back to examples

Maximum Weight Independent Set in a Tree

Given: A tree with weights for each vertex. We use W(v) to denote the weight of vertex v.

To do: Find a set S of vertices in the tree, none adjacent, such that the sum of the vertex weights in S, $sum_{v \text{ in } S}W(v)$, is the largest possible.

Step 1: Characterize optimal subproblems

For nearly every problem related to trees, we root the tree first because subproblems normally correspond to subtrees.

Let v be the root of a tree T with children $v_1...v_c$ and grandchildren $w_1...w_g$. For a vertex w in the tree, let T_u denote the subtree rooted at u. If v is not in the optimal solution S, then $S=S_{v_1}U...US_{v_c}$ where each S_{v_i} is an optimal solution for T_{v_i} .

Assume the contradiction: some S_{v_i} is not optimal for T_{v_i} .

Let S'_{v_i} be optimal for T_{v_i} .

Then, sum_u in $S_{v_i} W(u) < sum_u$ in $S'_{v_i} W(u)$.

Then, $S'=(S \setminus S_{v_i}) \cup S'_{v_i}$ is a solution for T because v is not in S.

However, sum_{u in S} $W(u) < sum_u$ in S' W(u), a contradiction.

If v is in the optimal solution S, then $S = \{v\} U S_{w_1} U \dots U S_{w_g}$ where each S_{w_i} is an optimal solution for T_{w_i} .

Assume the contradiction: some S_{W_i} is not optimal for T_{W_i} . Let S'_{W_i} be optimal for T_{W_i} . Then, $sum_{u \text{ in } S_{W_i}} W(u) < sum_{u \text{ in } S'_{W_i}} W(u)$. Then, $S'=(S \setminus S_{W_i}) \cup S'_{W_i}$ is a solution for T because its parent, a child of v, is not in S. However, $sum_{u \text{ in } S} W(u) < sum_{u \text{ in } S'} W(u)$, a contradiction.

Step 2: Recursive algorithm

```
let w_1...w_g be the grandchildren of v
return max{IS-value(T_{v_1}, W) + ... + IS-value(T_{v_c}, W)
IS-value(T_{w_1}, W) + ... + IS-value(T_{w_g}, W) + W(v)}
```

Or, equivalently ...

```
 \begin{array}{l} \text{IS-value}(\texttt{T},\texttt{W}) \\ \text{return max} \left\{ \text{ IS-value-with-root}(\texttt{T},\texttt{W}), \text{ IS-value-no-root}(\texttt{T},\texttt{W}) \right\} \\ \text{IS-value-with-root}(\texttt{T},\texttt{W}) \\ \text{let } v_1 \dots v_c \text{ be the children of root } v \text{ of } \texttt{T} \\ \text{return IS-value-no-root}(\texttt{T}_{v_1},\texttt{W}) + \dots + \text{ IS-value-no-root}(\texttt{T}_{v_c},\texttt{W}) + \mathbb{W}(v) \\ \text{IS-value-no-root}(\texttt{T},\texttt{W}) \\ \text{let } v_1 \dots v_c \text{ be the children of root } v \text{ of } \texttt{T} \\ \text{return IS-value}(\texttt{T}_{v_1},\texttt{W}) + \dots + \text{ IS-value}(\texttt{T}_{v_c},\texttt{W}) \end{array}
```

Though this algorithm does not have exponential running time, it does solve overlapping subproblems. For a full binary tree T on n vertices, the algorithm makes at least $n^{3/2}/9$ recursive calls.

Let h be the height of T. Then, the running time is: $T(h) \ge 2T(h-1) + 4T(h-2), T(1) \ge 1$. We prove by induction that $T(h) \ge 3^{h-1}$: **Base:** $T(1) \ge 1 = 3^{0}$ **Induction assumption:** $T(h) \ge 3^{h-1}$ for $h \le K$ for some constant $K \ge 0$. **Induction step:** $T(K+1) \ge 2T(K) + 4T(K-1)$ $\ge 2*3^{K-1} + 4*4^{K-2}$ $\ge (2*3 + 4)4^{K-2}$ $\ge 9*3^{K-2}$ $\ge 3^{K}$. Since $n=2^{h+1}-1$, we have $n^{3/2} <= (2^{h+1})^{3/2} = 2^{(h+1)3/2} <= 3^{h+1}$. In other words, $n^{3/2}/9 <= 3^{h-1} <= T(h)$.

Step 3: Dynamic programming algorithm

We can reduce the running time to O(n) by observing that there are 2n different subproblems to solve, two for each vertex u in the tree:

```
    IS-value(T<sub>u</sub>,W)
    IS-value-no-root(T<sub>u</sub>,W)
```

Once again, there are two ways to avoid solving the same subproblem twice. Here is the bottom-up technique:

In this algorithm, we compute 2n values in the table, and reference each element once, so the algorithm runs in O(n) time.

Step 4: Reconstructing an optimal solution

An exercise for the reader.

back to examples