
15 Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems by
combining the solutions to subproblems. (“Programming” in this context refers
to a tabular method, not to writing computer code.) As we saw in Chapters 2
and 4, divide-and-conquer algorithms partition the problem into disjoint subprob-
lems, solve the subproblems recursively, and then combine their solutions to solve
the original problem. In contrast, dynamic programming applies when the subprob-
lems overlap—that is, when subproblems share subsubproblems. In this context,
a divide-and-conquer algorithm does more work than necessary, repeatedly solv-
ing the common subsubproblems. A dynamic-programming algorithm solves each
subsubproblem just once and then saves its answer in a table, thereby avoiding the
work of recomputing the answer every time it solves each subsubproblem.
We typically apply dynamic programming to optimization problems. Such prob-

lems can have many possible solutions. Each solution has a value, and we wish to
find a solution with the optimal (minimum or maximum) value. We call such a
solution an optimal solution to the problem, as opposed to the optimal solution,
since there may be several solutions that achieve the optimal value.
When developing a dynamic-programming algorithm, we follow a sequence of

four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Steps 1–3 form the basis of a dynamic-programming solution to a problem. If we
need only the value of an optimal solution, and not the solution itself, then we
can omit step 4. When we do perform step 4, we sometimes maintain additional
information during step 3 so that we can easily construct an optimal solution.
The sections that follow use the dynamic-programming method to solve some

optimization problems. Section 15.1 examines the problem of cutting a rod into



360 Chapter 15 Dynamic Programming

rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.
We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling

Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.
The rod-cutting problem is the following. Given a rod of length n inches and a

table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.
Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod

of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.
We can cut up a rod of length n in 2n�1 different ways, since we have an in-

dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.



15.1 Rod cutting 361

9

(a)

1

(b)

8

(c) (d)

(e) (f) (g)

1

(h)

1 1 1

5 5 18

511 5 11 5 11

Figure 15.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the
value of that piece, according to the sample price chart of Figure 15.1. The optimal strategy is
part (c)—cutting the rod into two pieces of length 2—which has total value 10.

for i D 1; 2; : : : ; n � 1.1 We denote a decomposition into pieces using ordinary
additive notation, so that 7 D 2C 2C 3 indicates that a rod of length 7 is cut into
three pieces—two of length 2 and one of length 3. If an optimal solution cuts the
rod into k pieces, for some 1 � k � n, then an optimal decomposition

n D i1 C i2 C � � � C ik

of the rod into pieces of lengths i1, i2, . . . , ik provides maximum corresponding
revenue

rn D pi1 C pi2 C � � � C pik :

For our sample problem, we can determine the optimal revenue figures ri , for
i D 1; 2; : : : ; 10, by inspection, with the corresponding optimal decompositions

1If we required the pieces to be cut in order of nondecreasing size, there would be fewer ways
to consider. For n D 4, we would consider only 5 such ways: parts (a), (b), (c), (e), and (h)
in Figure 15.2. The number of ways is called the partition function; it is approximately equal to
e�
p

2n=3=4n
p

3. This quantity is less than 2n�1, but still much greater than any polynomial in n.
We shall not pursue this line of inquiry further, however.



362 Chapter 15 Dynamic Programming

r1 D 1 from solution 1 D 1 (no cuts) ;

r2 D 5 from solution 2 D 2 (no cuts) ;

r3 D 8 from solution 3 D 3 (no cuts) ;

r4 D 10 from solution 4 D 2C 2 ;

r5 D 13 from solution 5 D 2C 3 ;

r6 D 17 from solution 6 D 6 (no cuts) ;

r7 D 18 from solution 7 D 1C 6 or 7 D 2C 2C 3 ;

r8 D 22 from solution 8 D 2C 6 ;

r9 D 25 from solution 9 D 3C 6 ;

r10 D 30 from solution 10 D 10 (no cuts) :

More generally, we can frame the values rn for n � 1 in terms of optimal rev-
enues from shorter rods:

rn D max .pn; r1 C rn�1; r2 C rn�2; : : : ; rn�1 C r1/ : (15.1)

The first argument, pn, corresponds to making no cuts at all and selling the rod of
length n as is. The other n� 1 arguments to max correspond to the maximum rev-
enue obtained by making an initial cut of the rod into two pieces of size i and n � i ,
for each i D 1; 2; : : : ; n � 1, and then optimally cutting up those pieces further,
obtaining revenues ri and rn�i from those two pieces. Since we don’t know ahead
of time which value of i optimizes revenue, we have to consider all possible values
for i and pick the one that maximizes revenue. We also have the option of picking
no i at all if we can obtain more revenue by selling the rod uncut.
Note that to solve the original problem of size n, we solve smaller problems of

the same type, but of smaller sizes. Once we make the first cut, we may consider
the two pieces as independent instances of the rod-cutting problem. The overall
optimal solution incorporates optimal solutions to the two related subproblems,
maximizing revenue from each of those two pieces. We say that the rod-cutting
problem exhibits optimal substructure: optimal solutions to a problem incorporate
optimal solutions to related subproblems, which we may solve independently.
In a related, but slightly simpler, way to arrange a recursive structure for the rod-

cutting problem, we view a decomposition as consisting of a first piece of length i

cut off the left-hand end, and then a right-hand remainder of length n � i . Only
the remainder, and not the first piece, may be further divided. We may view every
decomposition of a length-n rod in this way: as a first piece followed by some
decomposition of the remainder. When doing so, we can couch the solution with
no cuts at all as saying that the first piece has size i D n and revenue pn and that
the remainder has size 0 with corresponding revenue r0 D 0. We thus obtain the
following simpler version of equation (15.1):

rn D max
1�i�n

.pi C rn�i / : (15.2)



15.1 Rod cutting 363

In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation

The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0

2 return 0
3 q D �1
4 for i D 1 to n

5 q D max.q; pŒi �C CUT-ROD.p; n � i//

6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n� of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to �1, so that the for loop in lines 4–5 correctly computes
q D max1�i�n.pi C CUT-ROD.p; n� i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).
If you were to code up CUT-ROD in your favorite programming language and run

it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.
Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself

recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n � i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n � 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.
To analyze the running time of CUT-ROD, let T .n/ denote the total number of

calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and



364 Chapter 15 Dynamic Programming

3

1 0

0

0

01

2 0

0

1

2

0

1 0

4

Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s � t

and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n�1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n�1

leaves.

T .n/ D 1C
n�1X

jD0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n � i/, where j D n � i .
As Exercise 15.1-1 asks you to show,

T .n/ D 2n ; (15.4)

and so the running time of CUT-ROD is exponential in n.
In retrospect, this exponential running time is not so surprising. CUT-ROD ex-

plicitly considers all the 2n�1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n�1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting

We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.
The dynamic-programming method works as follows. Having observed that a

naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it



15.1 Rod cutting 365

up, rather than recompute it. Dynamic programming thus uses additional memory
to save computation time; it serves an example of a time-memory trade-off. The
savings may be dramatic: an exponential-time solution may be transformed into a
polynomial-time solution. A dynamic-programming approach runs in polynomial
time when the number of distinct subproblems involved is polynomial in the input
size and we can solve each such subproblem in polynomial time.
There are usually two equivalent ways to implement a dynamic-programming

approach. We shall illustrate both of them with our rod-cutting example.
The first approach is top-down with memoization.2 In this approach, we write

the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has beenmemoized;
it “remembers” what results it has computed previously.
The second approach is the bottom-up method. This approach typically depends

on some natural notion of the “size” of a subproblem, such that solving any par-
ticular subproblem depends only on solving “smaller” subproblems. We sort the
subproblems by size and solve them in size order, smallest first. When solving a
particular subproblem, we have already solved all of the smaller subproblems its
solution depends upon, and we have saved their solutions. We solve each sub-
problem only once, and when we first see it, we have already solved all of its
prerequisite subproblems.
These two approaches yield algorithms with the same asymptotic running time,

except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.
Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-

ization added:

MEMOIZED-CUT-ROD.p; n/

1 let rŒ0 : : n� be a new array
2 for i D 0 to n

3 rŒi � D �1
4 return MEMOIZED-CUT-ROD-AUX.p; n; r/

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes
from memo, since the technique consists of recording a value so that we can look it up later.



366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn� � 0

2 return rŒn�

3 if n == 0

4 q D 0

5 else q D �1
6 for i D 1 to n

7 q D max.q; pŒi �CMEMOIZED-CUT-ROD-AUX.p; n � i; r//

8 rŒn� D q

9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n� with the value �1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.
The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our

previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn�, and line 9
returns it.
The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n� be a new array
2 rŒ0� D 0

3 for j D 1 to n

4 q D �1
5 for i D 1 to j

6 q D max.q; pŒi �C rŒj � i �/

7 rŒj � D q

8 return rŒn�

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.
Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n� in

which to save the results of the subproblems, and line 2 initializes rŒ0� to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now



15.1 Rod cutting 367

3

0

1

2

4

Figure 15.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels
give the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that we need a
solution to subproblem y when solving subproblem x. This graph is a reduced version of the tree of
Figure 15.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

directly references array entry rŒj � i � instead of making a recursive call to solve
the subproblem of size j � i . Line 7 saves in rŒj � the solution to the subproblem
of size j . Finally, line 8 returns rŒn�, which equals the optimal value rn.
The bottom-up and top-down versions have the same asymptotic running time.

The running time of procedure BOTTOM-UP-CUT-ROD is ‚.n2/, due to its
doubly-nested loop structure. The number of iterations of its inner for loop, in
lines 5–6, forms an arithmetic series. The running time of its top-down counterpart,
MEMOIZED-CUT-ROD, is also ‚.n2/, although this running time may be a little
harder to see. Because a recursive call to solve a previously solved subproblem
returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It
solves subproblems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for
loop of lines 6–7 iterates n times. Thus, the total number of iterations of this for
loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series,
giving a total of ‚.n2/ iterations, just like the inner for loop of BOTTOM-UP-
CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see
aggregate analysis in detail in Section 17.1.)

Subproblem graphs

When we think about a dynamic-programming problem, we should understand the
set of subproblems involved and how subproblems depend on one another.
The subproblem graph for the problem embodies exactly this information. Fig-

ure 15.4 shows the subproblem graph for the rod-cutting problem with n D 4. It
is a directed graph, containing one vertex for each distinct subproblem. The sub-



368 Chapter 15 Dynamic Programming

problem graph has a directed edge from the vertex for subproblem x to the vertex
for subproblem y if determining an optimal solution for subproblem x involves
directly considering an optimal solution for subproblem y. For example, the sub-
problem graph contains an edge from x to y if a top-down recursive procedure for
solving x directly calls itself to solve y. We can think of the subproblem graph
as a “reduced” or “collapsed” version of the recursion tree for the top-down recur-
sive method, in which we coalesce all nodes for the same subproblem into a single
vertex and direct all edges from parent to child.
The bottom-up method for dynamic programming considers the vertices of the

subproblem graph in such an order that we solve the subproblems y adjacent to
a given subproblem x before we solve subproblem x. (Recall from Section B.4
that the adjacency relation is not necessarily symmetric.) Using the terminology
from Chapter 22, in a bottom-up dynamic-programming algorithm, we consider the
vertices of the subproblem graph in an order that is a “reverse topological sort,” or
a “topological sort of the transpose” (see Section 22.4) of the subproblem graph. In
other words, no subproblem is considered until all of the subproblems it depends
upon have been solved. Similarly, using notions from the same chapter, we can
view the top-down method (with memoization) for dynamic programming as a
“depth-first search” of the subproblem graph (see Section 22.3).
The size of the subproblem graphG D .V; E/ can help us determine the running

time of the dynamic programming algorithm. Since we solve each subproblem just
once, the running time is the sum of the times needed to solve each subproblem.
Typically, the time to compute the solution to a subproblem is proportional to the
degree (number of outgoing edges) of the corresponding vertex in the subproblem
graph, and the number of subproblems is equal to the number of vertices in the sub-
problem graph. In this common case, the running time of dynamic programming
is linear in the number of vertices and edges.

Reconstructing a solution

Our dynamic-programming solutions to the rod-cutting problem return the value of
an optimal solution, but they do not return an actual solution: a list of piece sizes.
We can extend the dynamic-programming approach to record not only the optimal
value computed for each subproblem, but also a choice that led to the optimal
value. With this information, we can readily print an optimal solution.
Here is an extended version of BOTTOM-UP-CUT-ROD that computes, for each

rod size j , not only the maximum revenue rj , but also sj , the optimal size of the
first piece to cut off:



15.1 Rod cutting 369

EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n� and sŒ0 : : n� be new arrays
2 rŒ0� D 0

3 for j D 1 to n

4 q D �1
5 for i D 1 to j

6 if q < pŒi�C rŒj � i �

7 q D pŒi�C rŒj � i �

8 sŒj � D i

9 rŒj � D q

10 return r and s

This procedure is similar to BOTTOM-UP-CUT-ROD, except that it creates the ar-
ray s in line 1, and it updates sŒj � in line 8 to hold the optimal size i of the first
piece to cut off when solving a subproblem of size j .
The following procedure takes a price table p and a rod size n, and it calls

EXTENDED-BOTTOM-UP-CUT-ROD to compute the array sŒ1 : : n� of optimal
first-piece sizes and then prints out the complete list of piece sizes in an optimal
decomposition of a rod of length n:

PRINT-CUT-ROD-SOLUTION.p; n/

1 .r; s/ D EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

2 while n > 0

3 print sŒn�

4 n D n � sŒn�

In our rod-cutting example, the call EXTENDED-BOTTOM-UP-CUT-ROD.p; 10/

would return the following arrays:

i 0 1 2 3 4 5 6 7 8 9 10

rŒi � 0 1 5 8 10 13 17 18 22 25 30

sŒi � 0 1 2 3 2 2 6 1 2 3 10

A call to PRINT-CUT-ROD-SOLUTION.p; 10/ would print just 10, but a call with
n D 7 would print the cuts 1 and 6, corresponding to the first optimal decomposi-
tion for r7 given earlier.

Exercises

15.1-1
Show that equation (15.4) follows from equation (15.3) and the initial condition
T .0/ D 1.



370 Chapter 15 Dynamic Programming

15.1-2
Show, by means of a counterexample, that the following “greedy” strategy does
not always determine an optimal way to cut rods. Define the density of a rod of
length i to be pi=i , that is, its value per inch. The greedy strategy for a rod of
length n cuts off a first piece of length i , where 1 � i � n, having maximum
density. It then continues by applying the greedy strategy to the remaining piece of
length n � i .

15.1-3
Consider a modification of the rod-cutting problem in which, in addition to a
price pi for each rod, each cut incurs a fixed cost of c. The revenue associated with
a solution is now the sum of the prices of the pieces minus the costs of making the
cuts. Give a dynamic-programming algorithm to solve this modified problem.

15.1-4
Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution,
too.

15.1-5
The Fibonacci numbers are defined by recurrence (3.22). Give an O.n/-time
dynamic-programming algorithm to compute the nth Fibonacci number. Draw the
subproblem graph. How many vertices and edges are in the graph?

15.2 Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves the problem
of matrix-chain multiplication. We are given a sequence (chain) hA1; A2; : : : ; Ani
of n matrices to be multiplied, and we wish to compute the product

A1A2 � � �An : (15.5)

We can evaluate the expression (15.5) using the standard algorithm for multiply-
ing pairs of matrices as a subroutine once we have parenthesized it to resolve all
ambiguities in how the matrices are multiplied together. Matrix multiplication is
associative, and so all parenthesizations yield the same product. A product of ma-
trices is fully parenthesized if it is either a single matrix or the product of two fully
parenthesized matrix products, surrounded by parentheses. For example, if the
chain of matrices is hA1; A2; A3; A4i, then we can fully parenthesize the product
A1A2A3A4 in five distinct ways:


