## Tutorial Number 1

### A. Ahmadi

### 1 Bahman 1391

#### Abstract

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a This is second line.

## 1 Introduction

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a Hilbert space, approximation approximation approximation approximation approximation approximation approximation approximation approximation with This is second line.

This is Third line. Let G is a graph. let

$$x^{x^2+21}+1$$

$$x_i - x_{ij}^2 + 2x_{i^2+1} + x_i y_i$$

$$\left\{ \frac{\left\{ x^{x^2+21}+1 \right\}}{x_i - x_{ij}^2 + 2x_{i^2+1} + x_i y_i} \right\} \\
\left\{ \frac{\left\{ \frac{x^{x^2+21}+1}{2x} \right\}}{x_i - x_{ij}^2 + 2x_{i^2+1} + x_i y_i} \right\}$$

# 2 Mathematics Formula

$$\sqrt[n]{x^2 - 2x + 1}$$

$$\sqrt[2]{\frac{2x + 1}{x - 1}}$$

## 2.1 subsection

$$\left(\frac{\frac{\frac{1}{1}}{x}}{\left(\sqrt{\frac{2x}{y}}\right)}\right)$$

$$\sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{\infty} \frac{x_i - 2x^2 - 1}{x - 1}$$

$$\lim_{\alpha \to \infty} \sin(\alpha)$$

$$\int_{a}^{x^{2}} \frac{\sin x}{\sin x + \cos x}$$

$$\bigotimes_{i=1}^{5} x^{i^2} \tag{1}$$

$$\sum_{i=1}^{n} x_i \tag{2}$$

$$\lim_{\alpha \to \infty} \sin(\alpha) \tag{3}$$

$$\int_{a}^{x^2} \frac{\sin x}{\sin x + \cos x} \tag{4}$$

$$\sum_{i=1}^{\infty} \frac{x_i - 2x^2 - 1}{x - 1} \tag{5}$$

$$\bigotimes_{i=1}^{5} x^{i^2}$$

$$f(x) = \sin x + \cos x$$

$$\leq 2x + 1$$

$$< x^2 - 1$$

$$= \frac{x^5 + 4x^2}{4}.$$

$$f(x) = \sin x + \cos x$$

$$\leq 2x + 1$$

$$< x^{2} - 1$$

$$= \frac{x^{5} + 4x^{2}}{4}.$$
(6)
(7)

Based on equation 5 this is true. is a variable. G x page 3  $\,$