
back to examples

Maximum Weight Independent Set in a Tree

Given: A tree with weights for each vertex. We use W(v) to denote the weight
of vertex v.
To do: Find a set S of vertices in the tree, none adjacent, such that the sum of
the vertex weights in S, sumv in SW(v), is the largest possible.

Step 1: Characterize optimal subproblems

For nearly every problem related to trees, we root the tree first
because subproblems normally correspond to subtrees.

Let v be the root of a tree T with children v1...vc and grandchildren w1...wg.
For a vertex w in the tree, let Tu denote the subtree rooted at u.
If v is not in the optimal solution S, then S=Sv1 U ... U Svc

where each Svi is an optimal solution for Tvi.

Assume the contradiction: some Svi is not optimal for Tvi.
Let S'vi be optimal for Tvi.
Then, sumu in Svi

 W(u) < sumu in S'vi
 W(u).

Then, S'=(S\Svi) U S'vi is a solution for T because v is not in S.
However, sumu in S W(u) < sumu in S' W(u), a contradiction.

If v is in the optimal solution S, then S={v} U Sw1 U ... U Swg

where each Swi is an optimal solution for Twi.

Assume the contradiction: some Swi is not optimal for Twi.
Let S'wi be optimal for Twi.
Then, sumu in Swi

 W(u) < sumu in S'wi
 W(u).

Then, S'=(S\Swi) U S'wi is a solution for T because its parent, a child of v,
is not in S.
However, sumu in S W(u) < sumu in S' W(u), a contradiction.

Step 2: Recursive algorithm

IS-value(T, W)
 let v be the root of T
 let v1...vc be the children of v

Dynamic Programming Examples file:///C:/Documents%20and%20Settings/admin/Desktop/Dynamic-Prog...

1 of 3 10/27/2009 9:34 AM

 let w1...wg be the grandchildren of v
 return max{IS-value(Tv1,W) + ... + IS-value(Tvc,W)
 IS-value(Tw1,W) + ... + IS-value(Twg,W) + W(v)}

Or, equivalently ...

IS-value(T,W)
 return max{ IS-value-with-root(T,W), IS-value-no-root(T,W) }

IS-value-with-root(T,W)
 let v1...vc be the children of root v of T
 return IS-value-no-root(Tv1,W) + ... + IS-value-no-root(Tvc,W) + W(v)

IS-value-no-root(T,W)
 let v1...vc be the children of root v of T
 return IS-value(Tv1,W) + ... + IS-value(Tvc,W)

Though this algorithm does not have exponential running time,
it does solve overlapping subproblems. For a full binary tree T on n vertices,
the algorithm makes at least n3/2/9 recursive calls.

Let h be the height of T. Then, the running time is: T(h) >= 2T(h-1) +
4T(h-2), T(1) >= 1.

We prove by induction that T(h) >= 3h-1:

Base: T(1) >= 1 = 30

Induction assumption: T(h) >= 3h-1 for h <= K for some constant K >=
0.
Induction step: T(K+1) >= 2T(K) + 4T(K-1)
>= 2*3K-1 + 4*4K-2

>= (2*3 + 4)4K-2

>= 9*3K-2

>= 3K.

Since n=2h+1-1, we have
n3/2 <= (2h+1)3/2 = 2(h+1)3/2 <= 3h+1.
In other words, n3/2/9 <= 3h-1 <= T(h).

Step 3: Dynamic programming algorithm

Dynamic Programming Examples file:///C:/Documents%20and%20Settings/admin/Desktop/Dynamic-Prog...

2 of 3 10/27/2009 9:34 AM

We can reduce the running time to O(n) by observing that there are 2n different
subproblems to solve, two for each vertex u in the tree:

1. IS-value(Tu,W)
2. IS-value-no-root(Tu,W)

Once again, there are two ways to avoid solving the same subproblem twice.
Here is the bottom-up technique:

IS-value(T,W)
 is = an (vertices of T)x(optimal,noroot) table
 for h = height(T) .. 0 do
 for each vertex u at height h do
 let u1...uc be the children of u
 is[u,noroot] = is[u1,optimal] + ... + is[uc,optimal]
 is[u,optimal] = max{ is[u,noroot],
 is[u1,noroot] + ... + is[uc,noroot] + W(u) }
 return is[root(T),optimal]

In this algorithm, we compute 2n values in the table,
and reference each element once, so the algorithm runs in O(n) time.

Step 4: Reconstructing an optimal solution

An exercise for the reader.
back to examples

Dynamic Programming Examples file:///C:/Documents%20and%20Settings/admin/Desktop/Dynamic-Prog...

3 of 3 10/27/2009 9:34 AM

