∫ 0

ζ

v′irn
vn

(vi − rn)
−1dt,

for ζ ∈ (0, 1)

Tn(rn, vn, ζ) =
∑
i �=n

∫ 1

ζ

r′irn
rn

(ri − rn)
−1dt+

∑
i

∫ 1

ζ

v′irn
vn

(vi − rn)
−1dt

similarly for ζ ∈ (1, b)

Tn(rn, vn, ζ) =
∑
i �=n

∫ b

ζ

r′irn
rn

(ri − rn)
−1dt+

∑
i

∫ b

ζ

v′irn
vn

(vi − rn)
−1dt.
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In fact we have obtained the following theorems

Theorem 1 Let W (λ, ζ) be the solution of boundary value problem

d2W

dζ2
+
(
λ(ζ2 − 1)−Ψ(ζ)

)
W = 0 −∞ < a < −1,−1ζ < 0,

and

W (a) = 0 =W (ζ)
∂W (λ, x)

∂x
(λ, a) = 1

then for rn(ζ), vn(ζ) we have

r′n(ζ) =
r2n(ζ)

A2(ζ)
e2Tn(rn,vn,ζ), v′n(ζ) =

v2n(ζ)

A2(ζ)
e2Tn(vn,rn,ζ),

and for ζ ∈ (0, 1) we have

r′n(ζ) =
r2n(ζ)

B2(ζ)
e2Tn(rn,vn,ζ), v′n(ζ) =

v2n(ζ)

B2(ζ)
e2Tn(vn,rn,ζ),

Theorem 2 Let W (λ, ζ) be the solution of boundary value problem

d2W

dζ2
+
(
λ(ζ2 − 1)−Ψ(ζ)

)
W = 0 −∞ < a < −1, 1 < ζ < b,

and

W (a) = 0 =W (ζ)
∂W (λ, x)

∂x
(λ, a) = 1

then for rn(ζ), vn(ζ) we have

r′n(ζ) =
r2n(ζ)

C2(ζ)
e2Tn(rn,vn,ζ), v′n(ζ) =

v2n(ζ)

C2(ζ)
e2Tn(vn,rn,ζ).
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OPTIMAL CONTROL FEEDBACK LAW AND

NONSMOOTH ANALYSIS
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Abstract. In general, even in very simple examples of optimal

control problems, one can not expect the existence of continuous

universal feedback laws. In this work we use an approach to end-

point cost optimal control based on nonsmooth analysis to construct

a discontinuous universal feedback law.

1. Introduction

In control theory, the standard model involves the system

ẋ = f(t, x, u), (1)

where f : R×R
n ×R

m → R
n is continuous, and locally Lipschitz in the

state variable x. Controls are Lebesgue measurable functions u : R → U ,

where the control restraint set U ⊆ R
m is compact. Assume also that

f satisfies a linear growth condition; that is, there exist nonnegative

constants γ1 and γ2 such that

‖f(t, x, u)‖ ≤ γ1‖x‖+ γ2 ∀(t, x, u).

1991 Mathematics Subject Classification. 49J24, 49J52,49N55, 90D25.

Key words and phrases. Optimal control, Euler polygonal arc, Nonsmooth

analysis.
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Then for each control function u(·) and each initial phase (τ, α) ∈ R×R
n

there is a unique solution x(t) = x(t; τ, α, u(·)) on [τ,∞). A central issue

in control theory is the existence of feedback control laws which achieve

desired behavior of the control system (1) universally; that is, for all

initial states or initial phases in a prescribed set. In recent years it has

come to be understood that even in very simple examples of the above

types of problems, one cannot expect the existence of universal feedback

laws k which are continuous, this being the minimal condition for the

classical existence theory of ordinary differential equations to apply to

(1). This inadequacy of continuous feedback can be illustrated via the

following example.

Example 1.1. Consider the following well known “nonholonomic inte-

gator” of Brockett [1]. The dynamics ẋ = f(x, u) (here time-autonomous;

that is, f has no direct t-dependence) are given by

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

where controls u(·) = (u1(·), u2(·)) are required to be valued in the closed

unit ball U = B2 in R
2. It can be shown by an ad hoc argument that

this system is asymptotically controllable. Nevertheless, stabilizability

via a locally Lipschitz feedback law k(x) fails here because, as Brockett’s

arguments show, a necessary condition for this is the existence of Δ > 0

such that

ΔB3 ⊆ f(R3, B2), (2)

where B3 denotes the open unit ball in R
3. It is easy to check that this

condition fails for the nonholonomic integrator. In fact, due to a spe-

cialization of a result of Ryan (commented on below) which generalizes
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that of Brockett, no continuous stabilizing feedback exists. For further

discussion along these lines, see Sontag and Sussman [20], and Sontag

[18], [21].

Unlike the preceding example, it is not always possible to obtain a

classical solution to the differential equation

ẋ = f(t, x, k(t, x)) =: g(t, x)

when the feedback k is discontinuous, since the existence theory of or-

dinary differential equations can break down. One might hope that a

remedy for this difficulty is to replace the above differential equation

with a differential inclusion ẋ ∈ G(t, x) via either the Krasovskii solu-

tion concept, wherein

G(t, x) :=
⋂
δ>0

co[g((t, x) + δBn+1)], (3)

(where co denotes closed convex hull) or via the Filippov solution con-

cept, wherein

G(t, x) :=
⋂
δ>0

⋂
meas(N )=0

co[g((t, x) + δBn+1\N )], (4)

the second intersection being taken over all subsets N of R
n+1 with

Lebesgue measure zero. If f is continuous and the feedback k is merely

assumed to be bounded on bounded sets and (for the case of Filippov

solutions) also measurable, then the multifunction G in both (3) and

(4) is compact convex valued and is upper semicontinuous. Therefore

one has global existence of solutions of ẋ ∈ G(t, x) for any initial data.

(For an overview of Krasovskii and Filippov solutions, see Filippov [11],

Hajek [12], and Deimling [10]). Unfortunately, the Krasovskii and Filip-

pov solution approaches are inadequate for purposes of (discontinuous)

feedback design in stabilizability. This is due to a result of Ryan [16]
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(see also Clarke, Stern and Ledyaev [5]) implying that Brockett’s cover-

ing condition (2) persists for these solution concepts. Specifically, in the

nonholonomic integrator of Example 1.1, if a stabilizing feedback existed

with respect to either of these notions of solution, then necessarily for

any given γ > 0 there would have to exist Δ > 0 such that

ΔB3 ⊆ G(γB3, B2). (5)

But as is readily checked, this fails for the example in question, for G

given by either (3) or (4).

The question of whether asymptotic controllability implies asymptotic

stabilizability via feedback in some meaningful way has received some

attention in recent years. One reference is Coron [9] (see also Coron

and Rosier [15]). Another, which is more relevant to the present work,

is Clarke, Ledyaev, Sontag and Subbotin [4], where this question was

answered affirmatively, using discontinuous feedback, and a discretized

solution concept, wherein the control function is iteratively reset and

held constant on successive time intervals. The discretized solution con-

cept utilized in the present work, that of “Euler polygonal arcs” is some-

what akin to this. The departure point of the analysis in [4] is the key

fact, due to Sontag [17] (see also Sontag and Sussmann [19]) that as-

ymptotic controllability is equivalent to the existence of a continuous

(but nonsmooth) control Lyapunov function, or CLF. The methods of

nonsmooth analysis were then brought to bear; the stabilizing feedback

is constructed using the sublevel sets of the Moreau-Yosida infimal con-

volution of the CLF and exploiting a nonsmooth infinitesimal decrease

property of this function. The methods of [7], instead of the sublevel

sets of a CLF, the sublevel sets of the value function of the problem

were utilized. A difference between the methods of [4](or [7]) and the

present work is that here the Moreau-Yosida infimal convolutions is not
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required, and the proximal aiming method is applied. A central object

in our methods is the value function V of the underlying problem. The

value function will be discussed in some detail subsequently, but let us

define it here and discuss it informally. Given an initial phase (τ, α),

where τ < T and α ∈ R
n, V (τ, α) denotes �(x̃(T )), where x̃ is an opti-

mal trajectory satisfying x(τ) = α. By an optimal tajectory we mean a

trajectory on [τ, T ] corresponding to an optimal open loop control u(t)

(not a feedback). The plan of this article is as follows. In the next

section, we provide the required preliminaries in nonsmooth analysis.

Then in §3 We will show that the main theorem in [14] generalize in

a meaningful way if the standing hypotheses ( SH) in that result are

relaxed to ;

(SH*)

(a) For each point (t, x) ∈ R× R
n, F (t, x) is a bounded subset of Rn.

(b) Linear growth: There exist γ1 > 0 and γ2 such that

‖v‖ ≤ γ1‖x‖+ γ2 ∀ v ∈ F (t, x), ∀ (t, x) ∈ R× R
n.

(c) F is upper semicontinuous on R×R
n; that is, given (t, x) ∈ R×R

n,

for any ε > 0 there exists δ > 0 such that

‖(t, x)− (t′, x′)‖ < δ =⇒ F (t′, x′) ⊆ F (t, x) + εBn+1.

2. Preliminaries

2.1. Nonsmooth analysis background. A general reference for this

section is Clarke, Ledyaev, Stern and Wolenski [8]; see also [6], Clarke

[2], [3] and Loewen [13]. Let S be a nonempty subset of Rn. The distance

of a point u to S is given by

dS(u) := inf{‖u− x‖ : x ∈ S}.
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The metric projection of u on S is denoted

projS(u) := {x ∈ S : ‖u− x‖ = dS(u)}.

If u /∈ S and x ∈ projS(u), then the vector u−x is called a perpendicular

to S at x. The cone consisting of all nonnegative multiples of these

perpendiculars is denoted NP
S (x), and is referred to as the proximal

normal cone (or P-normal cone) to S at x.

Let f : U → R be continuous, where U ⊆ R
n is open. Denote the

epigraph of f by

epi(f) := {(x, y) ∈ U × R : x ∈ U, y ≥ f(x)}.

A vector ζ ∈ R
n is said to be a proximal subgradient (or P-subgradient)

of f at x ∈ U provided that

(ζ,−1) ∈ NP
epi(f)(x, f(x)).

The set of all such vectors is called the P-subdifferential of f at x, denoted

∂P f(x). The limiting normal cone (or L-normal cone) to S at x ∈ S is

defined to be the set

NL
S (x) := {ζ : ζi → ζ, ζi ∈ NP

S (xi), xi → x}.

We now summarize some required facts from nonsmooth calculus:

(a) Sum rule: Suppose that g is C2 near a point x ∈ U . Then

∂P (g + f)(x) ⊆ g′(x) + ∂P f(x), (6)

where g′ denotes the Fréchet derivative.

(b) Local Lipschitzness: Assume U to be convex as well as open. Then

f is Lipschitz of rank K on U iff

‖ζ‖ ≤ K ∀ ζ ∈ ∂P f(x) ∀x ∈ U.
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(c) Sublevel sets: Let f be Lipschitz on U (open and convex) and let

a ∈ R. Denote

S(a) := {x ∈ U : f(x) ≤ a}.

Consider the differential inclusion (or generalized control system)

ẋ ∈ F (t, x), (7)

where by a solution or trajectory of (7) on an interval J we mean an

absolutely continuous function t→ x(t) ∈ R
n satisfying (7) a.e. on J .

3. Universal Feedback construction in optimal control

In this work we extended the main result in [14] to a situation wherein

the hypotheses on that dynamics were significantly relaxed; in particu-

lar, we dropped the assumptions of convexity and closeness of the mul-

tifunction F (t, x). It was also shown that the lipshitz hypotheses on

F (t, x) can be relaxed to upper semicontinuty.

We now define a new multifunction

F̂ (t, x) := co[F (t, x)].

One can use Carathéodory’s theorem in order to show that F̂ , which is

obviously compact convex valued, is also upper semicontinuous. Con-

sider the parametrized family of optimal control problems {P̂ (τ, α)},
where (τ, α) ∈ (−∞, T ]×R

n, involving the minimization of �(x(T )) over

all trajectories x of the differential inclusion ẋ(t) ∈ F̂ (t, x(t)) satisfying

x(τ) = α. Since compactness of trajectories holds for these dynam-

ics, the minimum in each problem P̂ (τ, α) is attained, and we denote

the associated value function by V̂ (τ, α). Also, if f̂ is any feedback

(i.e. selection) of F̂ , then for any compact time interval [τ, T ] and any

α ∈ R
n, there exists at least one Euler solution of the initial value prob-

lem ẋ = f̂(x) satisfying x(τ) = α, and it is necessarily a solution of the
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differential inclusion ẋ ∈ F̂ (x). (These facts can be found in [8].)

The generalization of Theorem 3.1.2 in [14] that we wish to prove is

the following.

Theorem 3.1. Suppose that the multifunction F satisfies (SH*) and

that the cost functional � is continuous. Let M > 0 and t0 ∈ (−∞, T ) be

given. Then given ε > 0, there exists a feedback fε for F̂ + εBn+1 and a

scalar μ̃ > 0 such that the following holds: Given any initial data

(τ, α) ∈ [t0, T ]×MBn (8)

and any partition π of [τ, T ] with diam(π) ≤ μ̃, every Euler polygonal

arc xπ of the initial value problem

ẋ(t) = fε(t, x(t)), x(τ) = α (9)

satisfies

�(xπ(T )) ≤ V̂ (τ, α) + ε. (10)

Proof: As in the proof of theorem 3.1.2 in [14], we again assume 0 <

t0 < T , and we work with a rectangle C := [0, T ] ×MR
n. As earlier,

there exists M1 > 0 such that for any feedback of F̂ + εBn+1, any initial

data (τ, α) ∈ C, and any partition π of [τ, T ], the Euler polygonal arc

xπ generated by on [τ, T ] satisfies

‖(xπ(t))‖ ≤M1 ∀t ∈ [τ, T ]. (11)

We again denote C1 := [0, T ]× 2M1Bn. Then for any (τ, α) ∈ C,

(t, (xπ(t))) ∈ [0, T ]×M1Bn ⊆ C1 ∀t ∈ [τ, T ]. (12)
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We recall a result on multifunction approximation (see Deimling [10]):

Given ε > 0, there exists a compact convex valued multifunction F̂ ε,

Lipschitz on C1, such that

F̂ (t, x) ⊆ F̂ ε(t, x) ⊆ F̂ (t, x) + εBn+1 ∀ (t, x) ∈ C1. (13)

Hence F̂ ε satisfies the original standing hypotheses (SH),

(SH)

(a) For each point (t, x) ∈ R × R
n, F (t, x) is a nonempty compact

convex subset of Rn.

(b) Linear growth: There exist positive numbers γ1 and γ2 such that

‖v‖ ≤ γ1‖x‖+ γ2 ∀ v ∈ F (t, x), ∀ (t, x) ∈ R× R
n.

(c) F is locally Lipschitz on R × R
n; that is, to every bounded set

S ⊆ R× R
n there corresponds K > 0 such that

F (t1, x1) ⊂ F (t2, x2) +K‖(t1, x1)− (t2, x2)‖Bn ∀(ti, xi) ∈ S, i = 1, 2,

and F̂ ε is an upper approximation of F̂ = coF on C1. We denote by V̂ ε

the value function obtained when the dynamics are given by ẋ ∈ F̂ ε(x).

In view of the first containment in (13), it is clear that for any ε > 0

and F̂ ε as in (13), one has

V̂ ε(τ, α) ≤ V̂ (τ, α) ∀ (τ, α) ∈ C. (14)

Hence, it suffices to prove a version of the theorem in which the inequal-

ity (10) is replaced by

�(xπ(T )) ≤ V̂ ε(τ, α) + ε (15)

for some ε > 0. Observe that because V̂ ε is associated with dynamics

satisfying (SH), Lemma 3.2.7 in [14] holds true, with the notational

change that the extended lower Hamiltonian h̄F be replaced by h̄
̂F ε ,
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and where the sublevel sets S(a) are replaced by Ŝε(a), which are those

of (V̂ ε)β, where

(V̂ ε)β(τ, α) := V̂ ε(τ, α) + β(T − τ).

This version of the result will follow from the fact that for given ε > 0

and for any a ∈ [am, aM ], one has

h̄
̂F ε(t, x, η) ≤ − β

κ̂ε
‖η‖ ∀ (t, x) ∈ Ŝε(a) ∩ int(C1), ∀ η ∈ NP

̂Sε(a)
(t, x),

(16)

where κ̂ε = κε + 1 and κε is a Lipschitz constant for V̂ ε on (C1). In

the remainder of the proof the inequality (16) can be used in proving

Theorem 3.1.2 in [14]. The remaining details are similar to the proof of

that Theorem .�
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Abstract. In classical theory of distributions( Schwartz-Sobolov

theory), nonlinear operations on distributions such as product of

distributions is not possible. As a result when we want to solve some

partial differential equations such as Burgers one, we will encounter

some ambiguities. Recently Colombeau proposed a new generalized

function theory which can be used to remove these ambiguities. In

this paper we consider a simplified model of elasticity and solve

its equations in colmbeau theory. It is possible to handle other

nonlinear partial differential equations in this framework.

1. Introduction

Classical theory of distributions, based on Schwartz-Sobolev theory

of distributions, doesn’t allow non-linear operations of distributions [1].

In Colombeau theory a mathematically consistent way of multiplying

distributions is proposed. Colombeau’s motivation is the inconsistency

in multiplication and differentiation of distributions. Take, as it is given
117
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in the classical theory of distributions,

θn = θ ∀ n = 2, 3, . . . , (1)

where θ is the Heaviside step function. Differentiation of (1) gives,

nθn−1 θ′ = θ′. (2)

Taking n = 2 we obtain

2θθ′ = θ′. (3)

Multiplication by θ gives,

2θ2θ′ = θθ′. (4)

Using (2) it follows

2

3
θ′ =

1

2
θ′ (5)

which is unacceptable because of θ′ �= 0. The trouble arises at the origin

being the unique singular point of θ and θ′ . If one accepts to consider

θn �= θ for n = 2, 3, . . . , the inconsistency can be removed. The differ-

ence θn − θ , being infinitesimal, is the essence of Colombeau theory of

generalized functions. Colombeau considers θ(t) as a function with “mi-

croscopic structure” at t = 0 making θ not to be a sharp step function

( Fig.1), but having a width ε[2]. θ(t) can cross the normal axis at any

value τ where 0 < τ < 1. With this picture in mind it is interesting

to note that the behaviour of θ(t)n around t = 0 is not the same as

θ(t) , i.e., θn(t) �= θ(t) around t = 0. In the following we give a short

formulation of Colombeau’s theory.
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2. A Short Review of Colombeau Theory

Suppose Φ ∈ D(Rn) with D(Rn) the space of smooth(i.e. C
∞) C-

valued test functions on R
n with compact support and∫

Φ(x)dx = 1. (6)

For ε > 0 we define the rescaled function Φε(x) as

Φε(x) =
1

εn
Φ(
x

ε
). (7)

Now, for f : Rn −→ C, not necessarily continuous, we define the smooth-

ing process for f as one of the convolutions

f̃(x) :=

∫
f(y)Φ(y − x)dny, (8)

or

f̃ε(x) :=

∫
f(y)Φε(y − x)dny. (9)

According to (7), equation (9) has the following explicit form

f̃ε(x) :=

∫
f(y)

1

εn
Φ(
y − x

ε
)dny. (10)

This smoothing procedure is valid for distributions too. Take the distri-

bution R , then by smoothing of R we mean one of the two convolutions

(8) or (9) with f replaced byR . Remember that R is a C-valued func-

tional such that

Φ ∈ D(Rn) =⇒ (R,Φ) ∈ C, (11)

where (R,Φ) is the convolution of R and Φ.

Now we can perform the product Rf of the distribution R with the

discontinuous function f through the action of the product on a test

function Ψ. First we define the product of corresponding smoothed

quantities R̃ε with f̃ε and then take the limit

(Rf,Ψ) = lim
ε→0

∫
R̃ε(x)f̃ε(x)Ψ(x)dnx. (12)
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The multiplication so defined does not coincide with the ordinary multi-

plication even for continuous functions. Colombeau’s strategy to resolve

this difficulty is as follows. Consider one-parameter families (fε) of C
∞

functions used to construct the algebra

EM(Rn) = {(fε) | fε ∈ C
∞(Rn) ∀K⊂ R

n compact,

∀α ∈ N
n ∃N ∈ N, ∃η > 0, ∃c > 0

such that sup
x∈K

|Dαfε(x)| ≤ cε−N ∀0 < ε < η},

(13)

where

Dα =
∂|α|

(∂x1)α1 · · · (∂xn)αn
, (14)

and

|α| = α1 + α2 + · · · + αn.

Accordingly, C
∞-functions are embedded into EM (Rn) as constant

sequences. For continuous functions and distributions we require a

smoothing kernel φ(x), such that∫
dnx ϕ(x) dx = 1 and

∫
dnx xαϕ(x) = 0 |α| ≥ 1.

(15)

Smoothing is defined as (10) for any function f . Now, we have to identify

different embeddings of C
∞ functions. Take a suitable ideal N (Rn)

defined as

N (Rn) = {(fε) | (fε) ∈ EM(Rn) ∀K⊂ R
n compact,

∀α ∈ N
n, ∀N ∈ N ∃ η > 0 , ∃ c > 0 ,

such that sup
x∈K

|Dαfε(x)| ≤ c ∈N ∀0 < ε < η},

(16)
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containing negligible functions such as

f(x)−
∫
dny

1

εn
ϕ(
y − x

ε
)f(y). (17)

Now, the Colombeau algebra G(Rn) is defined as,

G(Rn) =
EM(Rn)

N (Rn)
(18)

A Colombeau generalized function is thus a moderate family (fε(x)) of

C
∞ functions modulo negligible families. Two Colombeau objects (fε)

and (gε) are said to be associate (written as (gε) ≈ (fε)) if

lim
ε→0

∫
dnx (fε(x)− gε(x)) ϕ(x) = 0

∀ ϕ ∈ D(Rn). (19)

For example, if ϕ(x) = ϕ(−x) then δθ ≈ 1
2δ, where δ is Dirac delta func-

tion and θ is Heaviside Step function. Moreover, we have in this algebra

θn ≈ θ and not θn = θ. For an extensive introduction to Colombeau

theory, see[2-7].

3. An Example: A Simplified Model of Elasticity

In the system of elasticity Hooke’s law in terms of the stress σ can

be expressed as d
dtσ = k2ux where d

dt =
∂
∂t + u ∂

∂x and lower-case indices

show derivatives with respect to these indices. Now the equations of

system of elasticity are,

ρt + (ρu)x ≈ 0 balance of mass

(ρu)t + (ρu2)x ≈ σx balance of momentum

σt + uσx ≈ k2ux Hooke′s law (20)

where ρ = density, u = velocity and k2 = constant. Equations (20) are

stated with three associations since we know this statement is a faithful
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generalization of the concept of weak solutions of systems in conservative

form.

3.1. Jump conditions. We seek travelling waves solutions of (20) of

the form

u(x, t) = ΔuH(x− ct) + ul

σ(x, t) = ΔσK(x− ct) + σl

ρ(x, t) = ΔρL(x− ct) + ρl (21)

with H, K and L three Heaviside generalized functions. Putting (21)

into the first equation of (20) we get (assuming Δρ �= 0)

c− ul = Δu+ ρl
Δu

Δρ
. (22)

The second equation of (20) gives

(c− ul −Δu)(ulΔρ+ ρlΔu+ΔρΔu) = ulρlΔu−Δσ. (23)

These two equation are exactly the classical Rankine-Hugoniot jump

conditions, since these equations are in conservative form. The last

equation of (20) gives

c− ul = AΔu− k2
Δu

Δσ
(24)

and

HK ′ ≈ Aδ (25)

where A is a real number. Now equations (22),(23) and (24) can be

rewritten as

c = ul +AΔu− k2
Δu

Δσ

k2
Δu

Δσ
− 1

2
[
1

ρl
+

1

ρr
]
Δu

Δσ
= [A− 1

2
]Δu

ρlρr(Δu)
2 = −ΔσΔρ. (26)
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As usual we find that the jump conditions of (20) depend on an arbitrary

parameter, the real number A.

3.2. Resolution of the Ambiguities. Now according to Colombeau

theory we can state equations (20) in more precise form

ρt + (ρu)x = 0

(ρu)t + (ρu2)x = σx

σt + uσx ≈ k2ux. (27)

The first two equations of (27) are equivalent to

ρt + (ρu)x = 0

ut + uux =
1

ρ
σx (28)

since ρ �= 0. It is convenient to set v = 1
ρ , where v is called the specific

volume. Then (28) takes the form

vt + uvx − vux = 0

ut + uux − vσx = 0. (29)

Now we can restate (21) in the following form

u(x, t) = ΔuH(x− ct) + ul

σ(x, t) = ΔσK(x− ct) + σl

v(x, t) = ΔvM(x− ct) + vl (30)

with H,K,M ≈ θ, the Heaviside function. The first equation in (29)

gives

(c− ul −ΔuH)M ′ +ΔuH ′M +Δu
vl
Δv

H ′ = 0. (31)
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The jump condition of the first equation of (27) is

c− ul
Δu

=
ρr
Δρ

with ρr = Δρ+ ρl (32)

which can be written as

c− ul
Δu

= − vl
Δv

. (33)

Then (31) gives

[
vl
Δv

+H]M ′ = [
vl
Δv

+M ]H ′. (34)

Putting(30) into the second equation of (29) we can obtain:

c− ul
Δu

H ′ −HH ′ + (ΔvM + vl)
Δσ

Δu2
K ′ = 0. (35)

The jump condition of the second equation in(27) gives

Δv =
(Δu)2

Δσ
. (36)

Now we can consider equations(33),(35) and (36) together to find

[
vl
Δv

+H]H ′ = [
vl
Δv

+M ]K ′. (37)

Setting α = vl
Δv > 0 then (34) and (37) are the system

(α+H)M ′ = (α+M)H ′

(α+H)H ′ = (α+M)K ′. (38)

Now these equation can be rewritten as

(α +H)M ′ −H ′H − αH ′ = 0

K ′ =
α+H

α+M
H ′. (39)
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Since H andM are null on (−∞, 0[ and identical to 1 on ]0,+∞), an ap-

plication of the classical formula for the solution of ordinary differential

equation

a(x)y′ + b(x)y + c(x) = 0 (40)

allows to compute M as a function of H from the first equation of (39).

One find M = H. This method relies upon the extension to G of the

classical study of ordinary differential equations of the above kind. One

can check that in this case the classical formula makes sense and provides

a unique solution in the sense of equality in G.
This approach can be considered as a particular case of a much deeper

study of linear hyperbolic systems with coefficients in G. There one

can proves the uniqueness of the solutions of the Cauchy problem; this

argument of uniqueness gives at once the result that M = H. THen

the second equation in (39) gives K = H. Now we have resolved the

ambiguities,

HK ′ = HH ′ =
1

2
δ (41)

and therefore A = 1
2 .

As a conclusion to above argument we can state the following theorem:

Theorem

The system of two equations and three unknowns

ρt + (ρu)x = 0

(ρu)t + (ρu2)x − σx = 0 (42)

is equivalent to the system(v = 1
ρ)

vt + uvx − vux = 0

ut + uux − vσx = 0. (43)
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Further, travelling waves of the form

w(x, t) = ΔwHw(x− ct) + wl (44)

with w = v, u, σ successively (Δw, c, wl ∈ R and Hw a Heaviside generalized

function), are solution of (43) if and only if Hv = Hu = Hσ plus the classical

jump condition of (42).

4. Conclusions

Since the classical theory of distributions is disable to handling nonlinear

operations on distributions, Colombeau theory of generalized functions give a

reasonable framework to do such nonlinear operations and as a result this the-

ory can be used to remove ambiguities of classical theory. In this paper we have

used this new theory to solve the equations of a system of elasticity. Although

physically this problem must have unambiguous traveling waves solutions, clas-

sical theory of distributions for such a solutions encounter some ambiguities.

In the line of removing these ambiguities we arrived at the important result

between Heaviside step function and Dirac δ-function, relation (41).
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Abstract. We will show that the notion of convolution can be

extented, in a natural way, to homogeneous spaces. with only minor

constraints.This convolution maintains the basic properties of the

classical convolution on locally compact topological groups. This

construction paves the turn can be used in many applications.

1. Preliminaries

Let X be a (locally compact) topological space. and let S be a semi-

group acting on X, i.e. ther exits a mapping (called action ) (s, x) −→
sx : S ×X −→ X such that s(tx) = (st)x for all s, t ∈ S, x ∈ X. S is

said to act transitively on X if for each pair x, y ∈ X, there exists an

element s ∈ S, such that sx = y. As a special case we shall consider

homogeneous spaces, i.e. the case wher a locally compact topological

group G, acts transitively on a locally compact topological spaceX, such

that the action is jointly continuous, and for every x ∈ X the mapping

πx : g −→ gx : G −→ X is an open mapping ofGonto X. if so, then X is

homeomorphic to G/Gx, for every x ∈ X, where Gx = {g ∈ G : gx = x}
is a subgroup of G. For this reason, in the sequel we shall denote any of

the mappings g −→ gx simply by π, without referring to π. A positive

regular Borel measure μ on X is called G-invariant if for each Borel
127
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subset B of X, and each g ∈ G, we have

μ(gB) = μ(B)

where gB = {gx : x ∈ B}. μ is called relatively G-invariant if ther exists

a continuous mapping Δ : G −→ R
+, such that,

μ(gB) = Δ(g)μ(B).

It can be proved that Δ is homomorphism into R
+, the multiplicative

group of positive real numbers. It can also be proved that∫
X
f(x)dμ(x) = Δ(g)

∫
X
f(gx)dμ(x).

The existence of a G-invariant or a relatively G-invariant measure de-

pends both on G, and X, and also on the nature of the action. Let X

be a homogeneous space relative to the topological group G, and let the

mapping π : G −→ X be a proper one, i.e. the image of each compact

subset of G under π is compact in X. Then for each f ∈ C00(X), the

space of functions of compact support on X, we have f ◦ π ∈ C00(G).

Suppose also that X carries a G-invariant measure μ. By choosing asuit-

able factor of proportionality, we can have suitable Haar measure dg, on

G such that for each f ∈ C00(X)∫
G
f ◦ π(g)dg =

∫
X
f(x)dμ(X).

under the above assumptions we can make the following definition. No-

tice that the condition of unimodularity is added for convenience only,

and can be avoided by introducing some modifications.

The background material we will need can be found in [2],[3], and [4].

2. Definition. Let X and G be as above. Furthermore, suppose that

G is a unimodular group. Let 1 ≤ p ≤ ∞, and 1
p + 1

q = 1. Then for
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f ∈ Lp(G), h ∈ Lq(X), we define the convolution of f and h by

f ∗ h(x) =
∫
G
f(g)h(g−1x)dg (x ∈ X).

Using Holder’s inequality, we can prove that the above integral exists,

and in fact is bounded by ||f ||p||h||q. Furthermore, we have

3. Theorem. if f and g are as above, and 1 < p < ∞, then

f ∗ h ∈ C0(X).

Proof. We first prove that f ∗h is continuous. Let x0 ∈ X be an arbitary

point and let hx0(g) = h(gx0) for g ∈ G. Then supposing that x = g0x0,

once again by Holder’s ineqality

|f ∗ h(x)− f ∗ h(x0)| = |
∫
G
[f(g)h(g−1x)− f(g)h(g−1x0)]dg|

≤ ||f ||p(
∫
G
|h(g−1x)− h(g−1x0)|qdg)

1
q

= ||f ||p(
∫
G
|hx0(g

−1g0)− hx0(g
−1)|q) 1

q

= ||f ||p(
∫
G
|(hx0)g0(g

−1)− hx0(g
−1)|q) 1

q

= ||f ||p||(hx0)g0 − hx0 ||q
wich tends to zero as x tends to x0 (i.e. as g0 tends to e, the identity

element of G). notice that we used the unimodularity of G fir obtaining

the last equality. However without this aasumption it is not hard to

prove the continuity of f ∗ h. Now to prove f ∗ h vanishes at infinity.

Let ε > 0 be arbitrary, and K1 ⊂ G, and K2 ⊂ X be compact sets such

that ∫
G\K1

|f(g)|pdg < εp and

∫
X\K2

|h(x)|qdμ(x) < εp.

Obviously if x /∈ K1K2, then g
−1x /∈ K2 for any g ∈ K1. Therefore

|f ∗ h(x)| ≤
∫
G
|f(g)h(g−1x)|dg
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≤
∫
K1

|f(g)h(g−1x)|dg +
∫
G\K1

|f(g)h(g−1x)|dg

Once again by Holder’s inequality∫
G\K1

|f(g)h(g−1x)|dg ≤ (
∫
G\K1

|f(g)|pdg) 1
p (
∫
G\K1

|h(g−1x)|qdg)1q
ε||h||q

We also have∫
K1

|f(g)h(g−1x)|dg ≤ (

∫
K1

|f(g)|pdg) 1
p (

∫
K1

|h(g−1x)|qdg)1
q

‖ f ||p(
∫
G\K2

|h(y)|qdμ(y)) 1
q

ε ‖ f ‖p .
So for x /∈ K1K2, |f ∗ h(x)| < ε(‖ f ‖p + ‖ h ‖q). since K1K2 is a

compact subset of X, this means tath limx→∞ f ∗h(x) = 0. We now try

to define the notion of a Fourier algebra, for a homogeneous space. This

extends the notion of Fourier algebra of a (non-abelian) locally compact

topological group as defined by Eymard[1]. Let G and X be as above,

and let T (G,X) denote the projective tensor product L2(G⊗L2(X), and

denot the norm of an element ϕ ∈ T (G,X) by ‖ ϕ||T . By definition of

projective tensor product, given any ε > 0, and ϕ ∈ T (G,X), there exist

a sequence an ⊂ C, and tow sequences fn ⊂ L2(G), and hn ⊂ L2(X)

such that

ϕ(g, x) =
∞∑
n=1

anfn(g)hn(x) (g ∈ G,x ∈ X)

and
∞∑
n=1

|an|||fn ‖2 ||hn ‖2≤ ||ϕ||T + ε.

Define the mapping P : T (X,G) −→ C(X), by

P (ϕ)(x) =

∫
G
ϕ(g, g−1x)dg
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In other words,P is the mapping induced onT (G,X) by

P (f ∗ h)(x) =
∫
G
f(g)h(g−1x)dg

i.e. P (f⊗h) = f ∗g. So as we have already seen ||P (f⊗h||infty ≤
||f ‖2 ||h||2, which implies ‖ P || = 1.

4. Definition. We denote byA(G,X), the Banach space T (G,X)/P−1(0),

and we call it the Fourier algebra of X, with respect to G. The norm

of element f ∈ A(G,X) is denoted by ‖ f ‖A. It should be noticed that

although we can think of elements of A(G,X) as functions on G × X,

but the induced isomorphism A(G,X) −→ C(X) allows us to corsider

it as a subspace of C(X), but normed with the quotient norm ‖ ||A.
Obvously for ϕ ∈ T (G,X), we have

‖ Pϕ ‖≤ ||ϕ||T .
5. Theorem. A(G,X) ⊂ C0(X), and for ϕ ∈ A(G,X), we have

‖ ϕ||∞ ≤ ||ϕ||A.

Proof. By Theorem 3, for f ∈ L2(G), h ∈ L2(X), P (f ⊗ h) = f ∗ h ∈
C0(X). therefore

P (L2(G) ⊗ L2(X)) ⊂ C0(X).

Since P is continuous, and C0(X) is a complete linear space, we can

extend P to the completion of L2(G)⊗ L2(X), i.e. L2(G)⊗ L2(X) and

the image of P remains inside C0(X). The inequality ‖ ϕ||∞ ≤ ||ϕ||A.
is a consequence of the inequality ‖ P (f ⊗ h) ‖≤ ||f ||2 ‖ h||2, and

the definition of the quotient norm. The space A(G,X) has many nice

propeties, among which we mention that it is a Banach algebra. We

hope to use these properties in wavelet theory, and signal processing an

upcoming article.
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Abstract. We will consider the “ derivative ” of the distance in-

duced by a Hermitian metric on complex manifolds. This notion

will be applied to some function spaces on complex manifolds and

a theorem in classical function theory will be generalized.

1. Introduction

Let M be a connected complex manifold and TM be its complex

tangent bundle. A differential metric on M is a function f :M −→ R≥0
satisfying the following condition:

f(aXx) = |a|f(Xx), for each Xx ∈ TxM and a ∈ C.

An upper semicontinuous differential metric is called a Finsler metric.

If we consider the integrated form of a Finsler metric f , i. e. the

function F :M ×M −→ R≥0 defined by

F (x, y) = inf{
∫ 1

0
f(γ′(t))dt},

where the infimum is taken with respect to set of piecewise differentiable

curves γ : [0, 1] −→ X such that γ(0) = x and γ(1) = y, then F is a

pseudo-distance.

1991 Mathematics Subject Classification. 32H20.
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Note that, if h is a Hermitian metric on a complex manifold M , then

the function h̃ : TM −→ R≥0 given by

h̃(Xx) := h(Xx,Xx)
1/2, ∀Xx ∈ TxM,

is a continuous Finsler metric.

The second example is given by the Kobayashi-Royden [5] metric k.

This Finsler metric is defined by

k(Xx) := inf{a > 0 : ∃ϕ : D −→M,ϕ(0) = x and ϕ′(a(
∂

∂z
)
0
) = Xx}.

A complex manifold M is called hyperbolic if the pseudo-distance K

induced by the differential metric k is a distance.

The derivative of a pseudo-distance d on a complex manifold M is a

function F (d) defined on the tangent bundle TM by

F (d)(Xx) := lim sup
t→0

d(γ(t), γ(0))

|t| , (1)

where γ is a curve inM defined in a neighborhood of 0 in R with γ(0) = x

and γ′(0) = Xx.

One can prove that (1) does not depend on the curve γ and F (d)

is a differential metric on M . We will prove that the derivative of a

Hermitian distance on a complex manifold M , induced by a Hermitian

metric is in fact equal to that metric.

Let M and N are connected complex manifolds of dimensions m and

n with differential metrics FM and FN , respectively.

We say that a mapping f ∈ H(M,N) is of bounded expansion if it

satisfies

‖f ′‖ := sup{‖f ′(p)‖ : p ∈M} <∞, (2)

where

‖f ′(p)‖ := sup{FN (f ′(p)Xp) : Xp ∈ TpM, FM (Xp) = 1}. (3)
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Usually, M will be hyperbolic and FM will be the Kobayashi-Royden

metric kM while N will be Hermitian and FN will be the Hermitian

metric hN . The class of mappings of bounded expansion will be denoted

by E(M,N).

Let F1 and F2 be two differential metric such that for each 0p �= Xp ∈
TpM

Fi(Xp) �= 0 i = 1, 2.

Then

sup
Xp �=0p

hN (f ′(p)Xp)

F1(Xp)
= sup

F2(Xp)=1

hN (f ′(p)Xp)

F1(Xp)

= sup
F1(Xp)=1

hN (f ′(p)Xp).
(4)

If M is hyperbolic and (p, ξ) represents the tangent vector Xp ∈ TpM

in a coordinate neighborhood of p ∈ M then, kM (p, ξ) �= 0 for ξ �= 0,

and by (4) we have

‖f ′(p)‖ = sup
kM (p,ξ)�=0

hN (f(p), f ′(p)ξ)
kM (p, ξ)

,

= sup
|ξ|=1

hN (f(p), f ′(p)ξ)
kM (p, ξ)

, (5)

where | | is the Euclidean norm in C
m.

Note that (5) does not depend on the coordinate neighborhood around

p ∈M .

If N is noncompact, we refer to mappings of bounded expansion as

Bloch mappings and if N is compact we refer to them as normal map-

pings.

For the case of normal mappings our definition is consistent with

Hahn’s definition of normal mappings in [2]. One can verify that our

definitions coincide with the classical definitions of Bloch and normal

functions, respectively.
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2. hermitian distances

Theorem 2.1. Let Ω be a domain in C
n, δ : Ω×C

n −→ R≥0 a contin-

uous function such that for each a ∈ Ω, δ(a, .) is a C-norm and let d be

its corresponding distance. Then, for each a ∈ Ω and ξ ∈ C
n,

lim
t→0+

1

t
d(a, a+ tξ) = δ(a, ξ). (6)

Proof. By definition d(a, b) := inf{∫ 1
0 δ(α(τ), α

′(τ))dτ} where the infi-

mum is taken over all piecewise smooth curves α : [0, 1] −→ Ω joining a

and b. Fix a ∈ Ω and ξ ∈ C
n, ξ �= 0. Taking α(τ) := a + tτξ, we see

that

lim sup
t→0+

1

t
d(a, a + tξ) ≤ lim sup

t→0+

1

t

∫ 1

0
δ(a + tτξ, tξ)dτ

= lim sup
t→0+

1

t

∫ t

0
δ(a + sξ, ξ)ds

≤ δ(a, ξ).

So far, we have used the fact that δ is upper semicontinuous.

Conversely, fix 0 < θ < 1. Since δ is continuous, for η0 ∈ C
n with

|η0| = 1, there exist neighborhoods Uη0 ⊂ Ω of a and Vη0 ⊂ C
n of η0

such that δ(z, η) ≥ θδ(a, η) for each z ∈ Uη0 and η ∈ Vη0 .

Since the unit sphere Sn−1 in C
n is compact one can find a neighbor-

hood U of a such that δ(z, η) ≥ θδ(a, η) for each z ∈ U and η ∈ S
n−1.

Since δ(z, .) is a C-norm, it follows that for each z ∈ U and η ∈ C
n,

δ(z, η) ≥ θδ(a, η).
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For small t > 0, there exists a geodesic γt : [0, 1] −→ Ũ ⊂ U , with

γt(0) = a, γt(1) = a+ tξ. Therefore

d(a, a+ tξ) =

∫ 1

0
δ(γt(τ), γ

′
t(τ))dτ,

≥ θ

∫ 1

0
δ(a, γ′t(τ))dτ,

≥ θδ(a,

∫ 1

0
γ′t(τ)dτ),

= θδ(a, γt(1) − γt(0)),

= θδ(a, tξ).

The second inequality follows from the fact that δ(a, .) is a complex

norm. It follows that

lim inf
t→0+

1

t
d(a, a+ tξ) ≥ θδ(a, ξ).

Hence, the proof is complete.

Lemma 2.2. Let Ω and δ be as in the previous lemma, Ω1 ⊂ C
m and

f : Ω1 −→ Ω a holomorphic mapping. Then, for a ∈ Ω1 and ξ ∈ C
m,

lim
t→0+

1

t
d(f(a), f(a+ tξ)) = δ(f(a), f ′(a)ξ).

Proof. We shall prove that for each b ∈ Ω, there exist M, r > 0, such

that d(z′, z′′) ≤ M‖z′ − z′′‖, for all z′, z′′ ∈ Br(b) ⊂ G. To see this,

fix b ∈ Ω and choose r > 0 such that B̄r(b) ⊂ Ω. Since δ is upper

semicontinuous, there exists M > 0 such that δ(z, ξ) ≤ M‖ξ‖, for each
z ∈ B̄r(b) and each ξ ∈ C

n. It follows that for z′, z′′ ∈ Br(b),

d(z′, z′′) ≤
∫ 1

0
δ(z′ + t(z′′ − z′), z′′ − z′)dt ≤M‖z′ − z′′‖. (7)

We claim that

δ(b, ξ0) = lim
t→0+
ξ→ξ0

1

t
d(b, b+ tξ). (8)



138 11th Seminar on Mathematical Analysis and Its Applications

Choose M and r as above. Then for 0 < t < (r/2)/(‖ξ0‖ + r/2) and

ξ ∈ Br/2(ξ0) we have ‖b+ tξ − b‖ < r/2. Hence, by (7),

d(b+ tξ0, b+ tξ) ≤Mt‖ξ − ξ0‖.

Therefore,

d(b, b+ tξ) ≤ d(b, b + tξ0) + d(b+ tξ0, b+ tξ)

≤ d(b, b + tξ0) +Mt‖ξ − ξ0‖.

Similarly,

d(b, b+ tξ0) ≤ d(b, b+ tξ0) +Mt‖ξ − ξ0‖. (9)

Applying the previous theorem we have,

lim
t→0+

ξ→ξ0

1

t
d(b, b + tξ) = lim

t→0+

1

t
d(b, b+ tξ0) = δ(b, ξ0). (10)

Hence our claim in (8) is proved. With the help of this fact, for a ∈ Ω1

and ξ ∈ C
m we have,

lim
t→0+

1

t
d(f(a), f(a+ tξ)) = lim

t→0+

1

t
d(f(a), f(a) + t(f ′(a)ξ + o(1 ))),

= δ(f(a), f ′(a)ξ).

Theorem 2.3. Let M and N be hyperbolic and Hermitian manifolds,

respectively. Then the function f �−→ ‖f ′‖ from the class of holomorphic

bounded expansion mappings E(M,N) equipped with the compact open

topology to R is lower semicontinuous.

Proof. Let {fn} be a sequence in E(M,N) which converges to a holo-

morphic mapping f uniformly on compact subsets of M . Let {‖f ′nk
‖}
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be a subsequence of {‖f ′n‖} converging to α. For a given ε > 0 and

p, q ∈M , p �= q, there exists nε ∈ N such that for nk > nε we have

| ‖f ′nk
‖ − α| < ε

2KM (p, q)
, (11)

and

dN (fnk
(p), f(p)) ≤ ε/4, dN (fnk

(q), f(q)) ≤ ε/4. (12)

On the other hand, since for each n ∈ N, fn ∈ N (M,N), according

to the definitions of ‖f ′n(x)‖ and ‖f ′n‖, for each x ∈M and ξ ∈ C
m

hN (fn(x), f
′
n(x)ξ) ≤ ‖f ′n‖kM (x, ξ).

By integrating along any C1 curve connecting p to q, we have

dN (fn(p), fn(q)) ≤ ‖f ′n‖KM (p, q).

Hence employing (11) and (12), for nk > nε we obtain

dN (f(p), f(q)) ≤ dN (f(p), fnk
(p)) + dN (fnk

(p), fnk
(q))

+ dN (fnk
(q), f(q))

≤ ε/2 + ‖f ′nk
‖KM (p, q) < ε+ αKM (p, q).

Therefore

dN (f(p), f(q)) ≤ αKM (p, q). (13)

Now applying Lemma 2.2 and also the first part of Theorem 2.1 locally,

for each p ∈M and each ξ ∈ C
m, we have

hN (f(p), f ′(p)ξ) = lim
t→0+

1

t
dN (f(p), f(p + tξ))

≤ α lim sup
t→0+

1

t
KM (p, p+ tξ)

≤ αkM (p, ξ).

It follows that f ∈ E(M,N) and ‖f ′‖ ≤ α. The assertion is thus proved.
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Abstract. Let X be a hemicompact space with (Kn) as an ad-

missible exhaustion and let (An, ‖.‖n) be a sequence of Banach

function algebras such that An ⊆ C(Kn) and An+1|Kn ⊆ An and

‖f |Kn‖n ≤ ‖f‖n+1, n ∈ N, f ∈ An+1. We define a new algebra

A = {f ∈ C(X) : f |Kn ∈ An, n ∈ N} and show that if A separates

the points of X then it is a Fréchet function algebra on X under

some topology. In the case that each An is natural we give a result

related to the spectrum of A. We also show that if X is a hemi-

compact noncompact space then a closed subalgebra of A can not

be normable as a regular Banach function algebra. As an applica-

tion of the results the Lipschitz algebra of infinitely differentiable

functions is considered.

1. Introduction

Let X be a compact Hausdorff space. We denote the algebra of all

continuous functions on X by C(X) and the uniform norm of f ∈ C(X)

by ‖f‖X . A subalgebra of C(X) which contains the constants and sep-

arates the points of X and is a Banach algebra under a norm is called

a Banach function algebra on X. The uniform norm of an element in a

2000 Mathematics Subject Classification. Primary 46J10 ; Secondary 46M40
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Banach function algebra does not exceed from its norm. If the norm of

a Banach function algebra is equivalent to the uniform norm then it is

called a uniform (Banach) algebra.

A topological algebra is called a locally multiplicatively convex algebra

(LMC-algebra) if there is a local basis (Uα) of convex neighborhoods of

the origin such that each Uα is submultiplicative (that is Uα.Uα ⊆ Uα).

A topological algebra A is called a Q-algebra if the set of quasi-regular

elements of A is open in A. This is equivalent to say that the set of all

quasi-regular elements of A has an interior [1].

By a Fréchet algebra we mean an LMC-algebra which is moreover

complete and metrizable. So the topology of a Fréchet algebra can be

defined by a sequence (pn) of separating, submultiplicative seminorms

on it (pn(fg) ≤ pn(f)pn(g), f, g ∈ A). Without loss of generality we

can assume that pn ≤ pn+1 and pn(1) = 1, if A has unit. We denote a

Fréchet algebra A with this sequence of seminorms by (A, (pn)).

In this paper we assume that all algebras are unital.

Let (A, (pn)) be a commutative Fréchet algebra. The set of all non-

zero complex homomorphisms on A is denoted by SA and the spectrum

of A, denoted by MA, is the set of all non-zero continuous complex

homomorphisms on A, and for every f ∈ A, f̂ : SA −→ C, ψ �−→ ψ(f) is

the Gelfand transform of f and Â = {f̂ |MA
: f ∈ A}. We always endow

SA or MA with the Gelfand topology. The Fréchet algebra A is called

functionally continuous if MA = SA. As we know MB = SB for any

Banach algebra B. But it is unanswered whether or not each Fréchet

algebra is functionally continuous (Michael’s problem).

When B is a Banach function algebra on X we can consider X as a

subset of MB through the map J : X −→MB , x �−→ ϕx where ϕx is the

evaluation homomorphism at x. We say that B is natural if J is onto

(and hence a homeomorphism).
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Let (A, (pn)) be a Fréchet algebra. It is a classical result that A

can be represented as a projective limit of a sequence of Banach alge-

bras. That is, there exists a sequence of Banach algebras (An, ‖.‖n)
and continuous algebra homomorphisms ϕn : An+1 −→ An, n ∈ N, with

dense ranges such that A = lim←− An topologically and algebraically where

the projective limit lim←− An = {(fn)n ∈ ΠAn : ϕn(fn+1) = fn, n ∈ N}
is endowed with the coordinatewise operations and the relative prod-

uct topology. Indeed each An can be considered as the completion

of A/ ker pn with respect to the norm p′n(f + ker pn) = pn(f). More-

over MA =
⋃
MAn (as sets) or more precisely MA =

⋃
π∗n(MAn) where

πn : A −→ An, a �−→ a + ker pn and π∗n : MAn −→ MA defined by

π∗n(ϕ) = ϕ ◦ πn is a homeomorphism onto its image. For more details

one can refer to [3].

A Hausdorff space X is called hemicompact if there exists a sequence

(Kn) of increasing compact subsets of X such that each compact subset

of X is contained in some Kn. The sequence (Kn) with the above

property is called an admissible exhaustion of X.

A Hausdorff space X is said to be a k-space if every subset intersecting

each compact subset in a closed set is itself closed. So a function defined

on a k-space X is continuous if and only if it is continuous on each

compact subset of X.

Definition 1.1. A commutative Fréchet algebra A is called a uni-

form Fréchet algebra (uF-algebra) if there exists a generating sequence

of submultiplicative seminorms (pn) for its topology such that pn(f
2) =

pn(f)
2, for all f ∈ A and n ∈ N.

Clearly each uniform (Banach) algebra is a uF-algebra.

If X is a hemicompact k-space and (Kn) an admissible exhaustion of

X then C(X) is a uF-algebra under the compact-open topology which is
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the topology generated by the sequence of the seminorms (‖.‖Kn)n and

C(X) = lim←− C(Kn).

If (A, (pn)) is a commutative Fréchet algebra and (An) is a sequence

of Banach algebras such that A = lim←− An then MA is a hemicompact

space and (MAn) is an admissible exhaustion of MA [3]. But there is an

example which shows that in general MA is not a k-space [3].

If (A, (pn)) is a uF-algebra then by identifying A with Â, where Â

is endowed with the relative compact-open topology, we can consider

A as a point separating and complete subalgebra of C(X) which also

contains the constants. Moreover in this case A is the projective limit

of a sequence of uniform (Banach) algebras [3].

Clearly when A is a uF-algebra, each evaluation homomorphism ϕx :

A −→ C, f �−→ f(x) is continuous and the structure map J : X −→
MA, x �−→ ϕx is injective and continuous.

Definition 1.2. Let X be a hemicompact space and A a subalgebra

of C(X) which contains the constants and separates the points of X.

We call A a Fréchet function algebra (Ff-algebra) on X if it is a Fréchet

algebra with respect to some topology such that for every x ∈ X the

evaluation homomorphism at x is continuous, that is ϕx ∈MA, x ∈ X.

Remark. (a) Clearly each Ff-algebra is a commutative (unital)

semisimple Fréchet algebra. Conversely if (A, (pn)) is a commutative

(unital) semisimple Fréchet algebra then by identifying (A, (pn)) with

Fréchet algebra (Â, (p̂n)), where p̂n(f̂) = pn(f), f ∈ A, we can consider

A as an Ff-algebra on its spectrum. So indeed the class of Ff-algebras

and the class of commutative (unital) semisimple Fréchet algebras are

the same.

(b) Each uF-algebra and each Banach function algebra is an Ff-

algebra.
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Let (A, (pn)) be an Ff-algebra on X and for each n ∈ N, An be the

completion of A/ ker pn with respect to the norm p′n(f+ker pn) = pn(f).

Then MAm = {ϕ ∈ MA : |ϕ(f)| ≤ pm(f), f ∈ A}, m ∈ N and (MAm) is

an admissible exhaustion of MA [3]. Now since J : X −→MA, x �−→ ϕx

is continuous (and injective) {ϕ(x) : x ∈ Kn} is a compact subset of

MA, for each n ∈ N, and so there exists some m such that {ϕx : x ∈
Kn} ⊆MAm . Therefore

‖f‖Kn = sup
x∈Kn

|ϕx(f)| ≤ sup
ϕ∈MAm

|ϕ(f)| ≤ ‖f̂‖MAm
≤ pm(f) (f ∈ A). (1)

For n ∈ N, let i(n) ≥ n be the smallest integer that ‖f‖Kn ≤ pi(n)(f)

holds for all f ∈ A and define p′′n on A|Kn by

p′′n(f |Kn) = inf{pi(n)(g) : g|Kn = f |Kn , g ∈ A} (f ∈ A).

Then p′′n is an algebra norm on A|Kn . Let AKn be the completion of

A|Kn with respect to the norm p′′n. Then we have the following theorem:

Theorem 1.3. [6] Let (A, (pn)) be an Ff-algebra on X, and (Kn)

be an admissible exhaustion of X and the sequence (AKn) be defined

as above. Then (AKn) is a sequence of Banach algebras, where each

AKn contains A|Kn ⊆ C(Kn) as a dense subalgebra and A is dense

in lim←− AKn . Moreover if for each n ∈ N, ker qn ⊆ ker pi(n), where

qn is defined by qn(f) = ‖f‖Kn, then A = lim←− AKn (topologically and

algebraically).

Theorem 1.4. [6] Let (A, (pn)) and (B, (qn)) be Ff-algebras on hemi-

compact spaces X and Y , respectively, and let T : (A, (pn)) −→ (B, (qn))

be a continuous monomorphism with a dense range. Then the continu-

ous and injective adjoint spectral map T ∗ : MB −→ MA, ψ �−→ ψ ◦ T is

surjective and proper (that is the inverse image of each compact set is

compact) if and only if for each m there exists some n such that

‖f̂‖MAm
≤ qn(T (f)) (f ∈ A).
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2. Main results

As we mentioned before each uF-algebra is a projective limit of a

sequence of uniform (Banach) algebras. There is an example which

shows that in general a commutative semisimple Fréchet algebra with

unit (which we called it an Ff-algebra) can not be represented as a

projective limit of a sequence of Banach function algebras [5]. In the

following we consider special Fréchet function algebras such that they

can be represented as projective limits of sequences of Banach function

algebras and obtain a result related to their spectrums.

Let X be a hemicompact space and (Kn) an admissible exhaustion

of X. Let (An) be a sequence of Banach function algebras such that for

each n ∈ N, An is a Banach function algebra on Kn with respect to ‖.‖n
and An+1|Kn ⊆ An and ‖f |Kn‖n ≤ ‖f‖n+1 for all f ∈ An+1. Now define

a subalgebra A of C(X) as follows:

A = {f ∈ C(X) : f |Kn ∈ An, n ∈ N}.

Clearly A contains the constants and for each n ∈ N,

pn(f) = ‖f |Kn‖n, f ∈ A

defines a submultiplicative seminorm on A. It is straightforward to

check that A is a Fréchet algebra with respect to the topology defined

by the sequence (pn) of seminorms. Moreover for each x ∈ X, ϕx, the

evaluation map at x is continuous. So if A separates the points of X,

then it will be an Ff-algebra on X.

Note that when X is compact and each An is inverse closed, that is

1/f ∈ An if f ∈ An and f(x) 
= 0 for all x ∈ Kn, then we can verify

easily that A is a Q-algebra. Because clearly A is also inverse closed and

for some N , Kn = X, for n ≥ N . If we set G = {f ∈ A : 1 + f ∈ A−1},
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where A−1 is the set of all invertible elements of A, then G has an interior

point. For example the open neighborhood V = {f ∈ A : pN (f) < 1/2}
of the origin is contained in G. Because if f ∈ V then since the norm

of a Banach function algebra is greater than the uniform norm we have

‖f‖X ≤ ‖f |KN
‖N = pN (f) < 1/2 and so (1 + f)(x) 
= 0, for all x ∈ X

and since A is inverse closed 1 + f ∈ A, that is f ∈ G.

Theorem 2.1. Let X be a hemicompact space and (An, ‖.‖n) and

(A, (pn)) be as above. Suppose that the algebra A separates the points of

X and for each n, An is natural. If (B, (qn)) is an Ff-algebra on X which

contains A as a dense subalgebra and the identity map I : (A, (pn)) −→
(B, (qn)) is continuous then MA =MB (as sets).

Proof. For n ∈ N let i(n) and p′′n and AKn be defined as in Theorem

1.3. We notice that here i(n) = n and if n ∈ N and f, g ∈ A and

f |Kn = g|Kn then ‖(f − g)|Kn‖n = pn(f − g) = 0. So pn(f) = pn(g).

This shows that p′′n(f |Kn) = pn(f) = ‖f |Kn‖n, f ∈ A, and so AKn is

indeed the closure of A|Kn in the Banach function algebra (An, ‖.‖n).
Therefore in this case each AKn is a Banach function algebra on Kn and

A = lim←− AKn by Theorem 1.3.

Now since I is a continuous monomorphism with a dense range I∗ :

MB −→MA defined by I∗(ϕ) = ϕ|A, ϕ ∈MB , is an injective continuous

map. Let m ∈ N and f ∈ A then

‖f̂‖MAKm
= rAKm

(f |Km) = rAm(f |Km) = ‖f‖Km ,

where rAm(f |Km) is the spectral radius of f |Km in Am and the last

equality is a consequence of the naturality of Am. On the other hand

since (B, (qn)) is an Ff-algebra on X for each m ∈ N there exists some

n ∈ N such that

‖f‖Km ≤ ‖f̂‖MBn
≤ qn(f) (f ∈ B)
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where Bn is the completion of B/ ker qn with respect to the norm q′n(f+

ker qn) = qn(f), f ∈ B (see inequality (1)). So by Theorem 1.4 I∗ is also

surjective ( and proper). Therefore MA =MB as sets.

Remarks. (a) In the above theorem if MA is a k-space then since I∗

is a proper map the restriction of I∗−1
to each compact subset of MA is

continuous and so I∗−1
is continuous on MA. Hence in this case MA is

homeomorhic to MB .

(b) The naturality of An in the above theorem can not be omitted.

For example let X = [0, 1] and Kn = X and An = A(D̄)|[−1,1], n ∈ N,

where D̄ is the closed unit disk in C and A(D̄) is the uniform (Banach)

algebra of continuous functions on D̄ which are analytic on D. For each

f ∈ An there is a unique g ∈ A(D̄) such that g|[−1,1] = f . Define

‖f‖n = ‖g‖D̄ . Then clearly A = {f ∈ C(X) : f |Kn ∈ An} = A(D̄)|[−1,1]
and MA = D̄ and A is dense in C([−1, 1]) but MC([−1,1]) = [−1, 1]

Theorem 2.2 Let X be a hemicompact non-compact space with (Kn)

as an admissible exhaustion. Let (An, ‖.‖n) and (A, (pn)) be as in the

beginning of this section and A separates the points of X. If B is a

closed subalgebra of the Ff-algebra (A, (pn)) then B can not be normable

as a regular Banach algebra.

Proof. Let ‖.‖ be a norm on B such that (B, ‖.‖) is a regular Ba-

nach algebra on MB. Since B is closed in A, (B, (pn)) is a commutative

semisimple Fréchet algebra. By the Carpenter’s theorem (each commu-

tative semisimple Fréchet algebra has a unique topology as a Fréchet

algebra) [3] the identity map I : (B, ‖.‖) −→ (B, (pn)) is a homeomor-

phism. So there exists some n0 ∈ N and a constant M such that

‖f‖ ≤M.pn0(f) (2)

holds for all f ∈ B.
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Choose an x ∈ X\Kn0 (this is possible because X is non-compact).

Then by the compactness of Kn0 in X and hence in MB and the reg-

ularity of B on MB there exists an f ∈ B such that f̂(ϕx) = 1 and

f̂(ϕy) = 0, for all y ∈ Kn0 , that is f(x) = 1 and f |Kn0
= 0. Therefore

pn0(f) = 0. Now inequality (2) implies that ‖f‖ = 0 and hence f = 0

as an element of B which is a contradiction.

Example 2.3. Let (X, d) be a metric space and let 0 < α ≤ 1. The

collection of all (complex) bounded Lipschitz functions of order α on X

is denoted by Lip(X,α). It is well-known that Lip(X,α) with respect

to pointwise multiplication is a Banach algebra under the norm ‖.‖α
defined by

‖f‖α = ‖f‖X + pα(f) (f ∈ Lip(X,α)),

where pα(f) = supx �=y
|f(x)−f(y)|
dα(x,y) and ‖f‖X = supx∈X |f(x)| [7].

Now let X be a hemicompact metric space and (Kn) an admissible

exhaustion of X and let 0 < α ≤ 1. Set An = Lip(Kn, α) and

‖f‖n = ‖f‖Kn + sup
x,y∈Kn

x �=y

|f(x)− f(y)|
dα(x, y)

(f ∈ An).

Clearly An+1|Kn ⊆ An and ‖f |Kn‖n ≤ ‖f‖n+1, f ∈ An+1. So by the

above arguments A = {f ∈ C(X) : f |Kn ∈ Lip(Kn, α), n ∈ N} is an Ff-

algebra on X with respect to the topology defined by the sequence (pn)

of seminorms on it, where pn(f) = ‖f |Kn‖n, n ∈ N and f ∈ A. Notice

that here A separates the points of X. Using Proposition 1.4 in [7] It is

easy to see that A is dense in C(X) in the compact-open topology. So

by Theorem 2.1 MA =MC(X) = X.

Example 2.4. Let 0 < α ≤ 1 and X be a perfect compact plane set

which is a finite union of regular sets. By a regular set we mean a perfect

compact plane set Y which is connected by rectifiable arcs and for each

point z0 ∈ Y there exists a constant c ≥ 1 such that δ(z, z0) ≤ c|z − z0|,
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for every z ∈ Y , in which δ is the geodesic metric on Y that is δ(z, z0)

is the infimum of the lengths of the rectifiable arcs joining z to z0.

Let n ∈ N. The algebra of all functions f on X which are n-times

differentiable and for each k, 0 ≤ k ≤ n, f (k) ∈ C(X) (f (k) ∈ Lip(X,α))

is denoted by Dn(X) (resp. Lipn(X,α)) and the algebra of all functions

f with derivatives of all orders (f (k) ∈ Lip(X,α), for all k), is denoted

by D∞(X) (resp. Lip∞(X,α)).

It is well known that for each n, Dn(X) and Lipn(X,α) are natural

Banach function algebras on X under the norms defined by

‖f‖n =
n∑

k=0

‖f (k)‖X
k!

and

‖f‖n =
n∑

k=0

‖f (k)‖X + pα(f
(k))

k!

respectively, where as before

pα(f
(k)) = sup

x,y∈X
x �=y

|f (k)(x)− f (k)(y)|
dα(x, y)

,

(see [2] and [4]).

Now for each n ∈ N set Kn = X and An = Dn(X) (An = Lipn(X,α)).

Then in this case A = {f ∈ C(X) : f |Kn ∈ An, n ∈ N} = D∞(X) (A =

Lip∞(X,α)) =
⋂
An and (A, (‖.‖n)) is an Ff-algebra on X. Moreover

we have the following inclusions:

R0(X) ⊆ Lip∞(X,α) ⊆ Lipn(X,α) ⊆ Dn(X) ⊆ D1(X),

where R0(X) is the algebra of all rational functions with poles off X

and D1(X) ⊆ R(X), the uniform closure of R0(X) [2]. Therefore A is

dense in R(X) and since each An is natural we have MA =MR(X) = X

by theorem 2.1. Indeed by the compactness of X, MA is homeomorphic

to X.
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Remark. (a) It is interesting to notify that the algebra A defined

in Example 2.3 is not in general a Banach algebra. Indeed it will be a

Banach algebra iff X is compact.

(b) In Example 2.4 the algebras Lip∞(X,α) and D∞(X) are Q-

algebras. Because in either case each An is inverse closed. Moreover

there is no topology which makes these algebras to the Banach function

algebras because f �−→ f ′ defines a nontrivial derivation.
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A COMPARISON BETWEEN C∗(N+) AND C∗r (N+)
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Abstract. By a well-known theorem in the theory of C∗-algebras

(cf. [2, Theorem 7.7.7]) if G is an amenable group then C∗(G) ∼=
C∗

r (G). Here we will prove that the above theorem is not valid for

the semigroup N+.

Introduction

In [4] we defined the C∗-algebra of N+, C∗(N+); and that is the C∗-

algebra generated by

V ⊕ S ⊕ S∗ ⊕
∞⊕
k=2

Nk.

In this paper we will determine the minimal ideals of C∗(S⊕S∗), and
will prove that

C∗r (N
+) �= C∗(N+).

Throughout this paper we assume that S is the unilateral shift operator

and S∗, the adjoint of S is the backward shift operator.

We start with the following lemma.

1.1 Lemma. The C∗-algebra C∗(S ⊕ S∗) has a nontrivial closed two-

sided ideal.

Proof. The following simple calculations show that

(K ⊕K) ∩ C∗(S ⊕ S∗)
153
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is non empty.

(S ⊕ S∗)∗(S ⊕ S∗)− (S ⊕ S∗)(S ⊕ S∗)∗ ∈ C∗(S ⊕ S∗).

On the other hand by section 2.6 of [1] we have

(S ⊕ S∗)∗(S ⊕ S∗)− (S ⊕ S∗)(S ⊕ S∗)∗ = (S∗S ⊕ SS∗)− (SS∗ ⊕ S∗S)

= (S∗S − SS∗)⊕ (SS∗ − S∗S),

since

(S∗S − SS∗)⊕ (SS∗ − S∗S) = P0 ⊕ (−P0) ∈ K ⊕K

where K is the ideal of all compact operators on �2(Z+), we see that

P0 ⊕ (−P0) ∈ (K ⊕K) ∩ C∗(S ⊕ S∗).

Therefore at least (K⊕K)∩C∗(S⊕S∗) is a nontrivial closed two-sided

ideal in C∗(S ⊕ S∗). �

The following lemma is quite useful for our purpose.

1.2 Lemma. If J is a nontrivial closed two-sided ideal in C∗(S ⊕ S∗)

then

P0 ⊕ 0 ∈ J or 0⊕ P0 ∈ J.

Proof. For m ≥ 0 we have

(S ⊕ S∗)m(P0 ⊕ (−P0))((S ⊕ S∗)∗)m = SmP0(S
∗)m ⊕ (S∗)m(−P0)S

m

= Pm ⊕ 0 ∈ C∗(S ⊕ S∗)

and

((S ⊕ S∗)∗)m(−P0 ⊕ P0)(S ⊕ S∗)m = (S∗)m(−P0)S
m ⊕ SmP0(S

∗)m

= 0⊕ Pm ∈ C∗(S ⊕ S∗).

Now let J be a nontrivial closed two-sided ideal in C∗(S⊕S∗). Hence
there exists a non-zero element, say C, in J . Let C = A⊕B. If A �= 0,
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then for some N ≥ 0 we have AδN �= 0. Since A ⊕ B ∈ J, PN ⊕ 0 ∈
C∗(S ⊕ S∗) and J is an ideal we see that

(PN ⊕ 0)(A ⊕B)∗(A⊕B)(PN ⊕ 0) = PNA
∗APN ⊕ 0 ∈ J.

Now if x ∈ �2(Z+), then

(PNA
∗APN ⊕ 0)(x⊕ 0) = PNA

∗APNx

=

∞∑
i=1

< PNA
∗Ax, δi > δi =< PNA

∗AδN , δN > δN

= < AδN , AδN > δN = ||AδN ||2PNx

= ||AδN ||2(PN ⊕ 0)(x⊕ 0)

i.e.,

PNA
∗APN ⊕ 0 = PN ⊕ 0

Hence

PN ⊕ 0 ∈ J.

Thus

((S ⊕ S∗)∗)N (PN ⊕ 0)(S ⊕ S∗)N = (S∗)NPNS
N ⊕ 0 = P0 ⊕ 0 ∈ J.

If B �= 0 similar argument shows that

0⊕ P0 ∈ J.

This completes the proof. �

The following theorem determines the minimal ideals of C∗(S⊕S∗).

1.3 Theorem. K⊕0 and 0⊕K are two minimal closed two-sided ideals

in C∗(S ⊕ S∗).

Proof. Let J be a nontrivial closed two-sided ideal in C∗(S ⊕ S∗).

Since S and S∗ have cyclic vectors by an argument similar to the proof
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of lemma 3 of [3] we see that J contains either all operators of the form

Ty,z ⊕ 0 or all operators of the form

0⊕ Ty,z

where y, z ∈ �2(Z+), and

Ty,z(x) =< x, y > z.

Since K is the norm closure of the ideal of all finite rank operators, we

see that either K ⊕ 0 ⊆ J or 0 ⊕ K ⊆ J . Since J was arbitrary, the

theorem is proved. �

Now it is time for making a comparison between the reduced C∗-

algebra of N+ and the full C∗-algebra of N+ and get an important

conclusion.

1.4 Corollary. C∗r (N+) �= C∗(N+).

Proof. C∗(N+) = C∗(V ⊕ S ⊕ S∗ ⊕⊕∞k=2Nk). Hence C∗(N+) is a

C∗-subalgebra of B(H) where H = HV ⊕HS ⊕HS∗ ⊕⊕∞k=2HNk
. The

inclusion mapping from C∗(N+) into B(H) is a faithful representation

of C∗(N+) on H. For each A ∈ C∗(N+), the mapping

A→ A|HS⊕HS∗ : C∗(N+) → B(HS ⊕HS∗)

is a representation of C∗(N+) on HS ⊕HS∗. By this representation the

generator of C∗(N+) is mapped to S ⊕ S∗. Hence

C∗(S ⊕ S∗) ∼= a quotient ofC∗(N+).(∗)

By theorem 1.3 the left hand side of (*), and consequently C∗(N+) has

at least two minimal ideals. Since by theorem 4 of [3], C∗r (N+) has a

unique minimal ideal, the proof is complete. �
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We can summarize the result of this section in the following conclu-

sion.

1.5 Conclusion. The well known theorem ([2, theorem 7.7.7]) which

says that, if G is an amenable group, then

C∗r (G) ∼= C∗(G)

does not hold for the amenable semigroup N+.
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THEOREM IN THE DIRICHLET SPACE
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Abstract. Let G be a finitely connected domain and D(G) be the

Dirichlet space. If {wn} is a sequence in G such that |wn| → ∂G,

then there exists subsequence {wnk} of {wn} such that for a given

sequence {ak}k in �∞ we can find a function f in D(G) satisfying

f(wnk ) = ak||kwnk
||.

Introduction

Let G be a domain in the complex plane. The Dirichlet space D(G)

is the Hilbert space of functions f analytic on G whose derivative f ′ is

square integrable. Fixing a “base point” w in G, we define a norm for

D(G) by

||f ||2D(G) = |f(w)|2 +
∫
G
|f ′|2dA.

The norms obtained by two different base points are equivalent. Let G

be the open unit disk U and f(z) =
∞∑
n=0

anz
n ∈ D(U), then

||f ||2D(U) = |f(0)|2 +
∫
U
|f ′|dA = |a0|2 + π

∞∑
n=1

n|an|2.

So D(U) is a subset of the Hardy space H2 and the radial limit function

of f is defined almost everywhere on ∂U .

It is well known that if λ is a point of G, then the linear functional

of evaluation at λ, eλ : f → f(λ) is norm continuous on D(G). Hence
159



160 11th Seminar on Mathematical Analysis and Its Applications

to each point λ ∈ G there corresponds a function kλ in D(G) such

that f(λ) =< f, kλ > for all f ∈ D(G). The function kλ is called the

reproducing kernel for the space D(G) at the point λ. So convergence

in D(G) implies uniform convergence on compact subsets of G.

If ϕ is a function analytic onG with the property that ϕD(G) ⊆ D(G),

then ϕ is called a multiplier for D(G). The algebra of all multipli-

ers for D(G) is denoted by M(D(G)). Since D(G) contains constants,

M(D(G)) ⊂ D(G). Every multiplier ϕ induce a linear transformation

Mϕ : D(G) −→ D(G) defined by Mϕf = ϕf for all f in D(G). By the

closed graph theorem and the continuity of the linear functionals of eval-

uation at points in G, one can see that Mϕ is a bounded linear operator

and ϕ is a bounded function, with ||ϕ||∞ ≤ ||Mϕ|| where ||.||∞ is the

supremum norm on G. ThusM(D(G)) ⊆ D(G)∩H∞(G) where H∞(G)

denotes the algebra of all bounded analytic functions in G. Since the

function z is in M(D(U)) thus every function analytic in Ū is a multi-

plier for D(U). It is proved that if ϕ is a nonconstant function analytic

on Ū , then ||ϕ||∞ < ||Mϕ||. So Mz can not be a contraction, since else

it should be ||Mϕ|| = ||ϕ||∞ for all ϕ in M(D(U)).

Main Result

First we give the Rosenthal-Dor theorem that we need it for the proof

of our main theorem.

Rosenthal-Dor Theorem: Suppose E is a Banach space and {en}
is a bounded sequence in E. Then there exists a subsequence {enk

} such

that either

i) the map {ak}∞k=1 −→
∞∑
k=1

akenk
is an isomorphism of �1 into E,

or
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ii) lim
k
ϕ(enk

) exists for every ϕ ∈ E∗.

Proof. See [3] and [4].

Theorem. Suppose {wn} is a sequence in U such that |wn| −→ 1. Then

for some subsequence {wnk
} we have �∞ = {{ f(wnk

)

||kwnk
||}k : f ∈ D(U)}.

Proof. Put en = kwn
||kwn || for all n ∈ N. Then {en}n is a bounded se-

quence in D(U). Let {enk
} promised by the Rosenthal-Dor theorem, and

suppose that case (i) of the theorem holds. Let T denote the isomor-

phism from �1 into D(G) given by case (i) of the Rosenthal-Dor theorem.

Because T is one to one and has closed range, the dual T ∗ maps D(U)∗

onto �∞. By the Riesze Representation theorem D(U)∗ = D(U). In-

deed D(U)∗ = {Lf : f ∈ D(U)} where Lf : D(U) −→ C is defined

by Lf (g) =< g, f > for all g in D(U). Now let a = {an} ∈ �∞. So

ā = {ān}n ∈ �∞. Since T ∗ is onto, there exists Lf ∈ D(U)∗ such that

T ∗Lf = ā. Recall that T ∗Lf = Lf ◦T . So Lf ◦T = ā. Apply both sides

of the equation Lf ◦ T = ā to the vector in �1 that is 0 except for a 1 in

the kth coordinate, getting Lfenk
= āk for every k. Thus

āk = Lfenk
=< enk

, f >

= <
kwnk

||kwnk
|| , f >=

f(wnk
)

||kwnk
||

for all k and so
f(wnk

)

||kwnk
|| = ak for all k. Therefore

�∞ ⊆ {{ f(wnk
)

||kwnk
||}k : f ∈ D(U)},

if we can prove that case (ii) of the Rosenthal-Dor theorem never holds.

We will find h in D(U) such that lim
k
Lh(enk

) does not exist: By propo-

sition 4 of [1], there exists ϕ ∈M(D(U)) such that ϕ(wnk
) = (−1)k and

so lim
k
ϕ(wnk

) does not exist. For suitable choices of θk, e
−iθkwnk is a
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positive real number for all k. Now consider the sequence {an} of pos-

itive real numbers such that
∑
n
na2n is finite. Put ψ(z) =

∞∑
k=0

ake
−iθkzk .

Then ψ ∈ D(U) and ψ(wnk
) is a positive real number. Define h = ϕψ.

Since ϕ ∈M(D(U)), h = ϕψ ∈ D(U) and we have:

Ln(enk
) =

h(wnk
)

||kwnk
|| =

ϕ(wnk
)ψ(wnk

)

||kwnk
||

= (−1)k
ψ(wnk

)

||kwnk
|| .

But

0 ≤ ψ(wnk
)

||kwnk
|| =

< ψ, kwnk
>

||kwnk
|| ≤ ||ψ|| (∀k) .

So lim
k
Ln(enk

) does not exist. This completes the proof.

Consider the circular domain G = U\K1∪· · ·∪KN where K1 = D̄i =

{z : |z−zi| ≤ ri} (i = 1, . . . , N) are disjoint closed subdisks of the open

unit disk U . Put Gi = C ∪ {∞}\Ki (i = 1, . . . , N). Then it is proved

that:

D(G) = D(U) +D0(G1) + · · ·+D0(GN )

where D0(Gi) = D(Gi) ∩ H0(Gi) and H0(Gi) denotes the space of all

functions in H(Gi) that vanishes at ∞ ([2]).

The above theorem can be extended for the case of circular domain

instead of the unit disk:

Theorem. Let {wn} be a sequence in the circular domain G such

that |wn| → ri for some 0 ≤ i ≤ N (G0 = U) . Then there exists a

subsequence {wnk
} such that

�∞ = {{ f(wnk
)

||kwnk
||}k : f ∈ D(G)}.
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Abstract. Let {β(n)}∞n=0 be a sequence of positive numbers and

1 ≤ p < ∞. We consider the space �p(β) of all power series f(z) =
∞∑

n=0

f̂(n)zn such that
∞∑

n=0

|f̂(n)|p|β(n)|p < ∞. We give a necessary

and sufficient condition for a polynomial to be cyclic in �p(β).

Introduction

First in the following, we generalize the definition coming in [1].

Let {β(n)} be a sequence of nonzero complex numbers with

β(0) = 1 and 1 ≤ p < ∞. We consider the space of sequences f =

{f̂(n)}∞n=0 such that

||f ||p = ||f ||pβ =

∞∑
n=0

|f̂(n)|p|β(n)|p <∞.

The notation f(z) =
∞∑
n=0

f̂(n)zn shall be used whether or not the series

converges for any value of z. These are called formal power series. Let

�p(β) denote the space of such formal power series. These are Banach

spaces with the norm ||.||β .
Let f̂k(n) = δnk. So fk(z) = zk and then {fk}k is a basis such that

||fk|| = |β(k)|. Now consider Mz, the operator of multiplication by z on

�p(β):

(Mzf)(z) =

∞∑
n=0

f̂(n)zn+1.

165
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In otherwords

(Mz f̂)(n) =

{
f̂(n− 1) n ≥ 1

0 n = 0

ClearlyMz shifts the basis {fk}k. The operator Mz is bounded if and

only if {β(k + 1)/β(k)}k is bounded and in this case

||Mm
z || = sup

k
|β(n + k)

β(k)
|, n = 0, 1, 2, · · · .

Consider the multiplication of formal power series, fg = h given by( ∞∑
n=0

f̂(n)zn

)
.

( ∞∑
n=0

ĝ(n)zn

)
=
∞∑
n=0

ĥ(n)zn

where

ĥ(n) =
n∑

k=0

f̂(k)ĝ(n− k), n = 0, 1, 2, · · ·

If 1
p +

1
q = 1 and

sup
n

n∑
i=1

| β(n)

β(i)β(n − i)
|q <∞

then clearly by the Holder’s inequality one can see that �p(β) is a

Banach algebra.

If f ∈ �p(β) and P (z) is a polynomial, then to the vector P (Mz)f

there corresponds the formal power series P (z)f(z).

Let X be a Banach space. We denote by B(X), the set of bounded

operators on the Banach space X. Let A ∈ B(X) and x ∈ X. We say

that x is a cyclic vector of A if

X = span{Anx : n = 0, 1, 2, · · · }.

Here span{.} is the closed linear span of the set {.}. We investigate

the cyclicity of a polynomial in �p(β).
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Main Result

Remember that if λ is a complex number, then eλ denotes the

functional of “evaluation at λ”, defined on polynomials by

eλ(P ) = P (λ),

and also λ is said to be a bounded point evaluation on �p(β) if the

functional eλ extends to a bounded linear functional on �p(β). In this

case we use f(λ) to denote eλ(f) for f in �p(β), see [1] for the case

p = 2. Since the polynomials are dense in �p(β), this is equivalent to

the existence of a constant c > 0 such that |eλ(P )| ≤ c||P ||p for all

polynomials P .

For 1 < p <∞, �p(β) ∼= Lp(μ) where μ is the σ-finite measure defined

on the positive integers by μ(K) =
∑
n∈k

(β(n))p,K ⊆ N ∩ {0}. So �p(β)

is a reflexive Banach space.

Theorem 1. The zeros of a polynomial P are not bounded point eval-

uations on �p(β) if and only if P is cyclic.

Proof. Assume that P (z) = (z−λ1)(z−λ2) · · · (z−λm) and λ′is are not

bounded point evaluations on �p(β). Let 1 ≤ i ≤ m and L ∈ (�p(β))∗ be

such that

L(zn(z − λi)) = 0, n = 0, 1, 2, · · ·

Since (�p(β))∗ = �q(βp/q) (see[2]), there exists unique element g ∈
�q(βp/q) such that for all f ∈ �p(β) we have

L

(∑
n

f̂(n)zn

)
=
∑
n

f̂(n)ĝ(n)β(n)(β(n))
p/q
.
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Now we have

0 = L(zn−1(z − λi)) = L(zn − λiz
n−1)

= ĝ(n)β(n)(β(n))
p/q

− λiĝ(n− 1)β(n− 1)(β(n − 1))
p/q

for n = 1, 2, · · · thus

ĝ(n) = λi
β(n− 1)β(n − 1))

p/q

β(n)β(n))
p/q

.ĝ(n− 1)

= λ2i
β(n− 2)(β(n − 2))

p/q

β(n)(β(n))
p/q

.ĝ(n− 2)

=
λni

β(n)(β(n))
p/q

.ĝ(0).

Therefore

ĝ(n)(β(n))
p/q

=
λni
β(n)

.ĝ(0)

for n = 1, 2, · · · . By part (i) of [2],
{

λn
i

β(n)

}
n

	∈ �q. But since

g ∈ �q(βp/q), we have

{ĝ(n)(β(n))p/q}n ∈ �q.

This implies that it should be

ĝ(n) = 0, n = 0, 1, 2, · · ·

So L = 0. Now by the Hahn Banach Theorem z − λi is cyclic for

i = 1, 2, · · · ,m and therefore P (z) = (z − λ1)(z − λ2) · · · (z − λm) is

cyclic in �p(β).

Conversely assume that P is cyclic, and choose polynomials {Pn}
such that Pnf → 1 in �p(β). Now if f(λ) = 0 and λ is a bounded point

evaluation on �p(β), then eλ(Pnf) → 1, that is a contradiction. This

completes the proof.
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Let r0 = lim(β(n))1/n 	= 0 and Ω = {z : |z| < r0}. Put

�pa(β) = {f |Ω : f ∈ �p(β)}.

Clearly the functions of �pa(β) are analytic. We denote by �∞a (β) the set

of all formal power series ϕ(z) =
∑
n
ϕ̂(n)zn such that ϕ�pa(β) ⊆ �pa(β).

Theorem 2. Suppose ϕ is in �∞a (β). If ϕ(Ω) intersects the unit circle,

then {(M∗ϕ)n}n converges pointwise to zero on a dense subset of �pa(β)

and also there is a dense subset X of �pa(β) and a map S : X → X such

that M∗ϕS is identity of X and {Sn}∞n=0 tends pointwise to zero on X.

Proof. Suppose ϕ(Ω) intersects the unit circle. Since ϕ is

nonconstant, by the open mapping theorem ϕ(Ω) is open. So the open

sets

V = {z ∈ Ω : |ϕ(z)| < 1} and W = {z ∈ Ω : |ϕ(z)| > 1}

are both nonempty. Now clearly the linear subspaces

HV = V {eλ : λ ∈ V }, HW = {eλ : λ ∈W}

are dense in �q(βp/q). Since (M∗ϕ)n = (Mn
ϕ )
∗ is the adjoint of

multiplication by ϕn,

(M∗ϕ)
neλ = (ϕ(λ))n eλ, n = 0, 1, 2, · · ·

If z ∈ V , so |ϕ(z)| < 1 and so |ϕ(λ)|n.||eλ|| → 0 as n → ∞. Thus

||(M∗ϕ)neλ|| → 0 as n → ∞ and so the sequence of operators {(M∗ϕ)n}
converges pointwise to zero on the dense subset HV spanned by the

kernels {eλ : λ ∈ V }.
Now we want to find a right inverse of Mϕ. First consider the special

case where the collection of reproducing kernels {eλ : λ ∈W} is linearly

independent. In this case we can define a linear map
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S : HW → HW by extending the definition Seλ = (ϕ(λ))−1eλ (λ ∈W )

linearly to Hw. Since |ϕ(z)| > 1 for each z ∈ W , these is no possibility

of dividing by zero, and moreover,

Sneλ = (ϕ(λ))−1eλ → 0 in �q(βp/q) as n→ ∞.

By definition M∗ϕS= identity on the dense subset HW of �q(βp/q).

In case the reproducing kernels are not linearly independent, a little

more care is required. We can find an infinite subset Z = {wn} of W for

which the corresponding set of kernel functions is linearly independent,

and spans a subspace HZ which is dense in �q(βp/q). The operator S

can now be defined exactly as in the last paragraph, with HZ in place

of HW . This completes the proof.
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SPACES OF COMPACT OPERATORS WITHOUT THE

FIXED POINT PROPERTY

J. ZAFARANI

DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF ISFAHAN,

ISFAHAN 81745-163,IRAN.

Abstract. LetX and Y are two infinite dimensional Banach spaces.

If either X∗ or Y contains an asymptotically isometric copy of c0,

then K(X,Y ), the space of all compact operators fails the fixed

point property.

Dowling, Lennard and Turett [3] introduced the concept of Banach

spaces containing an asymptotically isometric copy of c0 . This no-

tion was motivated by a James’s distortion theorem [5].

This concept is a tool in identifying Banach spaces failing fixed point

property. In fact they have shown that If X contains an asymptotically

isometric copy of c0, then X fails the Fixed Point Property(FPP). A

Banach space X has the Fixed Point Property, if given any nonempty

closed bounded and convex subset C of X, every nonexpansive mapping

T : C → C has a fixed point. T is nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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Definition. [3]. Banach space X contains an asymptotically isometric

copy of c0 if there is a null sequence (εn) in (0, 1) and a sequence(xn) in

X so that for all finite sequence of scalars (an)
n=N
n=1 ,

max
1≤n≤N

(1− εn)|an| ≤ ‖
n=N∑
n=1

anxn‖ ≤ max
1≤n≤N

|an|.

Dowling, Lennard and Turett in [4] obtained an analogous result of E.

Saab and P. Saab [7] in injective tensor products for the containment of

an asymptotically isometric copy of c0. In the following result we give a

simple improvement of the theorem 8 of [4] for Kw∗(X∗, Y ), the space

of all compact operators from X∗ into Y which are w∗ − w continuous

provide with usual operator norm. It is well known that the injective

tensor product of X and Y , X⊗̂εY is a subspace of Kw∗(X∗, Y ). Fur-

thermore the spaces of all compact operators K(X,Y ) is isometrically

isomorphic to Kw∗(X∗∗, Y ) [6].

Theorem. Let X and Y be two infinite dimensional Banach spaces.

If X contains an asymptotically isometric copy of c0, then X⊗̂εY con-

tains an asymptotically isometric copy of c0 which is complemented in

Kw∗(X∗, Y ).

Proof. Without loss of generality, there are a null sequence (εn) in

(0, 1/2) and a sequence (xn) in X such that for all finite sequence of

scalars (an)
n=N
n=1 ,

max
1≤n≤N

(1− εn)|an| ≤
n=N∑
n=1

anxn‖ ≤ max
1≤n≤N

|an|
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for all natural number N . Let (x∗n) be a sequence of Hahn Banach

extensions of the coordinate functionals associated with the sequence

(xn). Thus ‖x∗n‖ = 1 and x∗m(xn) = 0 ifm �= n. By Josefson-Nissenzweig

Theorem [2], there exists a normalized w∗-null sequence (y∗n) in Y ∗.

Choose yn ∈ Y such that ‖yn‖ = 1 and y∗n(yn) ≥ (1 − εn) for every

n. We claim that the sequence (xn ⊗ yn) is an asymptotically isometric

c0-sequence in X⊗̂εY . First

‖
n=N∑
n=1

anxn ⊗ yn‖ = sup
y∗∈B∗

Y

‖
n=N∑
n=1

any
∗(yn)xn‖

≤ sup
y∗∈B∗

Y

max
1≤n≤N

|an| |y∗(yn)| = max
1≤n≤N

|an|.

On the other hand, for 1 ≤ m ≤ N

‖
n=N∑
n=1

an(xn ⊗ yn)‖ ≥ |(x∗m ⊗ y∗m)(

n=N∑
n=1

an(xn ⊗ yn))| ≥ (1− εm)|am|.

Hence (xn ⊗ yn) is an asymptotically isometric c0-sequence in X⊗̂εY ⊂
Kw∗(X∗, Y ). As (y∗n) is a weak∗ null sequence in Y ∗, therefore the se-

quence (x∗n⊗y∗n) is weak∗ null in Kw∗(X∗, Y ). Moreover (x∗n⊗y∗n)(xn⊗
yn) ≥ 1/2. Now an appeal to the Theorem 1.1.2 of [1] completes the

proof.

As an application of this Theorem we obtain the following result for

FPP of the space of compact operators.

Corollary. Let X and Y be two infinite dimensional Banach spaces.

If either X∗ or Y contains an asymptotically isometric copy of c0, then

K(X,Y ) fails FPP.

Proof. AsK(X,Y ) is isometrically isomorphic toKw∗(X∗∗, Y ), by The-

orem , K(X,Y ) has an asymptotically isometric complemented copy of
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c0 in the first case. For the second case, we observe that the canonical

embedding of Y ⊗̂εX
∗ = X∗⊗̂εY into K(X,Y ), followed by the map-

ping u→ ut, yields the canonical embedding of X∗⊗̂εY into K(Y ∗,X∗).

Hence we can apply the first case to find an asymptotically isometric

copy of c0 in X∗⊗̂εY that is complemented in K(Y ∗,X∗), and therefore

is complemented in the intermediate space K(X,Y ). Now an appeal to

the Proposition 7 of [3] completes the proof.
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