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Abstract

This is for test. The aim of this work is to generalize Lomonosov’s

techniques in order to apply them to a wider class of not neces-

sarily compact operators. We start by establishing establishing

establishing a connection between the subspaces and density of

what we define as the associated Lomonosov space in a certain

function space. On a This is second line.
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This is Third line. Let G is a graph. let
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Based on equation 5 this is true. is a variable. G x page 3
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