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Algebraic Computation Tree Model

Algebraic Computation Tree Model
Algorithms that:

Exact arithmetics on real numbers
Use primitive computations (comparison,
+,−, ∗, /,√...)

Time complexity: depends on the number of inputs.
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Algebraic computation trees

Problem P :
n : Size of input

P : Rn → S

S : solution space.

Example: Sorting n numbers (increasing)
S : all non-decreasing sequences of n numbers

Definition 3.1.1. An algebraic computation tree
An algebraic computation tree on a sequence s1, s2, ..., sn
of n variables is a finite tree T in which each node has at
most two children, and that satisfies the following three
conditions:
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Algebraic computation trees

1. leaf
Each leaf is labeled with the combinatorial description, in
terms of the variables s1, s2, ..., sn, of an element in S.

2. nodes with one child (computation)
Each node u having one child is labeled with a variable
Z(u) and an assignment of the form
(a) Z(u) := A1&A2, where & ∈ {+,−, ∗, \}, or
(b) Z(u) :=

√
A1

where, for i = 1, 2,
(1) Ai = Z(u′) for some proper ancestor u′ of u in T , or
(2) Ai ∈ {s1, s2, ..., sn}, or
(3) Ai is a real number constant.
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Algebraic computation trees

3. nodes with two children (comparison)
Each node u having two children is labeled with a
comparison of the form A ./ 0, where
(1) A = Z(u′) for some proper ancestor u′ of u in T , or
(2) A ∈ {s1, s2, ..., sn},
The two outgoing edges leading to the left and right
children of u are labeled with ≤ and >, respectively.

6 / 62



Yazd Univ.

The ACT Model

Algebraic
computation trees

Algebraic decision
trees

Lower bounds
Linear decision trees

The general lower bound

Some applications

Lower bound of
computing
spanners
A reduction from the
element uniqueness
problem

A lower bound for a set of
pairwise distinct points

Algebraic computation trees

Algebraic computation tree
An algebraic computation tree T constructed based
on an algorithm AT that solves a computation
problem P : Rn → S.
For each input, AT traverses T from root to a leaf.
Each node of the tree corresponds to the operation
that AT perform at that step.

Z(u) = S2/Z(u′)

Z(u) ./ 0

S1, S2 S2, S1
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Algebraic computation trees

well-defined algorithm AT

We require that no computation leads to a division by 0 or
taking the square root of a negative number

Algebraic computation tree algorithm
An algorithm A that makes only comparisons and the
arithmetic operations +,−, ∗, \ and √ is called an
algebraic computation-tree algorithm, if there is an
algebraic computation tree T such that A = AT
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Algebraic computation trees

Definition 3.1.2. solvable in the ACT model
Let P : Rn → S be a computation problem. We say that P
is solvable in the algebraic computation-tree model if
there exists an algebraic computation-tree T such that,
for any (s1, s2, ..., sn) ∈ Rn the corresponding algorithm
AT returns the value of P (s1, s2, ..., sn). We say then that
T solves the computation problem P .
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Algebraic computation trees

Definition 3.1.3. Time complexity of algorithm AT

Let T be an algebraic computation-tree. The time
complexity of algorithm AT is defined as the height of the
tree T .

Definition 3.1.4. Time complexity of P
Let P : Rn → S be a computation problem that is solvable
in the algebraic computation-tree model. The time
complexity of P is defined as the minimum height of any
algebraic computation-tree that solves P .
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Algebraic decision trees

Section 3.2: Algebraic decision trees
We introduce a restricted type of algebraic
computation-trees, called algebraic decision trees, that
solve decision problems.

Algebraic decision trees
An algebraic computation-tree that solves a decision
problem is called a algebraic decision tree. This restricted
type of decision tree is formally defined by replacing
Condition 1 in Definition 3.1.1 by the following condition:
∗ Each leaf is labeled with either YES or NO.
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Algebraic decision trees

YES-instances of a problem
Let P : Rn → {Y ES,NO} be a decision problem. A point
(s1, s2, ..., sn) ∈ Rn is called a YES-instance for P , if the
value of P (s1, s2, ..., sn) is YES.
VP : all YES-instances of P .

The problem corresponding to V ⊆ Rn

∀V ⊆ Rn ∃ P : Rn → {Y ES,NO} s.t. VP = V .

Therefore, we can identify each P by its YES-instances.

Example: Element Uniqueness Problem (EUP)

VP =

(s1, . . . , sn) ∈ Rn|
∏

1≤i<j≤n
(si − sj) 6= 0

 .
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Algebraic decision trees

decidable in the algebraic decision tree model
A decision problem P : Rn → {Y ES,NO} is called
decidable in the algebraic decision tree model, if there
exists an algebraic decision tree T such that, for any
(s1, s2, ..., sn) ∈ Rn, the corresponding algorithm AT
returns YES if (s1, s2, ..., sn) ∈ VP and NO if
(s1, s2, ..., sn) /∈ VP
We say then that T decides the decision problem P .

Definition 3.2.1. Time complexity of P
Let V be a subset of Rn and let P be the corresponding
decision problem. If P is decidable in the algebraic
decision tree model, then we define the time complexity
of V as the minimum height of any algebraic decision tree
that decides P .
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Lower bounds for ADT algorithms

Section 3.3: Lower bounds for ADT algorithms
We present a general technique for proving lower
bounds on the time complexity for solving decision
problems.
Since a given computation problem often "contains"
a related decision problem, this also gives a general
approach for proving lower bounds on the time
complexity for solving computation problems.
We will show that the topological structure of a set
V ⊆ Rn yields a lower bound on the time complexity
of V .
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Linear decision trees (LDT)

Section 3.3.1: Linear decision trees
This restricted class of algorithms is formally defined by
replacing Condition 2 in Definition 3.1.1 by the following
condition:

2. nodes with one child (computation)
Each node u having one child is labeled with a variable
Z(u) := A1&A2,
1. & ∈ {+,−}, (same as before)
2. & ∈ {∗, \}, and
(a) A1 = Z(u′) for some proper ancestor u′ of u in T , or
A1 ∈ {s1, s2, ..., sn}, or A1 is a real number constant.
(b) A2 is a real number constant.
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Z(u) = S2/2

Z(u) ./ 0

S1, S2 S2, S1

Z(u) = S2 + Z(u′)

Observe that two input elements (or previously computed
values) cannot be multiplied or divided, thus

avoiding nonlinear functions of the input elements
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For any leaf ω of T :
R(ω) = the set of those inputs on which algorithm AT
terminates in leaf ω.

ω

u2

u3

u4

u5

u6

u7

u1

v1

v2

v3

v4
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Lemma 3.3.1.
The set R(ω) is connected, i.e., for any two points p and q
in R(ω), there is a continuous curve in Rn between p and
q that is completely contained in R(ω).

Proof:
R(ω) = ∩ half-planes⇒ Convex⇒ Connected.
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A,B : two distinct connected component of V .
p ∈ A, q ∈ B
wp : leaf of T that AT terminates with input p.
wq : leaf of T that AT terminates with input q.

Lemma 3.3.2.
The leaves wp and wq are distinct.

Proof.
Assume wp = wq = w.
p, q ∈ R(w).
R(w) is convex, therefore line seqment pq is in R(w).
This contradict with the assumption that A and B are
two distinct connected component.
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Theorem 3.3.3. time complexity in the LDT model
Let P be a decision problem that is decidable in the linear
decision tree model and let VP ⊆ Rn be the
corresponding set of YES-instances. The time complexity
of VP in the linear decision tree model is greater than or
equal to log(CC(VP )).

Proof.
Let T be an arbitrary linear decision tree that decides VP .
By Lemma 3.3.2, T has at least CC(VP ) leaves. Hence,
the height of this tree is greater than or equal to
log(CC(VP )).
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Example: EUP

Theorem 3.3.4.
The time complexity of the element uniqueness problem
for n real numbers in the linear decision tree model is
greater than or equal to n log n−O(n).

Proof.
Let π and ρ be two distinct permutations of 1, 2, . . . , n, and
consider the points p := (π(1), π(2), ..., π(n)) and
r := (ρ(1), ρ(2), ..., ρ(n)) in Rn. Clearly, both p and r
belong to the set VP . We will show that these two points
belong to different connected components of VP . This will
prove that CC(VP ) ≥ n!.
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Example: EUP

Theorem 3.3.4.
The time complexity of the element uniqueness problem
for n real numbers in the linear decision tree model is
greater than or equal to n log n−O(n).

Proof. (Cont.)
π and ρ are distinct⇒ ∃i, j s.t. π(i) < π(j) and
ρ(i) > ρ(j).
p and r are on different side of hyperplane xi = xj .
Any curve between p and r must pass through this
hyperplane. ⇒ The curve are not included in VP .
p and r belong to different connected components.
Done!
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Lower bound in Algebraic Decision Tree Model

The lower bound in LDT Model does not hold in stronger
model, i.e. ADT Model.

Section 3.3.2 The general lower bound
In this section, we will prove that the arguments of
Section 3.3.1 can, nevertheless, be generalized. As we
will see, the number of connected components of the set
VP of YES-instances still gives a lower bound on the time
complexity of the (decidable) decision problem P .
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Lower bound in Algebraic Decision Tree Model

Theorem 3.3.5. (Algebraic Topology)
Let k and g be positive integers, and let F1, F2, . . . , Fk be
polynomials in n variables, each having degree less than
or equal to g. Let

W := (x1, x2, ..., xn) ∈ Rn : Fi(x1, x2, ..., xn) = 0

for all 1 ≤ i ≤ k. The set W has at most g(2g − 1)(n−1)

connected components.

Observe that the upper bound on the number of
connected components of the set W depends only on

the number of variables and
the degrees of the polynomials.

It does not depend on
the number of polynomials.
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Lower bound in Algebraic Decision Tree Model

Consider an arbitrary algebraic decision tree T , and let w
be any leaf of T . Later in this section, we will show that
the set R(w) ⊆ Rn of all inputs on which algorithm AT
terminates in w can be described by a system of
polynomial equations and inequalities, each having
degree less than or equal to 2.
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Lower bound in Algebraic Decision Tree Model

Our goal is to derive an upper bound on the number of
connected components of R(w).
This will be done by transforming

the system of equations and inequalities that describe
R(w)
into

a system containing polynomial equations only

and then applying Theorem 3.3.5.

26 / 62



Yazd Univ.

The ACT Model

Algebraic
computation trees

Algebraic decision
trees

Lower bounds
Linear decision trees

The general lower bound

Some applications

Lower bound of
computing
spanners
A reduction from the
element uniqueness
problem

A lower bound for a set of
pairwise distinct points

Lower bound in Algebraic Decision Tree Model

Theorem 3.3.6.
Let a, b and c be nonnegative integers, and let
E1, . . . , Ea, N1, . . . , Nb, P1, . . . , Pc be polynomials in n
variables, each having degree less than or equal to 2. Let
W be the set of all points (x1, x2, . . . , xn) ∈ Rn. such that
the following is true:
1. Ei(x1, x2, . . . , xn) = 0 for all i with 1 ≤ i ≤ a,
2. Ni(x1, x2, . . . , xn) ≤ 0 for all i with 1 ≤ i ≤ b, and
3. Pi(x1, x2, . . . , xn) > 0 for all i with 1 ≤ i ≤ c.
The set W has at most 3n+b+c connected components.
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Proof.
It can be shown that the number CC(W ) of connected
components of W is finite.
Let d := CC(W ). For each j with 1 ≤ j ≤ d, let pj ∈ Rn
be an arbitrary point in the j-th connected component of
W . Define

ε := min{Pi(pj) : 1 ≤ i ≤ c, 1 ≤ j ≤ d}

Clearly, ε > 0. Let Wε be the set of all points
(x1, x2, ..., xn) ∈ Rn, such that
1. Ei(x1, x2, ..., xn) = 0 for all i with 1 ≤ i ≤ a,
2. Ni(x1, x2, ..., xn) ≤ 0 for all i with 1 ≤ i ≤ b, and
3. Pi(x1, x2, ..., xn) > ε for all i with 1 ≤ i ≤ c.
Then, Wε ⊆W and Wε contains the points p1, p2, ..., pd.
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Proof. (Cont.)
We transform the equations and inequalities that define
Wε into a system of polynomial equations by introducing
b+ c new variables xn+1, . . . , xn+b+c. Let Wε be the set of
all points (x1, ..., xn+b+c) ∈ Rn+b+c such that
1. Ei(x1, x2, ..., xn) = 0 for all i with 1 ≤ i ≤ a,
2. Ni(x1, x2, ..., xn) + x2n+i = 0 for all i with 1 ≤ i ≤ b, and
3. Pi(x1, x2, ..., xn)− x2n+b+i − ε = 0 for all i with 1 ≤ i ≤ c.
The projection of W ′ onto the first n coordinates is exactly
the set Wε, that is,

Wε = {(x1, x2, ..., xn) : ∃x1, ..., xn+b+c ∈
R, (x1, ..., xn+b+c) ∈W ′}
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Proof. (Cont.)
For each j with 1 ≤ j ≤ d, let p′j be a point in W ′ such
that its projection onto the first n coordinates is the point
pj . Since the points p1, p2, . . . , pd are in pairwise distinct
connected components of W and since W ′ ⊆W , it
follows that the points p′1, p

′
2, . . . , p

′
d are in pairwise distinct

connected components of W ′ Hence, CC(W ′) ≥ d.
The set W ′ is defined by polynomial equations in n+ b+ c
variables, each having degree less than or equal to 2.
Therefore, by Theorem 3.3.5, we have

CC(W ′) ≤ 2 ∗ 3n+b+c−1 ≤ 3n+b+c

Now we are ready to prove the lower bound for ADT
algorithms.
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof.
T : ADT that decides P . w: a leaf of T .
R(w): Inputs that terminate at w.
u1, u2, . . . , uk+1: the path from root u1 to uk+1 = w.
r : # nodes in this path with one child
s : # nodes in this path labled by √...
We define k + s polynomial equations and
inequalities in variables x1, . . . , xn+k, (x1, . . . xn for
s1, . . . , sn and xn+1, . . . , xn+k for u1, . . . , uk)
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof. (Cont.)
For 1 ≤ i ≤ k, consider node ui:
Case 1: ui has one child (computation node)

We add one equation and probably an inequality to
our system.

Example 1
Z(ui) := sa/Z(ul)
xn+i ∗ xn+l − xa = 0
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof. (Cont.)
For 1 ≤ i ≤ k, consider node ui:
Case 1: ui has one child (computation node)

We add one equation and probably an inequality to
our system.

Example 1
Z(ui) := sa/Z(ul)
xn+i ∗ xn+l − xa = 0
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof. (Cont.)
For 1 ≤ i ≤ k, consider node ui:
Case 1: ui has one child (computation node)

We add one equation and probably an inequality to
our system.

Example 2
Z(ui) :=

√
sa

x2n+i − xa = 0 and
−xn+i ≤ 0
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Table 3.1: The equations and inequalities corresponding to all possible
assignments of computation node ui . The indices j and 	 satisfy
1 ≤ j < i and 1 ≤ 	 < i; the indices a and b satisfy 1 ≤ a ≤ n and
1 ≤ b ≤ n; and c and d are real constants.

Assignment Equation/inequality

Z(ui) := Z(uj ) + Z(u	) xn+i − xn+j − xn+	 = 0
Z(ui) := Z(uj ) − Z(u	) xn+i − xn+j + xn+	 = 0
Z(ui) := Z(uj ) ∗ Z(u	) xn+i − xn+j xn+	 = 0
Z(ui) := Z(uj )/Z(u	) xn+ixn+	 − xn+j = 0
Z(ui) := √

Z(uj ) x2
n+i − xn+j = 0 and −xn+i ≤ 0

Z(ui) := sa + Z(u	) xn+i − xa − xn+	 = 0
Z(ui) := sa − Z(u	) xn+i − xa + xn+	 = 0
Z(ui) := Z(u	) − sa xn+i − xn+	 + xa = 0
Z(ui) := sa ∗ Z(u	) xn+i − xaxn+	 = 0
Z(ui) := sa/Z(u	) xn+ixn+	 − xa = 0
Z(ui) := Z(u	)/sa xn+ixa − xn+	 = 0
Z(ui) := sa + sb xn+i − xa − xb = 0
Z(ui) := sa − sb xn+i − xa + xb = 0
Z(ui) := sa ∗ sb xn+i − xaxb = 0
Z(ui) := sa/sb xn+ixb − xa = 0
Z(ui) := √

sa x2
n+i − xa = 0 and −xn+i ≤ 0

Z(ui) := c + Z(u	) xn+i − c − xn+	 = 0
Z(ui) := c − Z(u	) xn+i − c + xn+	 = 0
Z(ui) := Z(u	) − c xn+i − xn+	 + c = 0
Z(ui) := c ∗ Z(u	) xn+i − cxn+	 = 0
Z(ui) := c/Z(u	) xn+ixn+	 − c = 0
Z(ui) := Z(u	)/c cxn+i − xn+	 = 0
Z(ui) := c + sb xn+i − c − xb = 0
Z(ui) := c − sb xn+i − c + xb = 0
Z(ui) := sb − c xn+i − xb + c = 0
Z(ui) := c ∗ sb xn+i − cxb = 0
Z(ui) := c/sb xn+ixb − c = 0
Z(ui) := sb/c cxn+i − xb = 0
Z(ui) := c + d xn+i − c + d = 0
Z(ui) := c − d xn+i − c + d = 0
Z(ui) := c ∗ d xn+i − cd = 0
Z(ui) := c/d dxn+i − c = 0
Z(ui) := √

c x2
n+i − c = 0 and −xn+i ≤ 0

The projection of W onto the first n coordinates is equal to the set R(w). This implies
that CC(R(w)) ≤ CC(W ) and, hence, CC(R(w)) ≤ 3n+2k+s−r . Let h be the height of our
algebraic decision tree T . Then, since k ≤ h and s ≤ r , we have proved that CC(R(w)) ≤
3n+2h.

Now we can complete the proof of the theorem. Recall that VP ⊆ Rn is the set of
YES-instances for the decision problem P . A leaf w of T is called a YES-leaf, if its label
is YES. Since

VP =
⋃

w:YES-leaf of T

R(w),
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof. (Cont.)
Case 2: ui has two children (comparison node)

if the path in T to w proceeds from ui to its left child

The comparison in ui: Z(uj) ./ 0, we add xn+j ≤ 0
The comparison in ui: sa ./ 0, we add xa ≤ 0

if the path in T to w proceeds from ui to its right child

The comparison in ui: Z(uj) ./ 0, we add xn+j > 0
The comparison in ui: sa ./ 0, we add xa > 0
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof. (Cont.)
r = # computation nodes on the path to w
s = # computation nodes on this path labeled √...
t = # times this path proceeds to its left child

r polynomial equations
s+ t polynomial ≤-inequalities
k − r − t polynomial >-inequalities

in the variables x1, . . . , xn+k
By Theorem 3.3.6 W has at most 3n+2k+s−r connected
components.
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof. (Cont.)
The projection of W onto the first n coordinates is equal
to the set R(w). This implies that
CC(R(w)) ≤ CC(W ) ≤ 3n+2k+s−r

Wj

Wi

W1 WCC(W )

R(w1) R(wk) R(wCC(R(w))) 37 / 62
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Theorem 3.3.7. time complexity in the ADT model
P : decision problem that is decidable in the ADT model
VP ⊆ Rn: the set of YES-instances of P .
Time complexity of VP in ADT model ≥ log(CC(VP ))−n log 3

1+2 log 3 .

Proof. (Cont.)
h: height of T .
Since k ≤ h and s ≤ r, CC(R(w)) ≤ CC(W ) ≤ 3n+2h.
VP : YES-instances of P

VP =
⋃

w:YES-leaf of T

R(w)⇒ CC(VP ) ≤
∑

w:YES-leaf of T

CC(R(w))

T has at most 2h leaves⇒ CC(VP ) ≤ 3n+2h × 2h

h ≥ log(CC(VP ))− n log 3

1 + 2 log 3
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Section 3.3.3 Some applications
Lower bound of some problems.

Theorem 3.3.9. Time complexity of the EUP
The time complexity of the element uniqueness problem
for n real numbers in ADT model is Ω(n log n).

Proof.
V has at least n! components. By Theorem 3.3.7,

log(n!)− n log 3

1 + 2 log 3
= Ω(n log n)

lower bound.
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Corollary 3.3.10. Time complexity of sorting and
closest pair problems
The following two problems have time complexity
Ω(n log n) in ACT model:
(1) the sorting problem for n real numbers, and
(2) the closest pair problem on a set S of n points in Rd.

Proof.
The lower bound for the closest pair problem follows
immediately from Theorem 3.3.9 because the input
sequence contains two equal elements if and only if the
distance of the closest pair is zero.
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Corollary 3.3.10. Time complexity of sorting and
closest pair problems
The following two problems have time complexity
Ω(n log n) in ACT model:
(1) the sorting problem for n real numbers, and
(2) the closest pair problem on a set S of n points in Rd.

Proof.
A: arbitrary ACT algorithm that solves the sorting
problem in T (n) time.
B: solves the EUP
B sort the numbers and then compares all pairs of
elements that are neighbors in the sorted sequence⇒
Time complexity of B=T (n) +O(n)
T (n) +O(n) = Ω(n log n)⇒ T (n) = Ω(n log n)
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Problems whose YES-instances have infinite connected
components are non-decidable.

Theorem 3.3.11. (non-decidable problems)
There is no algebraic decision tree algorithm that, when
given an arbitrary real number x as input, returns YES if
x ∈ N, and NO if x /∈ N.
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A lower bound for constructing spanners

Section 3.4. A lower bound for constructing
spanners
We will use Theorem 3.3.7 to prove an Ω(n log n) lower
bound for constructing t-spanners.

We will focus on algorithms that construct Steiner
t-spanners with o(n log n) edges for one-dimensional
multisets, that is, multisets of real numbers. We will prove
that even this one-dimensional case has an Ω(n log n)
lower bound. Of course, this implies the same lower
bound for any dimension d ≥ 1.
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Lower bound for constructing spanners
Reduction from EUP

3.4.1. A reduction from the EUP
A: An arbitrary algebraic computation-tree algorithm that,
constructs a Steiner t-spanner for the multiset
S = {s1, s2, ..., sn} of n points on the one-dimensional real
line.
Each vertex of the output of A is labeled as either being
an element of S or being a Steiner point.

Claim: Algorithm A can be used to solve the EUP.
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Lower bound for constructing spanners
Reduction from EUP

EUP Algorithm
Step 1: G : output of algorithm A on the input sequence
s1, s2, ..., sn and arbitrary t > 1.
Step 2: G′ : subgraph of G such that G′ contains the
same vertices as G, and G′ contains all edges of G
having length zero.
Step 3: Compute the connected components of the
graph G′

Step 4: For each connected component of G′, check
whether it contains two or more distinct non-Steiner
elements (i.e., elements having distinct indices). If this is
the case for some connected component, return NO.
Otherwise, return YES.
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Theorem 3.4.1.
In the algebraic computation-tree model, any algorithm
that, when given a multiset S of n points in Rd, (d
constant) and a real number t > 1, constructs a Steiner
t-spanner for S, takes Ω(n log n) time in the worst case.

If the points are known to be pairwise distinct, then the
EUP can be solved in O(1) time,

because the output is always YES.
In the next section, we will consider algorithms that
construct Steiner spanners for inputs consisting of

pairwise distinct points.
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3.4.2. Lower bound for pairwise distinct points
In the algebraic computation-tree model, the lower bound
of Ω(n log n) for the Steiner t-spanner construction
problem holds even if the input is known to consist of
pairwise distinct points. The proof effectively uses a lower
bound of Ω(n log n) for the mingap problem.

We can not apply Theorem 3.3.7 because:
The set of all inputs of A has Ω(n!) components.
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3.4.2. Lower bound for pairwise distinct points
In the algebraic computation-tree model, the lower bound
of Ω(n log n) for the Steiner t-spanner construction
problem holds even if the input is known to consist of
pairwise distinct points. The proof effectively uses a lower
bound of Ω(n log n) for the mingap problem.

A B C D
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Algorithm A

A denotes an arbitrary algebraic computation-tree
algorithm that, when given a set S of n pairwise distinct
real numbers, and a real number t > 1, constructs a
Steiner t-spanner for S with o(n log n) edges.

DCBA

n pairwise distinct

Steiner t-spanner
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Algorithm B

B takes pairwise distinct real numbers as input. This
algorithm runs algorithm A on this input, and returns the
length L of a shortest edge of nonzero length in the graph
that A computes.

DCA
A

n pairwise distinct n pairwise distinct

Steiner t-spanner L: shortest edge

B
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Lemma 3.4.2.
The real number L that is returned by algorithm B
satisfies 0 < L ≤ t×mingap(s1, s2, ..., sn).

Proof:
Let |si − sj | = mingap{s1, . . . , sn}.
∃ a path between si and sj of length
t×mingap{s1, . . . , sn}.
Each edge of this path has length
≤ t×mingap{s1, . . . , sn}. DONE!

Time: TB(n, t) ≤ TA(n, t) + o(n log n).
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L? : Minimum value return by B among all runs of B on
all permutations of 1, 2, . . . , n. L? is indepenent of the
input, we we can assume that we know L?.

Algorithm C

Algorithm C takes pairwise distinct real numbers as input.
It runs algorithm B on this input, and returns YES if and
only if the output L of B ≥ L?.

DA
A

n pairwise distinct n pairwise distinct

Steiner t-spanner L: shortest edge

B C

B

n pairwise distinct

if L ≥ L?

return YES

Running time of algorithm C is a constant factor of B′s
running time.
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It runs algorithm B on this input, and returns YES if and
only if the output L of B ≥ L?.

DA
A

n pairwise distinct n pairwise distinct

Steiner t-spanner L: shortest edge

B C

B

n pairwise distinct

if L ≥ L?

return YES

Running time of algorithm C is a constant factor of B′s
running time.
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Algorithm C pairwise distinct real numbers as input. It
runs algorithm B on this input, and returns YES if and
only if the output L of B ≥ L?.
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Algorithm D: Same as C except:
Accept any input (not just paiwise distinct elements.)
In any place that C perform division z = x/y, it
checks the denominator to be nonzero.
In any place that C perform z =

√
y, it checks y to be

non-negative.

Algorithm D:
has the same output as C, on an input of pairwise distict
points.
For a set of non-pairwise distinct elements, C has no
input and the output of D is meaningless.
is well-defined on any input sequence of real numbers.
is the algebraic decision tree algorithm we are looking for.
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A
A

n pairwise distinct n pairwise distinct

Steiner t-spanner L: shortest edge

B C

B

n pairwise distinct

if L ≥ L?

return YES

D

C

any input sequence

return YES
if L ≥ L?
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Analysis of algorithm D

We now prove that the worst-case running time of
algorithm D is Ω(n log n).
This will imply the same lower bound on the running time
of our target algorithm A.
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Lemma 3.4.3.: The set W of YES-instances of D
has at least n! connected components.
Proof: Let

p = (π(1), π(2), ..., π(n))

r = (ρ(1), ρ(2), ..., ρ(n))

Consider i and j s. t. π(i) < π(j) and ρ(i) > ρ(j)
We show that p and r belongs to different connected
components.
Let C: is a curve that connects p and r.
We show: ∃q ∈ C such that q 6∈W .
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Lemma 3.4.3.: The set W of YES-instances of D
has at least n! connected components.
Proof (cont.): C passes through hyperplane xi = xj .
q = (q1, q2, . . . , qn): first point on C, such that

mingap(q1, q2, ..., qn) ≤ L?

2t .

We will show that the coordinates of q are pairwise
distinct.
If we run algorithm B on input q1, q2, ..., qn, t, then

L ≤ t× L?

2t < L?

This means that q 6∈W and we are done.
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Lemma 3.4.3.: The set W of YES-instances of D
has at least n! connected components.
Proof (cont.): C(τ): parameterize the curve C, 0 ≤ τ ≤ 1,
where C(0) = p and C(1) = r.
C(τ)k: k-th coordinate of the point C(τ).
We define

τ0 := min0≤τ≤1{mingap(C(τ)1, C(τ)2, . . . , C(τ)n) ≤ L?

2t }

Let q = C(τ0). We have

mingap(q1, q2, . . . , qn) ≤ L?

2t

Also, by Lemma 3.4.2, and since C(0) = p ∈W ,

mingap(C(0)1, C(0)2, . . . , C(0)n) ≥ L?

t > L?

2t
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Lemma 3.4.3.: The set W of YES-instances of D
has at least n! connected components.
Proof (cont.): q is the first point on C s.t.
mingap(q) ≤ L/2t
C is continuous
Therefore, mingap(q) > 0.
Now, run algorithm D on the input sequence
q = {q1, q2, . . . , qn}.

L ≤ t×mingap(q1, q2, . . . , qn).
L ≤ t× L?

2t < L?

So, algorithm D returns NO. This implies that q 6∈W . This
completes the proof.
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Theorem 3.4.4.
Let d ≥ 1 be an integer constant. In the algebraic
computation-tree model, any algorithm that, when given a
set S of n pairwise distinct points in Rn and a real number
t > 1, constructs a Steiner t-spanner for S, takes
Ω(n log n) time in the worst case.

Open problem:
Let d ≥ 2 be an integer constant. Prove that, in the
algebraic computation-tree model, any algorithm that,
when given a set S of n points in Rd that are in general
position and a real number t > 1, constructs a Steiner
t-spanner for S, takes Ω(n log n) time in the worst case.
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