LATEX Tutorial

A. Ahmadi

1 Bahman 1391

Contents

1	Day		1
	1.1	Introduction	1
	1.2	Mathematics Formula	2
		1.2.1 subsection	2
2	Day	· 2	5
	2.1	Itemize, enumerate	5
	2.2	array	6
	2.3	Graphics	7
3	Day	· 3	13
	3.1	Theorem	13
	3.2	amssymb package	14
4	Day	• 4	15
	4.1	hyperref package	15
	4.2	References	15

b CONTENTS

List of Figures

2.1	This is a caption.		•			•	•									•	Ĝ
2.2	This is a caption.																10

List of Tables

2.1	First example of table environment.	10
2.2	Example of Table with tabular environment	10

Day 1

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily *compact operators*. We start by *establishing* **establishing** *establishing* a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a This is second line.

1.1 Introduction

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily *compact operators*. We start by *establishing* **establishing** *establishing* a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a **Hilbert** space, approximation approximation approximation approximation approximation approximation approximation approximation with This is second line.

This is Third line. Let G is a graph. let

$$x^{x^2+21}+1$$

$$x_i - x_{ij}^2 + 2x_{i^2+1} + x_i y_i$$

$$\left\{ \frac{\left\{ x^{x^2+21}+1 \right\}}{x_i - x_{ij}^2 + 2x_{i^2+1} + x_i y_i} \right\}$$

$$\left\{ \frac{\left\{ \frac{x^{x^2+21}+1}{2x} \right\}}{x_i - x_{ij}^2 + 2x_{i^2+1} + x_i y_i} \right\}$$

1.2 Mathematics Formula

$$\sqrt[n]{x^2 - 2x + 1}$$

$$\sqrt[2]{\frac{2x+1}{x-1}}$$

1.2.1 subsection

$$\left(\frac{\frac{1}{x}}{\left(\sqrt{\frac{2x}{y}}\right)}\right)$$

$$\sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{\infty} \frac{x_i - 2x^2 - 1}{x - 1}$$

$$\lim_{\alpha \to \infty} \sin(\alpha)$$

$$\int_{a}^{x^{2}} \frac{\sin x}{\sin x + \cos x}$$

$$\bigotimes_{i=1}^{5} x^{i^2} \tag{1.2.1}$$

$$\sum_{i=1}^{n} x_i \tag{1.2.2}$$

$$\sum_{i=1}^{n} x_i \tag{1.2.2}$$

$$\lim_{\alpha \to \infty} \sin(\alpha) \tag{1.2.3}$$

$$\int_{a}^{x^2} \frac{\sin x}{\sin x + \cos x} \tag{1.2.4}$$

$$\sum_{i=1}^{\infty} \frac{x_i - 2x^2 - 1}{x - 1} \tag{1.2.5}$$

$$\bigotimes_{i=1}^{5} x^{i^2}$$

$$f(x) = \sin x + \cos x$$

$$\leq 2x + 1$$

$$< x^2 - 1$$

$$= \frac{x^5 + 4x^2}{4}.$$

$$f(x) = \sin x + \cos x \tag{1.2.6}$$

$$\leq 2x + 1$$

$$< x^2 - 1$$
 (1.2.7)

$$= \frac{x^5 + 4x^2}{4}. (1.2.8)$$

Based on equation 1.2.5 this is true. is a variable. G x page 3 A. Ahmadi

$$A = \{x | x \text{ is odd or even}\}.$$

Day 2

2.1 Itemize, enumerate

- a) First one
- b) Second one

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily

- 1. First one
- 2. new one
- 3. Second one
- 4. This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily

¹A sample of footnote.

 $^{^2}$ Second one.

2.2 array

a	b	c
1 2 3		
2 3 4 234	or or or	212121
5 4 6	$\begin{array}{ c c c c } \hline xxx \\ \hline \end{array}$	999
44 34		
10000	200000	
1 2 3		
2 3 4	x^2	2x+1
5 4 6		

a	b	c
1 2 1		
2 3	xxx	yyy
3 4		
10000	200000	
10	x^2	2x+1

Name			x	y	ag	ge	X	XX
a	b	c	d	e	$\int f$	x	y	
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	

2.3. GRAPHICS 7

$$\begin{pmatrix}
111111111111111 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{pmatrix}$$

$$f(x) \neq \begin{cases} \frac{x^2 + 2x}{\sqrt[3]{\frac{1}{x}}} & \text{if } x > 1, \\ \frac{x + \sqrt{x}}{x^2 + 1} & \text{otherwise.} \end{cases}$$

2.3 Graphics

jkdshfjdsf fhsdkfhsd techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

techniques in order to apply them to a wider class of not necessarily *compact* operators. We start by establishing establishing establishing a connection

2.3. GRAPHICS 9

between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Figure 2.1: This is a caption.

techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a By figure ?? we have techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a

connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Figure 2.2: This is a caption.

techniques in order to apply them to a wider class of not necessarily *compact* operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Table 2.1: First example of table environment.

N	an	ie	x	y	ag	ge	X	XX
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	
a	b	c	d	e	$\int f$	x	y	
a	b	c	d	e	\int	x	y	

Book This is book

Table ettr

Table 2.2: Example of Table with tabular environment.

techniques in order to apply them to a wider class of not necessarily *compact* operators. We start by establishing establishing establishing a connection

2.3. GRAPHICS

between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Day 3

3.1 Theorem

Definition 3.1.1. Let H be a subgroup of a group G. A left coset of H in G is a subset of G that is of the form xH, where $x \in G$ and $xH = \{xh : h \in H\}$. Similarly a right coset of H in G is a subset of G that is of the form Hx, where $Hx = \{hx : h \in H\}$

Note that a subgroup H of a group G is itself a left coset of H in G.

Lemma 3.1.1. Let H be a subgroup of a group G, and let x and y be elements of G. Suppose that $xH \cap yH$ is non-empty. Then xH = yH.

Proof. Let z be some element of $xH \cap yH$. Then z=xa for some $a \in H$, and z=yb for some $b \in H$. If h is any element of H then $ah \in H$ and $a^{-1}h \in H$, since H is a subgroup of G. But zh=x(ah) and $xh=z(a^{-1}h)$ for all $h \in H$. Therefore $zH \subset xH$ and $xH \subset zH$, and thus xH=zH. Similarly yH=zH, and thus xH=yH, as required.

Lemma 3.1.2. Let H be a finite subgroup of a group G. Then each left coset of H in G has the same number of elements as H.

Proof. Let $H = \{h_1, h_2, \dots, h_m\}$, where h_1, h_2, \dots, h_m are distinct, and let x be an element of G. Then the left coset xH consists of the elements xh_j for $j = 1, 2, \dots, m$. Suppose that j and k are integers between 1 and m for which $xh_j = xh_k$. Then $h_j = x^{-1}(xh_j) = x^{-1}(xh_k) = h_k$, and thus j = k, since h_1, h_2, \dots, h_m are distinct. It follows that the elements xh_1, xh_2, \dots, xh_m are distinct. We conclude that the subgroup H and the left coset xH both have m elements, as required.

REMARK 3.1.2. This is a sample remark.

Example 3.1.3. Example example.

Theorem 3.1.4. (Lagrange's Theorem) Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G.

Proof. Each element x of G belongs to at least one left coset of H in G (namely the coset xH), and no element can belong to two distinct left cosets of H in G (see Lemma 3.1.1). Therefore every element of G belongs to exactly one left coset of H. Moreover each left coset of H contains |H| elements (Lemma 3.1.2). Therefore |G| = n|H|, where n is the number of left cosets of H in G. The result follows. \square

By Theorem 3.1.4 we have

3.2 amssymb package

The most common characters are \mathbb{R} for real numbers, \mathbb{N} for natural numbers and \mathbb{Z} for integers.

 $\operatorname{write}_x(y)$ "book" Workshop on Algorithm Engineering and Experiments R Lowest Common Ancestor

Day 4

4.1 hyperref package

The hyperref package is used to handle cross-referencing commands in LATEX to produce hypertext links in the document. LATEX

You also can have links to wibsites like http://www.google.com or LaTeX Course Website

4.2 References

You can see at [3] or maybe in [8, 6]. For example you can put several references in one bracket using [1, 2, 3, 6].

Bibliography

- ABAM, M. A., DE BERG, M., FARSHI, M., GUDMUNDSSON, J., AND SMID,
 M., Geometric spanners for weighted point sets. Manuscript, 2009.
- [2] AGARWAL, P. K., KLEIN, R., KNAUER, C., AND SHARIR, M. Computing the detour of polygonal curves. Technical Report B 02-03, Fachbereich Mathematik und Informatik, Freie Universität Berlin, 2002.
- [3] ALZOUBI, K. M., LI, X.-Y., WANG, Y., WAN, P.-J., AND FRIEDER, O. Geometric spanners for wireless ad hoc networks. *IEEE Transactions on Parallel and Distributed Systems* 14, 4 (2003), 408–421.
- [4] Har-Peled, S. A simple proof?, 2006. http://valis.cs.uiuc.edu/blog/?p=441.
- [5] KHANBAN, A. A. Basic Algorithms of Computational Geometry with Imprecise Input. Ph.D. thesis, Imperial College London, University of London, UK, 2005.
- [6] MEHLHORN, K., AND NÄHER, S. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge, UK, 2000.
- [7] SMID, M. Closest point problems in computational geometry. In *Handbook of Computational Geometry*, J.-R. Sack and J. Urrutia, Eds. Elsevier Science Publishers, Amsterdam, 2000, pp. 877–935.

18 BIBLIOGRAPHY

[8] EPPSTEIN, D. Spanning trees and spanners. In *Handbook of Computational Geometry*, J.-R. Sack and J. Urrutia, Eds. Elsevier Science Publishers, Amsterdam, 2000, pp. 425–461.

- [9] NARASIMHAN, G. Geometric spanner networks: Open problems. In *Invited talk* at the 1st Utrecht-Carleton Workshop on Computational Geometry (2002).
- [10] Narasimhan, G., and Smid, M. Geometric spanner networks. Cambridge University Press, 2007.
- [11] NAVARRO, G., AND PAREDES, R. Practical construction of metric t-spanners. In ALENEX'03: Proceedings of the 5th Workshop on Algorithm Engineering and Experiments (2003), SIAM Press, pp. 69–81.