Polygon Triangulation
Motivation:
The Art Gallery Problem
Motivation:
The Art Gallery Problem
Motivation:
The Art Gallery Problem
Triangulating Polygons

Definitions

- Simple polygon: Regions enclosed by a single closed polygonal chain that does not intersect itself.
- Question: How many cameras do we need to guard a simple polygon?
- Answer: Depends on the polygon.
- One solution: Decompose the polygon to parts which are simple to guard.

Simple Polygon

Non-Simple Polygons
Definitions

- **Simple polygon**: Regions enclosed by a single closed polygonal chain that does not intersect itself.
- **Question**: How many cameras do we need to guard a simple polygon?
 Answer: Depends on the polygon.
- **One solution**: Decompose the polygon to parts which are simple to guard.

Definitions

- **Convex**: A polygon where all interior angles are less than 180 degrees.
- **Star-shaped**: A polygon where there exists a point such that every line segment from this point to a vertex of the polygon lies entirely inside the polygon.

Triangulating Polygons

- **Examples**:
 - **Convex**: A polygon where all interior angles are less than 180 degrees.
 - **Star-shaped**: A polygon where there exists a point such that every line segment from this point to a vertex of the polygon lies entirely inside the polygon.
Definitions

- Simple polygon: Regions enclosed by a single closed polygonal chain that does not intersect itself.
- Question: How many cameras do we need to guard a simple polygon?
 Answer: Depends on the polygon.
- One solution: Decompose the polygon to parts which are simple to guard.
Triangulating Polygons

Definitions

- **diagonals:**
- **Triangulation:** A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.

![Diagram of triangulation]

- **diagonals**
- **not diagonal**
Triangulating Polygons

Definitions

- diagonals:
- Triangulation: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.
Definitions

- diagonals:
- Triangulation: A decomposition of a polygon into triangles by a **maximal** set of **non-intersecting** diagonals.
Triangulating Polygons

Definitions

- diagonals:
- Triangulation: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.
Guarding after triangulation:
Questions:

- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n - 2$ triangles.

Proof. By induction.

Base Case: $n = 3$ (Obvious)

Case 1: Neighbors of v make a diagonal.

Case 2: Otherwise.
Questions:
- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1
Every simple polygon admits a triangulation, and any triangulation of a simple polygon with \(n \) vertices consists of exactly \(n - 2 \) triangles.

Proof. By induction.
Base Case: \(n = 3 \) (Obvious)
Case 1: Neighbors of \(v \) make a diagonal.
Case 2: Otherwise.
Questions:
- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1
Every simple polygon admits a triangulation, and any triangulation of a simple polygon with \(n \) vertices consists of exactly \(n - 2 \) triangles.

Proof. By induction.
Base Case: \(n = 3 \) (Obvious)
Case 1: Neighbors of \(v \) make a diagonal.
Case 2: Otherwise.
Questions:
- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1
Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n - 2$ triangles.

Proof. By induction.
Base Case: $n = 3$ (Obvious)
Case 1: Neighbors of v make a diagonal.
Case 2: Otherwise.

Leftmost vertex
Questions:
- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1
Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n - 2$ triangles.

Proof. By induction.
Base Case: $n = 3$ (Obvious)
Case 1: Neighbors of v make a diagonal.
Case 2: Otherwise.
Questions:
- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1
Every simple polygon admits a triangulation, and any triangulation of a simple polygon with \(n \) vertices consists of exactly \(n - 2 \) triangles.

Proof. By induction.
Base Case: \(n = 3 \) (Obvious)
Case 1: Neighbors of \(v \) make a diagonal.
Case 2: Otherwise.
Guarding a triangulated polygon

\(\mathcal{T}_P \): A triangulation of a simple polygon \(P \).

Select \(S \subseteq \) the vertices of \(P \), such that any triangle in \(\mathcal{T}_P \) has at least one vertex in \(S \), and place the cameras at vertices in \(S \).

To find such a subset: find a 3-coloring of a triangulated polygon.

In a 3-coloring of \(\mathcal{T}_P \), every triangle has a blue, a red, and a black vertex. Hence, if we place cameras at all red vertices, we have guarded the whole polygon.

By choosing the smallest color class to place the cameras, we can guard \(P \) using at most \(\lceil n/3 \rceil \) cameras.
Guarding a triangulated polygon

- \mathcal{T}_P: A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a triangulated polygon.
- In a 3-coloring of \mathcal{T}_P, every triangle has a blue, a red, and a black vertex. Hence, if we place cameras at all red vertices, we have guarded the whole polygon.
- By choosing the smallest color class to place the cameras, we can guard P using at most $\lfloor n/3 \rfloor$ cameras.
Guarding a triangulated polygon

- \mathcal{T}_P: A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a triangulated polygon.

In a 3-coloring of \mathcal{T}_P, every triangle has a blue, a red, and a black vertex. Hence, if we place cameras at all red vertices, we have guarded the whole polygon.

By choosing the smallest color class to place the cameras, we can guard P using at most $\lfloor n/3 \rfloor$ cameras.
Guarding a triangulated polygon

- \mathcal{T}_P: A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a triangulated polygon.
- In a 3-coloring of \mathcal{T}_P, every triangle has a blue, a red, and a black vertex. Hence, if we place cameras at all red vertices, we have guarded the whole polygon.
- By choosing the smallest color class to place the cameras, we can guard P using at most $\lfloor n/3 \rfloor$ cameras.
Guarding a triangulated polygon

- \mathcal{T}_P: A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a triangulated polygon.
- In a 3-coloring of \mathcal{T}_P, every triangle has a blue, a red, and a black vertex. Hence, if we place cameras at all red vertices, we have guarded the whole polygon.
- By choosing the smallest color class to place the cameras, we can guard P using at most $\lfloor n/3 \rfloor$ cameras.
Does a 3-coloring always exist?

Dual graph:

- This graph $G(T_P)$ has a node for every triangle in T_P.
- There is an arc between two nodes ν and μ if $t(\nu)$ and $t(\mu)$ share a diagonal.
- $G(T_P)$ is a tree.
Does a 3-coloring always exist?

Dual graph:
- This graph $G(\mathcal{T}_P)$ has a node for every triangle in \mathcal{T}_P.
- There is an arc between two nodes ν and μ if $t(\nu)$ and $t(\mu)$ share a diagonal.
- $G(\mathcal{T}_P)$ is a tree.
Does a 3-coloring always exist?

Dual graph:
- This graph $G(T_P)$ has a node for every triangle in T_P.
- There is an arc between two nodes ν and μ if $t(\nu)$ and $t(\mu)$ share a diagonal.
- $G(T_P)$ is a tree.
Does a 3-coloring always exist?

For 3-coloring:

- Traverse the dual graph (DFS).
- Invariant: so far everything is nice.
- Start from any node of \(G(T_P) \); color the vertices.
- When we reach a node \(\nu \) in \(G \), coming from node \(\mu \).
 Only one vertex of \(t(\nu) \) remains to be colored.
Does a 3-coloring always exist?

For 3-coloring:

- Traverse the dual graph (DFS).
- Invariant: so far everything is nice.
- Start from any node of $G(\mathcal{T}_P)$; color the vertices.
- When we reach a node ν in G, coming from node μ. Only one vertex of $t(\nu)$ remains to be colored.
Does a 3-coloring always exist?

For 3-coloring:

- Traverse the dual graph (DFS).
- Invariant: so far everything is nice.
- Start from any node of $G(T_P)$; color the vertices.
- When we reach a node ν in G, coming from node μ. Only one vertex of $t(\nu)$ remains to be colored.
Does a 3-coloring always exist?

For 3-coloring:

- Traverse the dual graph (DFS).
- Invariant: so far everything is nice.
- Start from any node of $G(T_P)$; color the vertices.
- When we reach a node ν in G, coming from node μ. Only one vertex of $t(\nu)$ remains to be colored.
Theorem 3.2 (Art Gallery Theorem)

For a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras.

\[\lfloor n/3 \rfloor \text{ prongs} \]
Art Gallery Theorem

We will show:

How to compute a triangulation in $O(n \log n)$ time.

Therefore:

Theorem 3.3

Let P be a simple polygon with n vertices. A set of $\left\lfloor \frac{n}{3} \right\rfloor$ camera positions in P such that any point inside P is visible from at least one of the cameras can be computed in $O(n \log n)$ time.
How can we compute a triangulation of a given polygon?
Triangulation algorithms

- A really naive algorithm: check all $\binom{n}{2}$ choices for a diagonal, each takes $O(n)$ time. Time complexity: $O(n^3)$.
- A better naive algorithm: find an ear in $O(n)$ time, then recurse. Total time: $O(n^2)$.
- First non-trivial algorithm: $O(n \log n)$ (1978).
- A long series of papers and algorithms in 80s until Chazelle produced an optimal $O(n)$ algorithm in 1991.
- Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.
- Here we present a $O(n \log n)$ algorithm.
Triangulation algorithms

- A really naive algorithm: check all \(\binom{n}{2} \) choices for a diagonal, each takes \(\mathcal{O}(n) \) time. Time complexity: \(\mathcal{O}(n^3) \).

- A better naive algorithm: find an ear in \(\mathcal{O}(n) \) time, then recurse. Total time: \(\mathcal{O}(n^2) \).

- First non-trivial algorithm: \(\mathcal{O}(n \log n) \) (1978).

- A long series of papers and algorithms in 80s until Chazelle produced an optimal \(\mathcal{O}(n) \) algorithm in 1991.

- Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.

- Here we present a \(\mathcal{O}(n \log n) \) algorithm.
Triangulation algorithms

- A really naive algorithm: check all $\binom{n}{2}$ choices for a diagonal, each takes $O(n)$ time. Time complexity: $O(n^3)$.

- A better naive algorithm: find an ear in $O(n)$ time, then recurse. Total time: $O(n^2)$.

- First non-trivial algorithm: $O(n \log n)$ (1978).

- A long series of papers and algorithms in 80s until Chazelle produced an optimal $O(n)$ algorithm in 1991.

- Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.

- Here we present a $O(n \log n)$ algorithm.
Triangulation algorithms

- A really naive algorithm: check all $\binom{n}{2}$ choices for a diagonal, each takes $O(n)$ time. Time complexity: $O(n^3)$.

- A better naive algorithm: find an ear in $O(n)$ time, then recurse. Total time: $O(n^2)$.

- First non-trivial algorithm: $O(n \log n)$ (1978).

- A long series of papers and algorithms in 80s until Chazelle produced an optimal $O(n)$ algorithm in 1991.

- Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.

- Here we present a $O(n \log n)$ algorithm.
Triangulation algorithms

- A really naive algorithm: check all \(\binom{n}{2} \) choices for a diagonal, each takes \(O(n) \) time. Time complexity: \(O(n^3) \).

- A better naive algorithm: find an ear in \(O(n) \) time, then recurse. Total time: \(O(n^2) \).

- First non-trivial algorithm: \(O(n \log n) \) (1978).

- A long series of papers and algorithms in 80s until Chazelle produced an optimal \(O(n) \) algorithm in 1991.

- Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.

- Here we present a \(O(n \log n) \) algorithm.

Triangulation algorithms

- A really naive algorithm: check all $\binom{n}{2}$ choices for a diagonal, each takes $O(n)$ time. Time complexity: $O(n^3)$.

- A better naive algorithm: find an ear in $O(n)$ time, then recurse. Total time: $O(n^2)$.

- First non-trivial algorithm: $O(n \log n)$ (1978).

- A long series of papers and algorithms in 80s until Chazelle produced an optimal $O(n)$ algorithm in 1991.

- Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.

- Here we present a $O(n \log n)$ algorithm.
Algorithm Outline

1. Partition polygon into monotone polygons.
2. Triangulate each monotone piece.
ℓ-monotone polygon

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

Definition:

- A point p is below another point q if $p_y < q_y$ or $p_y = q_y$ and $p_x > q_x$.
- p is above q if $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$.

Monotone polygon
Monotone polygon

\(\ell \)-monotone polygon

\(P \) is called monotone w. r. t. \(\ell \) if \(\forall \ell' \) perpendicular to \(\ell \) the intersection of \(P \) with \(\ell \) is connected (a line segment, a point, or empty).

![Diagram of a monotone polygon with \(\ell \) and \(\ell' \) as vertical and horizontal lines.](image-url)
Monotone polygon

\(\ell \)-monotone polygon

\(P \) is called monotone w. r. t. \(\ell \) if \(\forall \ell' \) perpendicular to \(\ell \) the intersection of \(P \) with \(\ell \) is connected (a line segment, a point, or empty).

\[y\text{-axis} \]
Monotone polygon

\(\ell\)-monotone polygon

\(P\) is called monotone w. r. t. \(\ell\) if \(\forall \ell'\) perpendicular to \(\ell\) the intersection of \(P\) with \(\ell\) is connected (a line segment, a point, or empty).

\[
\text{Definition:}
\text{A point } p \text{ is below another point } q \text{ if } p_y < q_y \text{ or } p_y = q_y \text{ and } p_x > q_x.
\]

\[
\text{p is above } q \text{ if } p_y > q_y \text{ or } p_y = q_y \text{ and } p_x < q_x.
\]
\(\ell \)-monotone polygon

\(P \) is called monotone w. r. t. \(\ell \) if \(\forall \ell' \) perpendicular to \(\ell \) the intersection of \(P \) with \(\ell \) is connected (a line segment, a point, or empty).

\[y - \text{axis} \]
ℓ-monotone polygon

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).
Monotone polygon

ℓ-monotone polygon

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

Definition:
A point p is below another point q if $p_y < q_y$ or $p_y = q_y$ and $p_x > q_x$.

p is above q if $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$.

y–axis
Monotone polygon

ℓ-monotone polygon

\(P \) is called monotone w. r. t. \(\ell \) if \(\forall \ell' \) perpendicular to \(\ell \) the intersection of \(P \) with \(\ell \) is connected (a line segment, a point, or empty).

Definition:

- A point \(p \) is below another point \(q \) if \(p_y < q_y \) or \(p_y = q_y \) and \(p_x > q_x \).
- \(p \) is above \(q \) if \(p_y > q_y \) or \(p_y = q_y \) and \(p_x < q_x \).
Partition P into monotone pieces

- \square = start vertex
- \blacksquare = end vertex
- \blacktriangle = regular vertex
- \triangle = split vertex
- \downarrow = merge vertex
Partition P into monotone pieces

Lemma 3.4

If P has no split or merge vertices then it is y-monotone.

Proof. Assume P is not y-monotone. We show that it has an split or merge vertex.

By Lemma 3.4, P has been partitioned into y-monotone pieces once we get rid of its split and merge vertices.
Lemma 3.4

If P has no split or merge vertices then it is y-monotone.

Proof. Assume P is not y-monotone. We show that it has an split or merge vertex.

(a) $p=q=r$
(b) $p=r=q=r$

By Lemma 3.4, P has been partitioned into y-monotone pieces once we get rid of its split and merge vertices.
Lemma 3.4

If P has no split or merge vertices then it is y-monotone.

Proof. Assume P is not y-monotone. We show that it has an split or merge vertex.

(a) \hspace{1cm} (b)

By Lemma 3.4, P has been partitioned into y-monotone pieces once we get rid of its split and merge vertices.
Removing split/merge vertices:

- A sweep line algorithm.
- Events: all the points
- Goal: To add diagonals from each split vertex to a vertex lying above it.

 $helper(e_j)$: Lowest vertex above the sweep line s. t. the horizontal segment connecting the vertex to e_j lies inside P.

- Connect split vertices to the helper of the edge to their left.
Removing split/merge vertices:

A sweep line algorithm.

Events: all the points

Goal: To add diagonals from each split vertex to a vertex lying above it.

-helper(ej): Lowest vertex above the sweep line s. t. the horizontal segment connecting the vertex to ej lies inside P.

Connect split vertices to the helper of the edge to their left.
Removing split/merge vertices:

- A sweep line algorithm.
- Events: all the points
- Goal: To add diagonals from each split vertex to a vertex lying above it.

\(\text{helper}(e_j) \): Lowest vertex above the sweep line s.t. the horizontal segment connecting the vertex to \(e_j \) lies inside \(P \).

- Connect split vertices to the helper of the edge to their left.
Removing split/merge vertices:

- A sweep line algorithm.
- Events: all the points
- Goal: To add diagonals from each split vertex to a vertex lying above it.
- $helper(e_j)$: Lowest vertex above the sweep line s.t. the horizontal segment connecting the vertex to e_j lies inside P.

- Connect split vertices to the helper of the edge to their left.
Removing split/merge vertices:

A sweep line algorithm.

Events: all the points

Goal: To add diagonals from each split vertex to a vertex lying above it.

\(helper(e_j) \): Lowest vertex above the sweep line s. t. the horizontal segment connecting the vertex to \(e_j \) lies inside \(P \).

Connect split vertices to the helper of the edge to their left.
Removing split/merge vertices:

Removing merge vertices:

- Connect each merge vertex to the highest vertex below the sweep line in between e_j and e_k.
- But we do not know the point.
- When we reach a vertex v_m that replaces the helper of e_j, then this is the vertex we are looking for.
Removing split/merge vertices:

• Connect each merge vertex to the highest vertex below the sweep line in between e_j and e_k.

• But we do not know the point.

• When we reach a vertex v_m that replaces the helper of e_j, then this is the vertex we are looking for.
Removing split/merge vertices:

Removing merge vertices:

- Connect each merge vertex to the highest vertex below the sweep line in between e_j and e_k.
- But we do not know the point.
- When we reach a vertex v_m that replaces the helper of e_j, then this is the vertex we are looking for.
Data Structure:

For this approach, we need to find the edge to the left of each vertex. To do that:

1. We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree T.
2. Because we are only interested in edges to the left of split and merge vertices we only need to store edges in T that have the interior of P to their right.
3. With each edge in T we store its helper.
4. We store P in DCEL form and make changes such that it remains valid.
Data Structure:

For this approach, we need to find the edge to the left of each vertex. To do that:

1. We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree T.

2. Because we are only interested in edges to the left of split and merge vertices we only need to store edges in T that have the interior of P to their right.

3. With each edge in T we store its helper.

4. We store P in DCEL form and make changes such that it remains valid.
Data Structure:

For this approach, we need to find the edge to the left of each vertex. To do that:

1. We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree T.
2. Because we are only interested in edges to the left of split and merge vertices we only need to store edges in T that have the interior of P to their right.
3. With each edge in T we store its helper.
4. We store P in DCEL form and make changes such that it remains valid.
Data Structure:

For this approach, we need to find the edge to the left of each vertex. To do that:

1. We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree T.
2. Because we are only interested in edges to the left of split and merge vertices we only need to store edges in T that have the interior of P to their right.
3. With each edge in T we store its helper.
4. We store P in DCEL form and make changes such that it remains valid.
Make Monotone Algorithm:

Algorithm \textsc{MakeMonotone}(P) \\
\textbf{Input:} A simple polygon P stored in a DCEL \(\mathcal{D} \). \\
\textbf{Output:} A partitioning of P into monotone subpolygons, stored in \(\mathcal{D} \).

1. Construct a priority queue \(Q \) on the vertices of P, using their \(y \)-coordinates as priority. If two points have the same \(y \)-coordinate, the one with smaller \(x \)-coordinate has higher priority.
2. Initialize an empty binary search tree \(T \).
3. \textbf{while} \(Q \) is not empty
4. Remove the vertex \(v_i \) with the highest priority from \(Q \).
5. Call the appropriate procedure to handle the vertex, depending on its type.
Algorithm HANDLE START VERTEX \((v_i)\)

1. Insert \(e_i\) in \(T\) and set \(helper(e_i)\) to \(v_i\).
Make Monotone Algorithm:

Algorithm `HANDLE_END_VERTEX(v_i)`
1. **if** `helper(e_{i-1})` is a merge vertex
2. **then** Insert the diagonal connecting `v_i` to `helper(e_{i-1})` in `D`.
3. Delete `e_{i-1}` from `T`.

![Diagram of a monotone polygon with vertices and edges]
Make Monotone Algorithm:

Algorithm HANDLE_SPLIT_VERTEX(v_i)

1. Search in \mathcal{T} to find the edge e_j directly left of v_i.
2. Insert the diagonal connecting v_i to helper(e_j) in \mathcal{D}.
3. helper(e_j) $\leftarrow v_i$.
4. Insert e_i in \mathcal{T} and set helper(e_i) to v_i.

Diagram:

[Diagram showing a polygon with vertices and edges labeled v_1, v_2, \ldots, v_{15}, and edges e_1, e_2, \ldots, e_{15}, indicating the process of inserting diagonals to make the polygon monotone.]
Make Monotone Algorithm:

Algorithm HANDLEMERGEVERTEX(v_i)

1. if $\text{helper}(e_{i-1})$ is a merge vertex
2. then Insert the diag. v_i to $\text{helper}(e_{i-1})$ in D.
3. Delete e_{i-1} from T.
4. Search in T to find e_j directly left of v_i.
5. if $\text{helper}(e_j)$ is a merge vertex
6. then Insert the diag. v_i to $\text{helper}(e_j)$ in D.
7. $\text{helper}(e_j) \leftarrow v_i$.
Make Monotone Algorithm:

Algorithm `HANDLE_REGULAR_VERTEX(v_i)`

1. **if** the interior of P lies to the right of v_i
2. **then if** $helper(e_{i-1})$ is a merge vertex
3. **then** Insert the diag. v_i to $helper(e_{i-1})$ in D.
4. Delete e_{i-1} from T.
5. Insert e_i in T and set $helper(e_i)$ to v_i.
6. **else** Search in T to find e_j directly left of v_i.
7. **if** $helper(e_j)$ is a merge vertex
8. **then** Insert the diag. v_i to $helper(e_j)$ in D.
9. $helper(e_j) \leftarrow v_i$
Lemma 3.5
Algorithm MAKE.MONOTONE adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
- No vertex inside R.
- No intersection between v_iv_m and edges of P.
- No intersection between v_iv_m and previous diag.
 R is empty, endpoints of previously added edges: above v_i.

![Diagram showing the proof of Lemma 3.5](image)
Lemma 3.5

Algorithm `MAKE_MONOTONE` adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar)

- No vertex inside R.
- No intersection between v_iv_m and edges of P.
- No intersection between v_iv_m and previous diag. R is empty, endpoints of previously added edges: above v_i.
Lemma 3.5
Algorithm MAKE MONOTONE adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
- No vertex inside R.
- No intersection between v_iv_m and edges of P.
- No intersection between v_iv_m and previous diag.
- R is empty, endpoints of previously added edges: above v_i.

![Diagram](image-url)
Lemma 3.5

Algorithm **MAKE_MONOTONE** adds a set of non-intersecting diagonals that partitions \(P \) into monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
- No vertex inside \(R \).
- No intersection between \(v_i v_m \) and edges of \(P \).
- No intersection between \(v_i v_m \) and previous diag. \(R \) is empty, endpoints of previously added edges: above \(v_i \).

![Diagram showing the partitioning process](image_url)
Lemma 3.5

Algorithm **MAKEMONOTONE** adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar)
- No vertex inside R.
- No intersection between $v_i v_m$ and edges of P.
- No intersection between $v_i v_m$ and previous diag. R is empty, endpoints of previously added edges: above v_i.
Running time/ Space complexity

Running time:

- Constructing the priority queue Q: $O(n)$ time.
- Initializing T: $O(1)$ time.
- To handle an event, we perform:
 - one operation on Q: $O(\log n)$ time.
 - at most one query on T: $O(\log n)$ time.
 - one insertion, and one deletion on T: $O(\log n)$ time.
 - we insert at most two diagonals into D: $O(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in T.
Running time / Space complexity

Running time:

- Constructing the priority queue \(Q \): \(O(n) \) time.
- Initializing \(T \): \(O(1) \) time.
- To handle an event, we perform:
 - one operation on \(Q \): \(O(\log n) \) time.
 - at most one query on \(T \): \(O(\log n) \) time.
 - one insertion, and one deletion on \(T \): \(O(\log n) \) time.
 - we insert at most two diagonals into \(D \): \(O(1) \) time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in \(Q \), and every edge is stored at most once in \(T \).
Running time/ Space complexity

Running time:

- Constructing the priority queue Q: $O(n)$ time.
- Initializing T: $O(1)$ time.
- To handle an event, we perform:
 1. one operation on Q: $O(\log n)$ time.
 2. at most one query on T: $O(\log n)$ time.
 3. one insertion, and one deletion on T: $O(\log n)$ time.
 4. we insert at most two diagonals into D: $O(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in T.
Running time/ Space complexity

Running time:

- Constructing the priority queue Q: $O(n)$ time.
- Initializing T: $O(1)$ time.
- To handle an event, we perform:
 1. one operation on Q: $O(\log n)$ time.
 2. at most one query on T: $O(\log n)$ time.
 3. one insertion, and one deletion on T: $O(\log n)$ time.
 4. we insert at most two diagonals into D: $O(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in T.
Running time/ Space complexity

Running time:

- Constructing the priority queue Q: $O(n)$ time.
- Initializing T: $O(1)$ time.
- To handle an event, we perform:
 1. one operation on Q: $O(\log n)$ time.
 2. at most one query on T: $O(\log n)$ time.
 3. one insertion, and one deletion on T: $O(\log n)$ time.
 4. we insert at most two diagonals into D: $O(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in T.
Running time/ Space complexity

Running time:

- Constructing the priority queue Q: $O(n)$ time.
- Initializing T: $O(1)$ time.
- To handle an event, we perform:
 1. one operation on Q: $O(\log n)$ time.
 2. at most one query on T: $O(\log n)$ time.
 3. one insertion, and one deletion on T: $O(\log n)$ time.
 4. we insert at most two diagonals into D: $O(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in T.
Running time/ Space complexity

Running time:

- Constructing the priority queue Q: $O(n)$ time.
- Initializing T: $O(1)$ time.
- To handle an event, we perform:
 1. one operation on Q: $O(\log n)$ time.
 2. at most one query on T: $O(\log n)$ time.
 3. one insertion, and one deletion on T: $O(\log n)$ time.
 4. we insert at most two diagonals into D: $O(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in T.
Running time/ Space complexity

Running time:

- Constructing the priority queue Q: $O(n)$ time.
- Initializing T: $O(1)$ time.
- To handle an event, we perform:
 1. one operation on Q: $O(\log n)$ time.
 2. at most one query on T: $O(\log n)$ time.
 3. one insertion, and one deletion on T: $O(\log n)$ time.
 4. we insert at most two diagonals into D: $O(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in T.
Monotone Decomposition:

Theorem 3.6

A simple polygon with \(n \) vertices can be partitioned into \(y \)-monotone polygons in \(O(n \log n) \) time with an algorithm that uses \(O(n) \) storage.
Triangulating a Monotone Polygon
Triangulation Algorithm:

1. The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y-coordinate).

2. The algorithm requires a stack S as auxiliary data structure. It keeps the points that handled but might need more diagonals.

3. When we handle a vertex we add as many diagonals from this vertex to vertices on the stack as possible.

4. Algorithm invariant: the part of P that still needs to be triangulated, and lies above the last vertex that has been encountered so far, looks like a funnel turned upside down.
Triangulation Algorithm:

1. The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y-coordinate).

2. The algorithm requires a stack S as auxiliary data structure. It keeps the points that handled but might need more diagonals.

3. When we handle a vertex we add as many diagonals from this vertex to vertices on the stack as possible.

4. Algorithm invariant: the part of P that still needs to be triangulated, and lies above the last vertex that has been encountered so far, looks like a funnel turned upside down.
Triangulating a Monotone Polygon

Triangulation Algorithm:

1. The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y-coordinate).

2. The algorithm requires a stack S as auxiliary data structure. It keeps the points that handled but might need more diagonals.

3. When we handle a vertex we add as many diagonals from this vertex to vertices on the stack as possible.

4. Algorithm invariant: the part of P that still needs to be triangulated, and lies above the last vertex that has been encountered so far, looks like a funnel turned upside down.
Triangulating a Monotone Polygon

Triangulation Algorithm:

1. The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y-coordinate).

2. The algorithm requires a stack S as auxiliary data structure. It keeps the points that handled but might need more diagonals.

3. When we handle a vertex we add as many diagonals from this vertex to vertices on the stack as possible.

4. Algorithm invariant: the part of P that still needs to be triangulated, and lies above the last vertex that has been encountered so far, looks like a funnel turned upside down.
Triangulating a Monotone Polygon

triangles split off

not yet triangulated
Triangulating a Monotone Polygon

Case 1: v_j and top of stack on different chains
Triangulating a Monotone Polygon

Case 1: v_j and top of stack on different chains
Triangulating a Monotone Polygon

Case 1: v_j and top of stack on different chains

e popped

u_j
Triangulating a Monotone Polygon

Case 1: v_j and top of stack on different chains
Triangulating a Monotone Polygon

Case 1: v_j and top of stack on different chains
Triangulating a Monotone Polygon

Case 1: v_j and top of stack on different chains
Triangulating a Monotone Polygon

Case 2: v_j and top of stack on same chain
Triangulating a Monotone Polygon

Case 2: v_j and top of stack on same chain

- v_j popped
Triangulating a Monotone Polygon

Case 2: \(v_j \) and top of stack on same chain

\[\text{popped} \]
Triangulating a Monotone Polygon

Case 2: v_j and top of stack on same chain
Triangulating a Monotone Polygon

Case 2: v_j and top of stack on same chain
Triangulating a Monotone Polygon

Case 2: v_j and top of stack on same chain

- popped and pushed
- popped
- pushed
- pushed

v_j
Triangulating a Monotone Polygon

Case 2: v_j and top of stack on same chain
Triangulating a Monotone Polygon

Algorithm \textsc{TriangulateMonotonePolygon}(P)

1. Merge the vertices on the left & right chain of P into one sequence, sorted on decreasing y-coordinate. Let \(u_1, \ldots, u_n \) denote the sorted sequence.

2. Initialize an empty stack \(S \), and push \(u_1 \) and \(u_2 \) onto it.

3. \textbf{for} \(j \leftarrow 3 \) \textbf{to} \(n - 1 \)

4. \textbf{if} \(u_j \) and the vertex on top of \(S \) are on different chains

5. \textbf{then} Pop all vertices from \(S \).

6. Insert into \(D \) a diagonal from \(u_j \) to each popped vertex, except the last one.

7. Push \(u_{j-1} \) and \(u_j \) onto \(S \).

8. \textbf{else} Pop one vertex from \(S \).

9. Pop the other vertices from \(S \) as long as the diagonals from \(u_j \) to them are inside \(P \). Insert these diagonals into \(D \). Push the last vertex that has been popped back onto \(S \).

10. Push \(u_j \) onto \(S \).

11. Add diagonals from \(u_n \) to all stack vertices except the first and the last one.

Time Complexity:

- Step 1: \(\mathcal{O}(n) \)
- Step 2: \(\mathcal{O}(1) \)
- Steps 3-10: \(\mathcal{O}(n) \)
Triangulating a Monotone Polygon

Algorithm TRIANGULATE_MONOTONE_POLYGON(\(P\))
1. Merge the vertices on the left & right chain of \(P\) into one sequence, sorted on decreasing \(y\)-coordinate. Let \(u_1, \ldots, u_n\) denote the sorted sequence.
2. Initialize an empty stack \(S\), and push \(u_1\) and \(u_2\) onto it.
3. for \(j \leftarrow 3\) to \(n - 1\)
4. if \(u_j\) and the vertex on top of \(S\) are on different chains
5. then Pop all vertices from \(S\).
6. Insert into \(D\) a diagonal from \(u_j\) to each popped vertex, except the last one.
7. Push \(u_{j-1}\) and \(u_j\) onto \(S\).
8. else Pop one vertex from \(S\).
9. Pop the other vertices from \(S\) as long as the diagonals from \(u_j\) to them are inside \(P\). Insert these diagonals into \(D\). Push the last vertex that has been popped back onto \(S\).
10. Push \(u_j\) onto \(S\).
11. Add diagonals from \(u_n\) to all stack vertices except the first and the last one.

Time Complexity: Step 1: \(\mathcal{O}(n)\), Step 2: \(\mathcal{O}(1)\).
Steps 3-10: \(\mathcal{O}(n)\)
Theorem 3.8

A simple polygon with \(n \) vertices can be triangulated in \(O(n \log n) \) time with an algorithm that uses \(O(n) \) storage.
Generalizing to any planar subdivision

Theorem 3.9

A planar subdivision with n vertices in total can be triangulated in $O(n \log n)$ time with an algorithm that uses $O(n)$ storage.
Theorem 3.9

A planar subdivision with \(n \) vertices in total can be triangulated in \(\mathcal{O}(n \log n) \) time with an algorithm that uses \(\mathcal{O}(n) \) storage.
END.