LATEX Tutorial

A. Ahmadi

1 Bahman 1391

Contents

1 Day 1 1
1.1 Introduction 1
1.2 Mathematics Formula 2
1.2.1 subsection 2
2 Day 2 5
2.1 Itemize, enumerate 5
2.2 array 6
2.3 Graphics 7
3 Day 3 new 13
3.1 Theorem 13
3.2 amssymb package 14
3.3 A package: Barcode generator 15

List of Figures

2.1 This is a caption. 9
2.2 This is a caption. 10

List of Tables

2.1 First example of table environment. 10
2.2 Example of Table with tabular environment. 10

Chapter 1

Day 1

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a This is second line.

1.1 Introduction

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a Hilbert space, approximation approximation approximation approximation approximation approximation approximation with This is second line.

This is Third line. Let G is a graph. let

$$
\begin{gathered}
x^{x^{2}+21}+1 \\
x_{i}-x_{i j}^{2}+2 x_{i^{2}+1}+x_{i} y_{i} \\
\left\{\frac{\left\{x^{x^{2}+21}+1\right\}}{x_{i}-x_{i j}^{2}+2 x_{i^{2}+1}+x_{i} y_{i}}\right\} \\
\left\{\frac{\left\{\frac{x^{x^{2}+21}+1}{2 x}\right\}}{x_{i}-x_{i j}^{2}+2 x_{i^{2}+1}+x_{i} y_{i}}\right\}
\end{gathered}
$$

1.2 Mathematics Formula

$$
\begin{gathered}
\sqrt[n]{x^{2}-2 x+1} \\
\sqrt[2]{\frac{2 x+1}{x-1}}
\end{gathered}
$$

1.2.1 subsection

$$
\begin{gathered}
\left(\frac{\frac{1}{\frac{1}{x}}}{\left(\sqrt{\frac{2 x}{y}}\right)}\right) \\
\sum_{i=1}^{n} x_{i} \\
\lim _{\alpha \rightarrow \infty} \sin (\alpha) \\
\int_{a}^{x^{2}} \frac{\sin x}{\sin x+\cos x}
\end{gathered}
$$

$\sum_{i=1}^{\infty} \frac{x_{i}-2 x^{2}-1}{x-1}$

$$
\begin{align*}
& \bigotimes_{i=1}^{5} x^{i^{2}} \tag{1.2.1}\\
& \sum_{i=1}^{n} x_{i} \tag{1.2.2}\\
& \lim _{\alpha \rightarrow \infty} \sin (\alpha) \tag{1.2.3}\\
& \int_{a}^{x^{2}} \frac{\sin x}{\sin x+\cos x} \tag{1.2.4}\\
& \sum_{i=1}^{\infty} \frac{x_{i}-2 x^{2}-1}{x-1} \tag{1.2.5}\\
& \bigotimes_{i=1}^{5} x^{i^{2}} \\
& f(x)=\sin x+\cos x \\
& \leq 2 x+1 \\
& <x^{2}-1 \\
& =\frac{x^{5}+4 x^{2}}{4} \text {. } \\
& f(x)=\sin x+\cos x \tag{1.2.6}\\
& \leq 2 x+1 \\
& <x^{2}-1 \tag{1.2.7}\\
& =\frac{x^{5}+4 x^{2}}{4} . \tag{1.2.8}
\end{align*}
$$

Based on equation 1.2.5 this is true. is a variable. Gx page 3 A . Ahmadi

$$
A=\{x \mid x \text { is odd or even }\} .
$$

Chapter 2

Day 2

2.1 Itemize, enumerate

a) First one
b) Second one

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily

1. First one
2. new one
3. Second one
4. This is for test. The aim of this work is to generalize ${ }^{1}$ Lomonosov's techniques ${ }^{2}$ in order to apply them to a wider class of not necessarily
[^0]
2.2 array

		a		b	c
	2	3		$x x x$	yyy
	3	4			
	4				
	44				
10000				200000	
		2		x^{2}	$2 x+1$
		3			
		4			

a	b	c
$1 \begin{array}{lll}1 & 2\end{array}$		
23	$x x x$	yyy
34		
10000	200000	
10	x^{2}	$2 x+1$

Name		x	y	age		$X X X$		
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	

$$
\left(\begin{array}{llll}
11111111111111 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

$$
f(x) \neq \begin{cases}\frac{x^{2}+2 x}{\sqrt[3]{x}} & \text { if } x>1 \\ \frac{x+\sqrt{x}}{x^{2}+1} & \text { otherwise }\end{cases}
$$

2.3 Graphics

jkdshfjdsf fhsdkfhsd techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection
between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Figure 2.1: This is a caption.
techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a By figure ?? we have techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a
connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Figure 2.2: This is a caption.

techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Table 2.1: First example of table environment.

Name			x	y	age		$X X X$	
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	
a	b	c	d	e	f	x	y	

Book This is book
Table ettr

Table 2.2: Example of Table with tabular environment.
techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection
between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a

Chapter 3

Day 3 new

3.1 Theorem

Definition 3.1.1. Let H be a subgroup of a group G. A left coset of H in G is a subset of G that is of the form $x H$, where $x \in G$ and $x H=\{x h: h \in H\}$. Similarly a right coset of H in G is a subset of G that is of the form $H x$, where $H x=\{h x: h \in H\}$

Note that a subgroup H of a group G is itself a left coset of H in G.

Lemma 3.1.1. Let H be a subgroup of a group G, and let x and y be elements of G. Suppose that $x H \cap y H$ is non-empty. Then $x H=y H$.

Proof. Let z be some element of $x H \cap y H$. Then $z=x a$ for some $a \in H$, and $z=y b$ for some $b \in H$. If h is any element of H then $a h \in H$ and $a^{-1} h \in H$, since H is a subgroup of G. But $z h=x(a h)$ and $x h=z\left(a^{-1} h\right)$ for all $h \in H$. Therefore $z H \subset x H$ and $x H \subset z H$, and thus $x H=z H$. Similarly $y H=z H$, and thus $x H=y H$, as required.

Lemma 3.1.2. Let H be a finite subgroup of a group G. Then each left coset of H in G has the same number of elements as H.

Proof. Let $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, where $h_{1}, h_{2}, \ldots, h_{m}$ are distinct, and let x be an element of G. Then the left coset $x H$ consists of the elements $x h_{j}$ for $j=1,2, \ldots, m$. Suppose that j and k are integers between 1 and m for which $x h_{j}=x h_{k}$. Then $h_{j}=x^{-1}\left(x h_{j}\right)=x^{-1}\left(x h_{k}\right)=h_{k}$, and thus $j=k$, since $h_{1}, h_{2}, \ldots, h_{m}$ are distinct. It follows that the elements $x h_{1}, x h_{2}, \ldots, x h_{m}$ are distinct. We conclude that the subgroup H and the left coset $x H$ both have m elements, as required.

REMARK 3.1.2. This is a sample remark.

Example 3.1.3. Example example.

Theorem 3.1.4. (Lagrange's Theorem) Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G.

Proof. Each element x of G belongs to at least one left coset of H in G (namely the coset $x H$), and no element can belong to two distinct left cosets of H in G (see Lemma 3.1.1). Therefore every element of G belongs to exactly one left coset of H. Moreover each left coset of H contains $|H|$ elements (Lemma 3.1.2). Therefore $|G|=n|H|$, where n is the number of left cosets of H in G. The result follows.

By Theorem 3.1.4 we have ...

3.2 amssymb package

The most common characters are \mathbb{R} for real numbers, \mathbb{N} for natural numbers and \mathbb{Z} for integers.

3.3 A package: Barcode generator

To compile, use command: pdflatex -shell-escape filename
if it does not work use the following command: xelatex filename

The second one

Others

Even more

And dotmatrix one

[^0]: ${ }^{1}$ A sample of footnote.
 ${ }^{2}$ Second one.

