Tutorial Number 1

A. Ahmadi

1 Bahman 1391

Abstract

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a This is second line.

1 Introduction

This is for test. The aim of this work is to generalize Lomonosov's techniques in order to apply them to a wider class of not necessarily compact operators. We start by establishing establishing establishing a connection between the subspaces and density of what we define as the associated Lomonosov space in a certain function space. On a Hilbert space, approximation approximation approximation approximation approximation approximation approximation with This is second line.

This is Third line. Let G is a graph. let

$$
x^{x^{2}+21}+1
$$

$$
\begin{gathered}
x_{i}-x_{i j}^{2}+2 x_{i^{2}+1}+x_{i} y_{i} \\
\left\{\frac{\left\{x^{x^{2}+21}+1\right\}}{x_{i}-x_{i j}^{2}+2 x_{i^{2}+1}+x_{i} y_{i}}\right\} \\
\left\{\frac{\left\{\frac{x^{x^{2}+21}+1}{2 x}\right\}}{x_{i}-x_{i j}^{2}+2 x_{i^{2}+1}+x_{i} y_{i}}\right\}
\end{gathered}
$$

2 Mathematics Formula

$$
\begin{gathered}
\sqrt[n]{x^{2}-2 x+1} \\
\sqrt[2]{\frac{2 x+1}{x-1}}
\end{gathered}
$$

2.1 subsection

$$
\begin{gathered}
\left(\frac{\frac{1}{\frac{1}{x}}}{\left(\sqrt{\frac{2 x}{y}}\right)}\right) \\
\sum_{i=1}^{n} x_{i}
\end{gathered}
$$

$\sum_{i=1}^{\infty} \frac{x_{i}-2 x^{2}-1}{x-1}$

$$
\begin{gathered}
\lim _{\alpha \rightarrow \infty} \sin (\alpha) \\
\int_{a}^{x^{2}} \frac{\sin x}{\sin x+\cos x}
\end{gathered}
$$

$$
\begin{gather*}
\bigotimes_{i=1}^{5} x^{i^{2}} \tag{1}\\
\sum_{i=1}^{n} x_{i} \tag{2}\\
\lim _{\alpha \rightarrow \infty} \sin (\alpha) \tag{3}\\
\int_{a}^{x^{2}} \frac{\sin x}{\sin x+\cos x} \tag{4}\\
\sum_{i=1}^{\infty} \frac{x_{i}-2 x^{2}-1}{x-1} \tag{5}\\
\\
\bigotimes_{i=1}^{5} x^{i^{2}} \\
f(x)= \\
\leq \\
<
\end{gather*}
$$

Based on equation 5 this is true. is a variable. G x page 3

