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Foreword
The fourth Iranian Conference on Computational Geometry was held online on February 18, 2021 hosted by the department of
Mathematical Sciences of Yazd University, in the world heritage city in UNESCO, Yazd. The goal of this annual, international
conference is to bring together students and researchers from academia and industry, in order to promote research in the fields
of combinatorial and computational geometry. Because of the COVID-19 situation, the whole conference held online.

This volume of proceedings contains a selection of eleventh refereed papers that were presented during the conference, in
three sections. I would like to thank PC chairs Hamid Zarrabi-Zadeh and Ahmad Biniaz, all the PC members, and members
of the local organizing committee. I also want to thank the sponsors: Yazd University for financial supports, the RayaGraph
company for supporting the conference website, and Islamic World Science Citation Center (ISC) for indexing the conference
(#ISC 99201-97366).

Mohammad Farshi
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Guarding Polyominoes under k-Hop Visibility
or Minimum k-Dominating Sets in Grid Graphs∗

Christiane Schmidt†

Abstract

We consider a guarding problem in polyominoes: a unit-
square guard sees all unit squares within distance k in
the dual grid graph. The problem is equivalent to the
minimum k-dominating set problem in grid graphs. We
prove NP-completeness of this problem in polyominoes
with holes for k ∈ {1, 2} and provide lower bounds for
all k and matching upper bounds for k ∈ {1, 2} of b m

k+1c
on the number of guards in any polyomino.

1 Introduction

In the classical art gallery problem (AGP), we aim to
place guards in a polygon, such that every point of the
polygon is visible to at least one guard. Visibility is
defined by analogy to human vision: two points u, v ∈ P
see each other if the line segment u, v is fully contained
in P . Various variants for the classical AGP have been
considered (varying both the capabilities of the guards
and the environment to be guarded), and usually we are
interested in two types of questions:

1. Can we compute the minimum cardinality guard set
for a polygon P?

2. What are lower/upper bounds on the number of
guards needed to cover a polygon from a given class?

For the classical AGP, question (1) was answered with
several complexity results: NP-hardness was proven for
different problem variants ([1, 2]). Answers to ques-
tion (2) are often referred to as “Art Gallery theorems”.
Chvátal [3] provided the first such result: a tight bound
of bn3 c for simple polygons.

Here, we consider a guarding problem motivated from
serving a city with carsharing (CS) stations: the de-
mand is given in a granularity of (square) cells, and we
assume that customers are willing to walk a certain dis-
tance to a CS stations—a simplified assumption, which
we can substitute by obtaining demand for given sta-
tions using a multi-agent transport simulation, MAT-
Sim1. We also assume that this walking-range bound is

∗This work is supported by grant 2018-04101 (https://
tinyurl.com/EkoCS-Trans) from Sweden’s innovation agency
VINNOVA.
†Communications and Transport Systems, ITN, Linköping

University, christiane.schmidt@liu.se.
1matsim.org

the same for the complete city. Then, we aim to place as
few CS stations as possible to serve the complete city for
a given maximum walking range. We represent the city
as a polyomino, potentially with holes and only walk-
ing within the boundary is possible—e.g., in Stockholm
holes usually represent water bodies, which pedestrians
cannot cross. This yields a special type of “visibility”
for a station: all unit squares of the polyomino reach-
able when walking inside the polyomino for at most the
given walking range.

Guarding polyominoes has been considered by Biedl
et al. [4], who considered different models of visibility.
(u ∈ P sees v ∈ P if the axis-parallel rectangle spanned
by u, v is fully contained in P ). They provided both
NP-hardness results and art gallery theorems in terms
of the number of unit squares of the polyomino, m. NP-
hardness for another type of visibility (rectangle visibil-
ity) was provided in [5].

An equivalent formulation of our problem is in terms
of the minimum k-dominating set problem (MkDSP):
find a minimum cardinality Dk ⊆ V (G), such that each
graph vertex is connected to a vertex in Dk with a path
of length at most k. We aim to solve MkDSP in grid
graphs (the dual graph of a polyomino). The minimum
dominating set problem is NP-complete [6], hence, the
MkDSP is clearly NP-complete in general graphs.

Notation. A polyomino is a connected polygon P
in the plane formed by joining together |P | = m unit
squares on the square lattice. The dual graph GP of a
polyomino has a vertex for each unit square and {u, v} ∈
E(GP ) if unit squares u, v are adjacent; GP is a grid
graph. P is simple if it has no holes, that is, if every
minimal cycle in the dual grid graph is a 4-cycle.

A unit square v ∈ P is k-hop-visible to a unit square
u ∈ P if the shortest path from u to v in the dual grid
graph of P , GP , has length at most k. See Figure 1
for an example. Note that for k ≥ 2 this in particular
includes the ability to look around a corner of the poly-
omino. A witness placed at unit square u vouches that
at least one guard has to be placed in its k-hop-visibility
region.

Minimum k-hop Guarding Problem (MkGP).
Given: A polyomino P , a range k.
Find: The minimum number cardinality unit-square
guard cover in P under k-hop visibility.

1
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Figure 1: A polyomino P (black), a unit-square guard g
(green) and its visibility region (light green), k = 2.

2 NP-Completeness

We show NP-completeness of the MkGP in polyominoes
with holes and k = 2. We reduce from PLANAR 3-SAT.

An instance F of the PLANAR 3-SAT problem is
a Boolean formula in 3-CNF consisting of a set C =
{C1, C2, . . . , Cm} of m clauses over n variables V =
{x1, x2, . . . , xn}. Clauses in F contain variables and
negated variables, denoted as literals. A clause is sat-
isfied iff it contains at least one true literal, and the
formula F is true iff all its clauses are satisfied. The
variable-clause incidence graph G is planar and it is
sufficient to consider formulae where G has a rectilinear
embedding, see Knuth and Raghunathan [7].

We turn the rectilinear embedding of G into a poly-
omino: we represent the variables, clauses and edges by
pieces of a polyomino that needs to be guarded. We
construct variable gadgets as shown in turquoise in
Figure 2(a). There exist exactly two feasible placements
of guards for the variable loop gadget, shown in blue and
red in Figure 2(b) and (c) and corresponding to a truth
setting of “true” and “false”, respectively.

The initial truth value is propagated by a wire gad-
get. In Figure 2 we show a wire gadget for the case that
the variable appears in a clause in dark blue, and for the
case that the negated variable appears in the clause in
dark red. We note that a wire can easily be bend by 90◦.
We extend the width of the variable gadget to connect
to further wire gadgets.

The clause gadget is shown in Figure 3(a): Wires
connecting to the three variables connect to it from the
top, the right, and the bottom. The clause gadget can
be covered with exactly two additional guards if one (see
Figure 3(d)-(f)), two (see Figure 3(g)-(i)) or all (see Fig-
ure 3(j)/(k)) variables have a truth setting fulfilling the
clause. If all variables have a truth setting not fulfilling
the clause (see Figure 3(b)), three additional guards are
needed to cover the clause gadget: The k-hop visibil-
ity regions of the three colored witnesses in Figure 3(b)
are pairwise disjoint, hence, at least three guards are
necessary—and sufficient, see Figure 3(c).

Thus, we solve the MkGP optimally iff 1-3 variables
per clause have a truth setting fulfilling the clause, that
is, iff the original PLANAR 3-SAT formula F is sat-
isfiable. The reduction is possible in polynomial time.
Moreover, given a set of unit-square guards, we can eas-
ily determine the k-hop visibility region of all guards

and check whether all unit squares are covered. Hence,
the MkGP is in NP. This yields:

Theorem 1 MkGP is NP-complete for k = 2 in poly-
ominoes with holes.

A similar variable and corridor gadget construction
and the clause from Fig. 4 yield NP-completeness also
for k = 1 (due to space restrictions without proof):

Theorem 2 MkGP is NP-complete for k = 1 in poly-
ominoes with holes.

3 Art Gallery Theorems

In this section, we provide lower bounds for all k (Theo-
rem 3) and matching upper bounds for k ∈ {1, 2} (The-
orem 4) on the number of guards necessary to cover
polyominoes under k-hop visibility.

Theorem 3 There exist simple polyominoes with m
unit squares that require b m

k+1c guards to cover their
interior under k-hop visibility.

Proof. We construct a double-comb like polyomino: we
alternately add teeth of length k to the top and bottom
of a row of unit squares (the shaft), see Figure 6 for the
construction for k = 1 and k = 2. If m is not divisible
by k + 1 we add x = (m mod k + 1) unit squares to
the right of the shaft. Witnesses placed at the last unit
square of each tooth (shown in pink in Figure 6) have
disjoint k-hop visibility regions (of the shaft only the
unit square to which the tooth is attached belongs to
the k-hop visibility region), hence, we need one guard
per witness. The x unit squares to the right of the shaft
can be covered by the rightmost guard if placed in the
shaft. Let t be the number of teeth, m = t · (k+ 1) + x,
we need t = b m

k+1c guards. �

Theorem 4 b m
k+1c guards are always sufficient and

sometimes necessary to cover a polyomino with m unit
squares under k-hop visibility for k ∈ {1, 2}.

Proof. We need to show that b m
r+1c guards are always

sufficient. We give constructive proofs for r ∈ {1, 2}.
Case k = 1. Compute a maximum matching M in

the (bipartite) dual grid graph of P , GP . Every ver-
tex in GP that is not matched is adjacent to matched
vertices only (otherwise we could extend M). For each
matching edge {u, v} unmatched vertices are adjacent
to u or v only (otherwise, let u′ and v′ be an un-
matched vertex adjacent to u and v, respectively, then
M \ {u, v} ∪ {u′, u} ∪ {v, v′} is a larger matching than
M). For each matching edge, we place a guard at the
unit square of the vertex in GP that is adjacent to un-
matched vertices (if any, otherwise we choose one of the

2
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(a) (b) (c)

Figure 2: (a) Variable gadget in turquoise, wire gadgets in dark blue (in case the variable appears in a clause) and dark red
(in case the negated variable appears in a clause). We associate the solution in (b) and (c) with a truth setting of “true” and
“false”, respectively.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 3: (a) Clause gadget. (b)-(k) The truth setting of the variables connected by the three variable corridors is shown
in red/blue, where light-blue/light-red indicates the visibility region of a guard, a red/blue unit square indicates the guard’s
location. (b) All variables have a truth setting that does not fulfill the clause, then the three colored witnesses (visibility
regions in lighter colors) cannot be covered by the same guard, hence, three guards are necessary, and sufficient (c). If one
variable has a truth setting that does fulfill the clause, (d)-(f), and if two variables have a truth setting that does fulfill the
clause, (g)-(i), two (green) guards suffice to cover the clause gadget. If all variables have a truth setting that does fulfill the
clause, the three witnesses in (j) cannot all be covered with a single guard, the two green guards in (k) are sufficient to cover
the clause gadget.

(a) (b) (c) (d)

Figure 4: Clause gadget for k = 1. (a) If all variables
have a truth setting not fulfilling the clause, the three pink
witnesses cannot be covered by the same guards; three green
guards are sufficient. (b) If one variable has a truth setting
that fulfills the clause two green guards suffice. The other
cases are omitted. Color usage as in Figure 3.

two vertices). This guard covers its matched neighbor
and all unmatched neighbors. Hence, we placed at most
b m
k+1c = bm2 c guards to cover P .

Case k = 2. Again, we compute a maximum match-
ing M in GP . We build a graph GM based on M : we
create a vertex in GM for each matching edge and each
unmatched vertex in M (V (GM ) = {v{u,u′} : {u, u′} ∈
M} ∪ {vu : u ∈ GP \M}). Two vertices v, v′ in GM are
connected by an edge if:

• For v = v{u,u′}, v′ = v′{w,w′}: if at least one of the

edges {u,w}, {u,w′}, {u′, w} or {u′, w′} is in E(GP ).
• For v = v{u,u′}, v′ = v′w: if at least one of {u,w} or
{u,w′} is in E(GP ).

We compute a maximum matching M ′ in GM . Each
matching edge in M ′ represents three or four vertices of
GP . Each unmatched vertex inM ′ represents one or two
vertices of GP . Again, unmatched vertices are adjacent
to at most one of the vertices per edge in M ′. If an

unmatched vertex is adjacent to more than one matched
vertex, we assign it to one of them. In the remainder of
this proof adjacent unmatched vertex/vertices refers to
the assigned adjacent unmatched vertex/vertices only.
We distinguish six cases, see Figure 5 for examples:

1. e = {v{u,u′}, v{w,w′}} ∈ M ′ is not adjacent to any
unmatched vertex inM ′: we have a path of length 4,
and place a guard on one of the two vertices that are
adjacent to two of the other three vertices. Hence,
the single guard covers 4 unit squares.

2. e = {v{u,u′}, v{w,w′}} ∈ M ′ is adjacent to un-
matched vertices, all unmatched vertices adjacent
to e represent one vertex from GP . W.l.o.g. let the
unmatched vertices be adjacent to v{u,u′}:

(a) {u,w} ∈ GP or {u,w′} ∈ GP , but {u′, w} /∈ GP

and {u′, w′} /∈ GP : We place a guard on u, then
u, u′, w, w′ and all unmatched vertices adjacent
to v{u,u′} are covered. The single guard at u
covers at least 5 unit squares.

(b) {u,w} ∈ GP and {u′, w′} ∈ GP (or {u′, w} ∈
GP and {u,w′} ∈ GP ): A guard placed on u or
u′ covers u, u′, w, w′ and all unmatched vertices
adjacent to v{u,u′}. The single guard covers at
least 5 unit squares.

3. e = {v{u,u′}, v{w,w′}} ∈ M ′ is adjacent to un-
matched vertices, some unmatched vertices adja-
cent to e represent two vertices from GP . Let the
unmatched vertices be adjacent to v{u,u′}: We place
two guards at u and u′ and cover u, u′, w, w′ and all

3
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Figure 5: Cases from the proof of Lemma 4, k = 2. Vertices and M in GP shown in black; vertices and M ′ in GM shown in
turquoise; guards shown in green. Optional unit squares are shown faded.

(a)
(b)

Figure 6: Lower bound construction for polyominoes that
require b m

k+1
c guards under k-hop visibility for (a) k = 1,

(b) k = 2. Witnesses are shown in pink.

unmatched vertices adjacent to v{u,u′}. These two
guards cover at least 6 unit squares: u, u′, w, w′ and
at least one pair of vertices x, x′, where v{x,x′} un-
matched in M ′ and adjacent to v{u,u′}. Hence, on
average, each of the guards covers at least 3 unit
squares.

4. e = {v{u,u′}, vw} ∈ M ′ is not adjacent to any un-
matched vertex in M ′, w.l.o.g. {u,w} ∈ E(GP ):
We place a guard on u, it covers 3 unit squares.

5. e = {v{u,u′}, vw} ∈ M ′ is adjacent to unmatched
vertices adjacent to e representing one vertex from
GP , w.l.o.g. {u,w} ∈ E(GP ): We place a guard on
u, which covers u, u′ and w and all vertices adjacent
to these three (independent of whether all are adja-
cent to v{u,u′} or to vw). A single guard covers at
least 4 unit squares.

6. e = {v{u,u′}, vw} ∈ M ′ is adjacent to unmatched
vertices, some of these represent two vertices from
GP , w.l.o.g. {u,w} ∈ E(GP ):

(a) The unmatched vertices are adjacent to v{u,u′}:
(i) For all unmatched vertices vy, y is adjacent to
u and for all unmatched vertices v{x,x′} x or x′

is adjacent to u: We place a guard at u. This
single guard covers at least 5 unit squares.

(ii) For all unmatched vertices vy, y is adjacent to
u′ and for all unmatched vertices v{x,x′} x or x′

is adjacent to u′: We place a guard at u′. This
single guard covers at least 5 unit squares.

(iii) We have at least one unmatched vertex for
which one of the vertices in GP it represents is
adjacent to u and one for which one of the ver-
tices in GP it represents is adjacent to u′. We
place two guards at u and u′, all adjacent un-
matched vertices representing a matching edge
contain vertices within distance at most 2 from
u and u′. The two guards cover at least u, u′, w,

at least one pair of vertices x, x′, where v{x,x′}
unmatched in M ′ and adjacent to v{u,u′} and
least another single vertex or vertex pair adja-
cent to v{u,u′}. Hence, 2 guards cover at least 6
unit squares—on average, each guard covers at
least 3 unit squares.

(b) The unmatched vertex/vertices are adjacent to
vw: We place a guard at w; it sees u, u′, w as
well as at least one pair of vertices x, x′, where
v{x,x′} unmatched in M ′ and adjacent to vw
because all these vertices have distance at most
2 to w. The guard covers at least 5 unit squares.

Each guard covers at least 3 unit squares, hence, we
yield that b m

k+1c = bm3 c guards are always sufficient. �

4 Open Problems

We leave the computational complexity in simple poly-
ominoes and upper bounds on the number of guards
necessary to cover polyominoes under k-hop visibility
for k ≥ 3 as open problems.
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Watchman Routes under Incidence Visibility Constraint in Convex Polygons

Azadeh Tabatabaei∗ Mohammad Aletaha† Fardin Shapouri‡ Mohammad Ghodsi§

Abstract

This paper describes a practical version of the Watch-
man Route Problem for convex polygons. The objec-
tive is to plan a continuous closed shortest route inside
the polygon from which the entire polygon contour is
visible. The route starts from a given point s on the
boundary and ends at s. The visibility model which is
considered in this work is visibility under incidence con-
straint τ . A point p on the boundary of the polygon and
a point q in the polygon’s interior or its boundary are τ -
visible if they are mutually visible and the angle between
the vector perpendicular to the boundary at p and the
vector ~pq is at most equal to a given τ ∈ [0, 90◦). We
present an O(n4)-time algorithm to compute the short-
est watchman route where n is the number of vertices
of the polygon.

1 Introduction

The Watchman Route Problem is a well-known prob-
lem in computational geometry. This problem refers to
planning a closed curve in a polygon with a minimum
length such that every point on the polygon boundary
is visible from at least one point on the curve [3]. Chin
and Ntafos [4] proved that for simple polygons the prob-
lem is solvable in polynomial time but it is NP-hard for
polygons with holes.

There are two general cases for the problem; fixed and
floating. In the fixed case, a point s on the boundary
is given and the route must start and end at s while in
the floating one, there is no given starting point. Con-
sidering the fixed case, Chin and Ntafos [4] and Tan
et al. [12] proposed O(n4)-time algorithms for simple
polygons. For the floating case, Carlsson et al. [2] gave
an O(n6) algorithm which was improved to O(n5) by
Tan [11]. Finally, Dror et al. [5] presented the best-
known algorithms with O(n3 log n) and O(n4 log n) time
complexity for the fixed and floating cases, respectively.

Related Works. Heretofore, various versions of the
watchman problem are introduced and studied by re-

∗Department of Computer Engineering, University of Science
and Culture, Tehran, Iran, a.tabatabaei@usc.ac.ir

†Department of Computer Engineering, Sharif University of
Technology, Tehran, mohammadaletaha@ce.sharif.edu

‡Department of Computer Engineering, Qazvin Branch, Is-
lamic Azad University, Qazvin, Iran, shapouri@qiau.ac.ir

§Sharif University of Technology and Institute for Research in
Fundamental Sciences (IPM), Tehran, Iran, ghodsi@sharif.edu

searchers. The visibility model used in the previously-
mentioned works was the general visibility model. In
this model, two points are visible to each other if the
sight line between them does not intersect the exterior of
the polygon. Ntafos introduced watchman routes under
limited visibility called d-Watchman Route Problem [9].
In this visibility model, two points are defined to be d-
visible if the length of the sight line between them is at
most d. Recently, Nilsson et al. considered the rotated
monotone visibility model for Watchman Route Prob-
lem [8]. In this model, two points are visible to each
other if there is a path that connects them such that
the path entirely lies in the polygon and it is monotone
w.r.t. a given direction θ ∈ [0, 180◦).

In this paper, we use a visibility model called inci-
dence visibility constraint τ . It was introduced by Gon-
zalez et al. and used in a variant of the Art Gallery
Problem [6]. We will define it in the next section.

Our contribution. We studied the fixed Watchman
Route Problem in convex polygons under incidence vis-
ibility model with constraint τ (the τ -Watchman Route
Problem), this version of the Watchman Route Prob-
lem was introduced by Tabatabaei and Mohades [10].
First, we compute a set of points and segments such
that every path which covers the polygon contour has
to pass through them. Then, using such a set and apply-
ing the so-called unfolding method, we compute the τ -
Watchman Route. The presented algorithm has O(n4)
time complexity.

As an application of this problem, consider an envi-
ronment inspection task by a robot-sensor system. If the
goal is to process the environment in detail (e.g. watch-
ing the images on the walls), the environment contour
should be scanned with high clarity. Therefore, not only
the existence of the sight line between the robot and the
boundary is necessary but also the robot must watch the
images from a proper angle.

2 Preliminaries

Throughout this paper, the environment is a convex
polygon P having n edges and vertices and its vertices
are given in clockwise order. Denote the boundary and
interior of the polygon by ∂P and ıP respectively. Now,
we define the visibility model we used as follows.

Definition 1 (Incidence Visibility Constraint
τ). Two points p on ∂P and q in P are τ -visible from
each other if two following conditions satisfied.

5
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p

q
w τ 90− τ

90− τ

v1

v2

v3

(a) (b)

s

Figure 1: (a) Only the dotted portions of the edges are
visible from q. (b) Three types of visibility-regions.

1. Line of sight constraint: The line segment pq does
not intersect ∂P except for p and q.

2. Incidence constraint: ∠(~w, ~pq) ≤ τ , where ~pq is a
vector directed from p to q, vector ~w is a vector
perpendicular to ∂P oriented from p, and τ is a
given constant in [0, 90◦), see Figure 1(a).

Since the environment in this paper is a convex polygon,
the first condition is always true. Note that here, we
relax the range constraint defined in [6].

Definition 2 (Fixed τ-Watchman Route Prob-
lem). Given a polygon P , the problem asks for a closed
route inside P with a minimum length such that each
point on ∂P is τ -visible from at least one point on the
route. Also, the route must pass through a given vertex
s of P [10].

Note that under general visibility model, the fixed
watchman route in convex polygons degenerates to the
point s. In contrast, under incidence visibility model,
the route is not necessarily a point.

Let p be a point on edge e of ∂P . The locus of polygon
points (interior and boundary points) from which p is
τ -visible is called visibility-region of p, denoted by Vp,
see Figure 1(b). The visibility-region Vp is dominated
by two half-lines called visibility-rays denoted by r1 and
r2. The angle between each visibility-ray and the vector
perpendicular to e at p is equal to τ . We classify Vp into
three types according to its intersection with P . For a
given point p on ∂P , Vp is internal if both r1 and r2
intersect ıP . If neither r1 nor r2 intersect ıP , then Vp
is external. Otherwise, Vp is half-internal (i.e. only one
of r1 and r2 intersects ıP ), see Figure 1(b).

Consider a point p on ∂P such that Vp is external.
Clearly, the intersection of Vp and P is equal to p.
Hence, p is visible to a point q in P if and only if q = p.
So, every τ -watchman route must pass through p. More-
over, one can observe that p is a vertex of P and the
internal-angle of p is less than 90◦ − τ . We call such a
vertex a critical vertex. By the above definitions, the
following lemma is directly inferred.

Lemma 1 The τ -Watchman Route must pass through
the critical vertices.

The τ -watchman route must see the whole polygon
boundary ∂P . We know that ∂P formed by connecting

the edges ei of P (1 ≤ i ≤ n). Hence, the τ -watchman
route has to see all edges ei.

Now, consider an edge e with two end-points a and b.
We want to plan a continuous path P such that every
point on the segment ab is τ -visible from at least one
point on the path. For all points on ab, the union of
visibility-regions is dominated by Va and Vb, see Fig-
ure 2(a). It is sufficient for P to pass through at least
one point on both Va and Vb. Let x and y denote the
points where P intersects Va and Vb, respectively. The
path P would be each arbitrary path from x to y. Since
the path P is continuous, every point on segment ab is
τ -visible from at least one point on P. Consequently,
we can state the following lemma.

Lemma 2 A closed curve is a τ -watchman route if and
only if it intersects the visibility-regions of both end-
points of each edge of P .

3 Algorithm

In this section, we describe the algorithm for finding
the τ -watchman route in a convex polygon. Briefly, the
algorithm starts by computing a set of points and seg-
ments which the τ -watchman route has to pass through.
We call such a set a critical set. Afterward, we obtain
two other sets using the critical set. Finally, using the
obtained sets and applying an extended version of the
so-called unfolding method by Chin and Ntafos [4].

3.1 Obtaining The Critical Set

First, we denote the critical set by C and initialize it
to be ∅. Each edge ei of P has two end-points vi and
vi+1 (in a clock-wise order) which are the vertices of P .
So, for each ei we compute Vvi and Vvi+1

. Every vertex
v′ is the common end-point of two consecutive edges e′1
and e′2 of P . Hence Vv′ must be computed twice with
respect to e′1 and e′2.

By Lemma 2, we need to find at least one point in
Vvi and Vvi+1 . As we consider the fixed version of τ -
watchman route, the route must pass through a given
vertex s of P . So, we already know s is on the route.
Considering point s, for each end-point v1 of an edge e1
we have four cases:

Case 1: If Vv1 is internal and does not include s.

The τ -watchman route needs to visit only a point in Vv1 .
Since Vv1 is internal, two visibility-rays of v1 intersect
ıP . We choose the one which is closest to s and denote
it by r0. Then, using the ray-shooting operation, we
compute a segment obtained by the intersection of ray
r0 and P . We call such a segment a critical segment
and we add it to the critical set C.

Case 2: If Vv1 is half-internal and does not include s.
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In this case, only one visibility-ray of v1 intersects ıP .
Denote that visibility-ray by r0. Similar to case 1, we
compute the segment obtained from the intersection of
r0 and P . This segment is also called a critical segment
and we add it to C.

Case 3: If Vv1 is internal/half-internal and includes s.

Since the τ -watchman route pass through s and s sees
v1, the τ -watchman route already sees v1. Thus, there
is no change in C.

Case 4: If Vv1 is external.

The vertex v1 is a critical vertex. By Lemma 1, the τ -
watchman route must pass through v1. Hence, we add
v1 in C.

The critical set C can be obtained by doing the above
case analysis for the visibility-regions of end-points of
all edges. To computing the visibility regions, first, we
triangulate P . Since P is convex, we pick an arbitrary
vertex and put in the diagonals to other vertices. It
takes linear time for triangulation. Then, we use the
ray-shooting data structure for triangulated polygons
by Guibas et al. [7]. Each ray-shooting operation takes
O(log n) time. Knowing the end-points of a segment
obtained by the intersection of a visibility-ray and P , we
can determine the position of s concerning the visibility-
region in O(1) time. Therefore, the overall time taken
for computing C is O(n log n).

Consider a ray r which has two intersection points
l1, l2 with ∂P . If c is the critical segment obtained from
r, it can be represented by its end-points, e.g. c = l1l2.
Also, one can observe that each critical vertex v is a
critical segment which degenerated to a point. In other
words, critical vertex v has two intersection points l1, l2
with ∂P such that v = l1 = l2. Hereinafter, we call
them critical segment as well.

3.2 Obtaining The Essential Set

Each segment c partitions P into two regions; one of
which include s and another which does not. We denote
the region including s by essential region of c.

Let c = l1l2 and c′ = l′1l
′
2 be two critical segments in

C. Assume c and c′ do not cross each other in ıP . In
this case, w.l.o.g. assume that if l1l2 partitions P into
two regions, then l′1l

′
2 falls in the region which does not

include s. This means if we traverse ∂P in the clock-wise
order from s, the points l′1, l

′
2 will appear between the

appearances of l1 and l2. In this case, every path from
s to a point on c′ should cross c. We call c dominated
by c′, see Figure 2(b).

Note that critical vertices (degenerated critical seg-
ments) dominate some critical segments but they can
not be dominated by any critical segments.

s

v

c1c2

P

c3
c4

a
b

x

y

(a) (b)

Figure 2: (a) Segment ab is visible from the path from
x to y (b) Vertex v dominates segment c4, and c1 is
dominated by c2 and c3.

Each element of C which are not dominated by any
other element is more important than others. We call
such a critical segment an essential segment. It is suffi-
cient for the τ -watchman route to pass through essential
segments. So, other critical segments can be ignored.

The set of essential segments is called the essential set
and denoted by E. The set E can be obtained from C
by removing the dominated elements of C. We obtain E
in a similar way to the algorithm for obtaining essential
cuts in [2]. We know |C| = O(n). So, an essential
segment c0 can be found in O(n). Then, using c0, by
traversing all elements of C, the set E can be obtained.
This process is explained in [2]. It takes O(n) time for
traversing the elements of C.

3.3 Obtaining The Fragment Set

As we observe, in E some of essential segments might
cross each other, see Figure 2(b). A segment induced
by intersection of essential segments called a fragment.
Given the obtained set E, the set of fragments F can
be computed by the algorithm for line segment inter-
sections [1]. Since |E| ≤ |C| = O(n) and |F | ≤ |E|2,
computing fragments takes O(|E| log |E|+|F |) = O(n2).

3.4 The Extended Unfolding Method

Heretofore, we obtained a set of essential segments E
and a set of fragments F . Having similar sets E′ and
F ′ under general visibility model, the algorithm by Chin
and Ntafos can compute the shortest fixed watchman
route. First, we claim it as the following theorem.

Theorem 3 v Given a simple polygon P and the set of
essential cuts E′ and subdivision of essential cuts into
fragments F ′, there is an algorithm which computes the
fixed shortest watchman route under general visibility
model in O(n|E′||F ′|) time.

Here, the sets E and F are computed under incidence
visibility model. Also, convex polygons are already sim-
ple. Hence, we can give the sets E and F as an input
to the above-mentioned algorithm. The resulting route
is the fixed shortest τ -watchman route.

We briefly describe the algorithm by Chin and
Ntafos [4]. As we discussed earlier in this section, the
τ -watchman route must have at least a point on each
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Figure 3: Illustrating the extended unfolding method.

essential segment. Also, the fragments are made by di-
viding essential segments at their intersection points.
One can observe that the τ -watchman route does not
need to touch all of the fragments, but a subset of frag-
ments is sufficient to be touched by the route. Such
a subset is called the subset of active-fragments. An
essential segment which contains an active-fragment is
also called an active-segment.

The main idea of the algorithm is computing an op-
timum watchman route by the unfolding method and
repeatedly applying some adjustments to the current
route to make the route shorter. The adjustments are
applied for selecting the set of active-segments. In the
end, the resulting route is the shortest watchman route.

Now, we describe the unfolding method used by the
above algorithm. Given a set of active-segments, first re-
move non-essential regions of the active-segments from
P to have a reduced polygon P ′, see Figure 3(b). Then,
P ′ is triangulated. Starting from the point s in a clock-
wise order, when we reach the first active-segment c1,
we take it as a mirror and construct a new polygon by
reflecting the triangles traversed from s to c1. Then, we
attach this polygon to the previous polygon. Now, we
traverse from c1 to second active-segment c2 and we re-
peat this process for all active-segments. At the end of
traversal, we again back to s, and the polygon P ′ is un-
folded using active-segments as mirrors, see Figure 3(c).
After that, we find the shortest path from s to its image
s′ in the unfolded polygon. Finally, the path from s to
s′ is folded back and yields a watchman route for the
given active-segments, see Figure 3(d).

While the unfolding method only reflects on seg-
ments, we extend it to also reflect on critical vertices
that appear in the set of active-segments. In fact, we
reflect on an external tangent-line to P ′ at each criti-
cal vertex, see Figure 3(b). By theorem 3, applying the
above-mentioned algorithm takes O(n|E||F |) = O(n4)
time since |E| = O(n) and |F | ≤ |E|2. The time com-
plexity of the last step of the algorithm dominates the
other steps (obtaining the sets C, E, and F ). As a
consequence, we can conclude the following Theorem.

Theorem 4 Given a convex polygon P and a vertex s

on P the fixed shortest τ -watchman route can be com-
puted in O(n4) time.

4 Conclusion

In this paper, we presented an O(n4)-time algorithm for
the fixed watchman route problem under incidence vis-
ibility constraint τ in convex polygons. It is interesting
to consider the floating version of the problem. Also,
developing algorithms for the watchman route problem
under incidence visibility constraint τ in other polygonal
environments remained as a challenging open problem.
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Simple Robot Free-Target Search in Rectilinear Streets

Mohammad Aletaha∗ Arash Vaezi∗ Mohammad Abouei Mehrizi† Mohammad Ghodsi‡

Abstract

We consider the problem of searching for an arbitrary
(random) target in an unknown rectilinear-street using
a simple robot. A simple polygon with respect to two
given vertices u, v on the boundary is a street if the
clockwise and counter-clockwise chains from u to v are
weakly visible from each other. A simple robot, also
called gap-detector, can only detect the discontinuities
in the depth information (gaps) in a cyclical order. The
goal is to design a strategy for a simple robot to find an
arbitrary target t in a rectilinear-street, starting from
u or v, with a minimum path length. We propose a
strategy that guarantees a path which is at most

√
10

times longer than the shortest path.

1 Introduction

Path planning for robots in unknown environments is
one of the fundamental problems in the fields of compu-
tational geometry, online algorithms, and robotics [4].
In path planning problems, a robot must find a target
in a specified environment. Note that if we have the
geometric map of the environment and the position of
the target point, we can find the shortest-path easily.
However, we consider the case that the robot does not
have the information in advance. Such a robot should
follow an online algorithm to find the target. A simple
robot has access only to its local information about its
surroundings. We denote the start and target point of
the robot by s and t, respectively. The competitive ratio
is the length of the path traveled by the robot from s
to t, over the length of the shortest-path. A strategy is
called c-competitive if its competitive ratio is at most c.

A street is a simple polygon with two distinct vertices
u and v so that clockwise and counter-clockwise chains
from u to v (Lchain and Rchain resp.) are mutually
weakly visible [6]. In other words, every point on each
chain is visible to at least one point on another one. A
rectilinear-street is an orthogonal street (see Figure 1).

Using simple robots has quite a few advantages over
360◦ vision robots such as low cost, less sensitivity to
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avaezi@ce.sharif.edu
†Gran Sasso Science Institute (GSSI), L’Aquila, Italy,

mohammad.aboueimehrizi@gssi.it.
‡Sharif University of Technology and Institute for Research in

Fundamental Sciences (IPM), Tehran, Iran, ghodsi@sharif.edu

failure, easy to replace and maintenance. Therefore, nu-
merous types of simple robots have been characterized
and deployed in path planning problems. [8, 12]

We use a simple point robot called gap-detector. To
understand what a gap-detector robot can do we need
to determine a sensor called a gap-sensor. A gap-sensor
is a minimal sensing model that was introduced by To-
var et al. [12]. It can only detect the discontinuities
in the depth information (gaps) in the robot’s visibil-
ity region and reports them in a cyclical order. It can
assign a label L (left-gap) or R (right-gap) to each gap
depend on the portion of the environment hidden be-
hind that gap (see Figure 1(a)). Tovar et al. proposed
a data structure, called Gap Navigation Tree (GNT),
to maintain and update the gaps that have been seen
during the robot’s movement. Also, the robot can de-
tect the target whenever the target enters its visibility
polygon. Later, this robot gets empowered by a 4-wind
compass sensor [11]. This latter sensor can illustrate
the four main directions (cardinal points: North, East,
South, and West), and it can report which gap is be-
tween which two main directions or if it is collinear with
a main direction.

A simple robot with those characteristics can only
move toward the gaps, the compass directions, and the
target (when it becomes visible). The robot can move
around the polygon through an arbitrary number of
steps. A step is a fixed distance specified by the robot’s
manufacturer. We assume the step is small enough com-
pared to the scale of the given polygon. For the sake of
simplicity, we assume that the given rectilinear polygon
is based on a grid with unit distance dg, and the robot’s
step is equal to dg/k for any k ∈ N.

As the robot moves, the combinatorial structure of
its visibility region changes by the occurrence of four
critical events. These critical events are: appearance,
disappearance, split, and merge of gaps [12]. An appear-
ance/disappearance event occur when the robot crosses
an inflection-ray of a gap. Also, a split/merge event oc-
cur when the robot crosses the bitangent-complement
of two polygon’s reflex vertices (see Figure 2(a)). When
a gap appears and the portion behind it was so far visi-
ble, we call it a primitive-gap. All other gaps are called
non-primitive-gaps. The robot stores all of these infor-
mation in GNT.

Previous Works. In 1992, Klein introduced street
polygons [6]. He considered the problem of searching
in a street, starting from u or v, for the other one. He
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presented a 5.73-competitive strategy and proved that
the lower bound on the competitive ratio is

√
2. After

several improvements, finally, Schuierer and Semrau [7]
and Icking et al. [5] independently presented optimal
strategies. The robot used in all previously mentioned
works equipped with a 360◦ vision system. Such a robot
can detect edges and vertices, measure the distances and
angles, and move freely in any direction.

Bröcker and López-Ortiz considered two new types of
search in streets called Position-Independent search [2].
In the first type, the robot starts from u (or v) and
searches for an arbitrary target t on the boundary. In
the second type, both of the start and target points
are arbitrary points on the boundary. They presented
36.8 and 69.2-competitive strategies and proved the
lower bounds of 9 and 11.78 for these two types, re-
spectively. Bröcker and Schuierer showed that for the
rectilinear-streets, one can achieve better competitive
ratios [3]. In the first type, they presented an optimal
2.61-competitive strategy and proved a matching lower
bound. In the second type, a 59.91-competitive strategy
in L1-metric is proposed.

For the first time, Tabatabaei and Ghodsi [10] con-
sidered the gap-detector robots for the Klein’s prob-
lem [6]. They equipped the robot with a tool called peb-
ble. A pebble is a detectable object that the robot can
carry and put it everywhere in the polygon. They have
presented an 11-competitive strategy using one pebble.
They proved the competitive ratio can be improved to
9 using enough pebbles. Moreover, they showed consid-
ering rectilinear-streets, the gap-detector robot which
is empowered by a compass achieves the optimal com-
petitive ratio of

√
2. Wei et al. [13] and Tabatabaei

et al. [9] independently presented 9-competitive strate-
gies without using any pebbles. Furthermore, in [9] a
7-competitive randomized strategy has been proposed.
Additionally, a lower bound of 9 (4.59) on the compet-
itive ratio of all deterministic (randomized) strategies
has been proved [9, 13]. Recently, Tabatabaei et al.
showed that empowering the robot with a compass im-
proves the competitive ratio to 3

√
2 [11]. It also has

been shown that if two simple robots cooperate with
each other, the competitive ratio will decrease to 2 [1].

Our Contribution. We consider the first type of
the Position-Independent search (mentioned above) in-
troduced in [2] and call it Free-Target search. Inspiring
from [3] in which the authors considered a 360◦ vision
robot, we present a

√
10-competitive strategy using a

gap-detector robot. Please note that despite 360◦ vi-
sion robots, gap-detector robot’s vision and movement
are strictly limited.

Problem Definition. Given a rectilinear-street
polygon P (with respect to two vertices u, v), a sim-
ple robot R standing on a start vertex s ∈ {u, v}. Is
there an online strategy with the minimum path for R

R
q2
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S

g(r3, q2)

g(r1, q4)

g(r2, q2)

r1

r3
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p
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v
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(a) (b) Ip

R

L

L

Figure 1: (a) A rectilinear-street, the robot R, and the
gaps (dashed lines). (b) Unexplored-regions of gaps at
point p and their intersection area Ip.

to move from s and find a given target point t in P?
In the rest of the paper, we call it Free-Target Search
(FTS) problem.

2 Strategy

This section presents an online strategy for the FTS
problem. Without loss of generality, assume that s = u.
A robotR needs to explore P to find t. The target t may
lie behind any gap. If the area behind a gap g is already
visited by R, the gap is primitive, the robot no longer
needs to explore g. Hence, only non-primitive gaps are
required to get visited. Hereinafter, when we use gap,
we mean a non-primitive gap. As we mentioned earlier,
the gap-detector robot has a compass sensor with four
main directions. Each gap either falls between two main
directions or is collinear with a main direction. Main
directions partition the environment to four quadrants:
NE, SE, SW, and NW. We assign each gap which falls
between two directions to the related quadrant. Con-
sider a gap g which is collinear with a main direction d,
one side of d is visible to R and the other side is invisi-
ble. For a gap g which is collinear with d, we assign it
to the quadrant contains the hidden part of g.

The strategy has three cases. Each case has an
initiation-point and an end-point. A procedure called
case-analysis determines which case the robot R should
choose for its next step. From the beginning point (s),
R should run case-analysis. At the end-point of each
case, the robot R stops moving and runs case-analysis.
Note that an end-point of a case is an initiation-point
of the next case.

Whenever t is visible byR, it stops and moves directly
toward t regardless of its previous direction. Based on
the position of R in P, and the circumstances of the
gaps around R, there are three cases mentioned in the
following. For a better presentation, based on the posi-
tion of R, each gap g is denoted by g(r, q) which r is a
reflex vertex that causes R not to see a part of P, and q
is a quadrant that g is assigned to it (see Figure 1(a)).

A case ends (or a new case initiates) when a gap ap-
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Figure 2: (a) Examples of critical events: at points
p0, p2, p3, p5, the events disappearance, appearance,
split, and merge occur, respectively. (b) Case 1.

pears or disappears. The robot R stops when a case is
finished and run the case-analysis procedure. That is
because the proposed strategy works based on the po-
sitions of gaps around R. In fact, the number of quad-
rants the gaps are assigned to determines the strategy
cases. So, an appearance or disappearance event might
change the current case of R.

Furthermore, note that the below-mentioned strat-
egy guarantees that a merge or a split event can never
change the current case of R. That is because when
either a merge or split event occurs for more than one
gap, all such gaps must remain in the same quadrant.
So, the current case will not change. Consequently, the
robot considers those events only for updating GNT,
but ignores them for case-analysis; in fact, only appear-
ance and disappearance events will be considered for
case-analysis.

Case 1: If gap(s) is (are) assigned to one quadrant q
(see Figure 2(b)).
The robot moves alternatively toward two directions ad-
jacent to q, i.e., one step toward a direction and one step
toward another one. The robotR stops if a gap becomes
collinear with any of its two main directions, say d, then
R turns and moves directly toward d (see point p1 in
Figure 2(b)).

Case 2: If gaps are assigned to two adjacent quadrants
q and q′ (see Figure 3(a)).
The robot R moves along the main direction between q
and q′, e.g., if the quadrants be NE and NW, the robot
moves toward N.

Case 3: If gaps gi(ri, q), gj(rj , q
′), and gk(rk, q

′′), 1 ≤
i, k exist and at least some of them are located in two
non-adjacent quadrants (q, q′′) (see Figure 3(b)).
In this case, the gaps are assigned to at most three quad-
rants. There are at least two opposite side quadrants
q, q′′. We call each gap which is assigned to q or q′′ a
crucial-gap.

2-3.pdf
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Figure 3: (a) Case 2 (b) Case 3.

If j ≥ 1 (at least one gap is assigned to q′), then R
moves alternatively between two main directions of q′

(see Figure 3(b)).

Else there is no middle quadrant, and the opposite
quadrants q and q′′ must be either q1, q3 or q2, q4 (see
Figure 1(a)). Using the compass, R can distinguish
between these two. In such a case we need to find a
quadrant to be in the placed of q′. This is a quadrant
where it is not visited yet, and R should move towards
q′. We set q′ to be that quadrant, then R should move
alternatively between two main directions of q′. In the
following we will see how to find q′:

If q, q′′ == q1, q3, then choose an arbitrary gi(ri, q) and
see if gi is a right-gap then q′ equals to q2. Otherwise,
if gi is a left-gap then q′ equals to q4.

Else if q, q′′ == q2, q4, then choose an arbitrary gi(ri, q)
and see if gi is a right-gap then q′ equals to q3. Other-
wise, if gi is a left-gap then q′ equals to q1.

3 Analysis

This section covers the proof of correctness and com-
petitive ratio of FTS strategy mentioned in section 2.
For every gap g(r, q), r is a reflex vertex adjacent with
two edges of P, one of these two edges is visible to R,
and the other one is hidden. The extension of the hid-
den edge into the interior of P is called inflection-ray of
r [10]. WhenR crosses the inflection-ray of r, g(r, q) dis-
appears accordingly. Every inflection-ray partitions P
into two regions, one includes u and the other one con-
tains v [3]. The latter one is called unexplored-region
(see Figure 1(b)). Consider a point p as the current
position of R. We denote the intersection area of all
unexplored-regions of the gaps at point p as Ip. Ap-
pendix A covers all the lemmas and observations that
we used in the proof.

Theorem 1 Using the strategy presented in Section 2,
R always find t.

Proof. The robot R always faces one of the three cases
defined in Section 2 (based on Lemma 4 in Appendix A).
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Consider the point t′ from which R sees t. Thus it is
sufficient to prove that R always directs to Ip for p ∈
path(s, t′), regarding those three cases. Let investigate
each case as follows.

• Case 1: All of the gaps are located in a quadrant q,
and R moves along an L1-path through q. In fact, R
must cross the inflection-ray of a gap. Since Ip is behind
the unexplored-regions and R goes toward Ip, then R
must cross an inflection-ray.

• Case 2: By the strategy, R moves toward a main di-
rection d until an appearance/disappearance event hap-
pens. So similar to Case 1, R must cross an inflection-
ray of a gap. In fact, at least one gap must get dis-
appeared when R moves toward d and R reaches the
inflection-ray of the disappeared gap. Since Ip (for any
p ∈ path(s, t′)) is behind all of the unexplored-regions,
R must be directed to Ip. When R moves toward d,
there must be a gap that get disappeared, otherwise P
is not street. We claim that there are at least one gap
whose inflection-ray is perpendicular to d. By contradic-
tion, assume all inflection-rays of all gaps are collinear
with d. Then, the intersection of the unexplored-regions
of gaps must be null, and as a result Ip = ∅, which is not
possible. So, there must be a gap that got disappeared
while R moves toward d (see Figure 4(b)).

• Case 3: In this case, Ip (for any p ∈ path(s, t′)) lies in
the middle quadrant q′. The strategy leads R to move
alternatively along two main directions adjacent to q′

(the unexplored middle quadrant). So, R moves along
an L1-path toward Ip.

In all cases, we showed that R always pointed to Ip
(p ∈ path(s, t′)) and never got away from it. As a result,
R must finally find t, and this concludes the proof. �

The following theorem demonstrates that the compet-
itive ratio of the strategy is

√
10. Moreover, Theorem 3

demonstrates that when t = v the competitive ratio is√
2. Again, Appendix B covers their proofs.

Theorem 2 Given a rectilinear-street polygon P (u, v),
and a simple robot R, the strategy presented in Section 2
is
√

10-competitive.

Theorem 3 If t = v, the competitive ratio is
√

2 and
it is optimal.

4 Conclusion

We studied the problem of Free-Target Search in an un-
known rectilinear-street for a simple robot. The robot
starts from one of two distinguished points u or v and
searches for an arbitrary target point t. We used a gap-
detector robot that has a minimal sensing capability.

Our strategy generates a path, starts at u (or v) to
t, with a competitive ratio of

√
10. This paper opens

several research lines. We plan to consider the prob-
lem when the robot starts from an arbitrary point on
the boundary. Another research line is to study the
problem in more general environments like streets and
generalized-streets.
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Figure 4: Examples of forbidden cases in which R sees
some gaps at p but Ip = ∅. These cases does not occur
through the robot’s path in a street. If such a cases
occur the polygon is not a street.

Appendix

A Correctness

This section covers the proof of correctness of the FTS strat-
egy mentioned in section 2. For every gap g(r, q), r is a reflex
vertex adjacent with two edges of P, one of these two edges
is visible to R, and the other one is hidden. The extension
of the hidden edge into the interior of the polygon is called
inflection-ray of r [10]. When R crosses the inflection-ray of
r, g(r, q) disappears accordingly. Every inflection-ray parti-
tions the polygon into two regions, one includes u and the
other one contains v [3].The latter one is called unexplored-
region (see Figure 1(b)). Consider a point p as the cur-
rent position of R. We denote the intersection area of all
unexplored-regions of the gaps at point p as Ip. In this sec-
tion, we consider proving the following theorem.

Theorem 1: Using the strategy presented in section 2,
R always find t.

Before proving the statement, let demonstrate some pre-
liminaries.

Observation 1 If R sees at least one gap at p, the point v
must lie in Ip.

Proof. By contradiction, let assume that v is in the
unexplored-region of a gap g(r0, q) but not in Ip. As a re-
sult, the intersection of the boundary of P and Ip does not
contain v. Also, we already know that Ip does not contain
u. If a part of the boundary of P does not contains nei-
ther u nor v, then it must belongs to either one of Lchain or
Rchain of P. Consider a reflex vertex r1 whose unexplored-
region contains Ip but not v. As a result, the points on the
hidden-edge of r1 is not visible from the other chain, which
contradicts the definition of a street polygon. �

Note that if there is at least one non-primitive gap, since
Ip always contains at least v, Ip 6= ∅. So, the cases illustrated
in Figure 4 can never occur.

Remark 2 Since the polygon is rectilinear, for every gap
g(r, q), the unexplored-region of g can lie in q and at most
one of its adjacent quadrants, but it never lies in the opposite
(non-adjacent) quadrant of q.

Observation 3 Consider p as the current position of R, if
there exist gaps in two opposite quadrants (q, q′′), Ip must
be in the unexplored middle quadrant (q′).

Proof. Since Ip 6= ∅, the unexplored-regions of the gaps
g(r, q), g(r′′, q′′) must have an intersection region. The
unexplored-regions of two opposite quadrants can only in-
tersect in an unexplored quadrant named middle quadrant
and denoted by q′. That is because their common region
cannot be in q or q′′ and must be somewhere in q′ (see Fig-
ure 1(b)). �

In the next lemma, we show that regardless of the robot’s
position, the gaps can only lie in at most three quadrants.

Lemma 4 At each point p of the robot’s path, all the gaps
must be located in at most three quadrants.

Proof. Assume a situation where there are some gaps in
three quadrants; w.l.o.g. assume that they are located in
NE, NW, and SE. Hence, according to the Observation 3,
Ip will be located in the middle quadrant, i.e., NW. By con-
tradiction, assume there exists a gap g(r, SW ). As we saw
in Remark 2, the unexplored-region of g(r, SW ) could be
located in any of the quadrants except NW. Consequently,
Ip is empty (Ip = ∅) and contradicts Observation 1 (see
Figure 4(c)). �

Denote a path generated by the strategy from x to y by
path(x, y). We show that the strategy generates a path from
s = u to t (path(s, t)). Consider the point t′ from which R
sees t. It is sufficient to show that the strategy generates a
path from s toward Ip for any p ∈ path(s, t′).

At each point p ∈ path(s, t′) if there exist at least one gap,
we know v is in Ip. So, R travels a path from s toward v.
Hence, either the whole polygon is cleared before reaching
v, or v is reached by R. At the latter case, R traveled a
path(s, v). Klien [6] proved that every path from s = u to
v explores the whole polygon. Therefore, at both cases, the
whole polygon gets explored and R surely sees t.

Consider a point pf on the boundary of last unexplored
Ip p ∈ path(s, t′), when R reaches Ipf all the gaps must
disappear, and the whole polygon is clear. That is because
v lies in Ipf . So, the robot already passed over the path
path(s, pf ), and lies on pf , and the only unexplored region of
P (Ipf ) gets visible for R. For every p′ ∈ path(pf , t) Ip′ = ∅.
So, we only need to show that R always moves toward Ip
for any p ∈ path(s, t′). We will show that considering the
strategy’s cases, the robot can eliminate each non-primitive-
gap only once. Hence, the total path of R is finite, and the
strategy will terminate.

Proof. [Proof of Theorem 1] Based on Lemma 4, R always
faces one of the three cases defined in Section 2. Thus it is
sufficient to prove that R always directs to Ip for any p ∈
path(s, t′), regarding all those three cases. We investigate
each case separately, as follows.

• Case 1: All of the gaps are located in a quadrant q, and
R moves along an L1-path through q. In fact, R must
cross the inflection-ray of a gap. Since Ip is behind the
unexplored-regions and R goes toward Ip, then R must
cross an inflection-ray.

• Case 2: By the strategy, R moves toward a main direc-
tion d until an appearance/disappearance event happens.

13
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So similar to Case 1, R must cross an inflection-ray of a
gap. In fact, at least one gap must get disappeared when
R moves toward d and R reaches the inflection-ray of the
disappeared gap. Since Ip (for any p ∈ path(s, t′)) is be-
hind all of the unexplored-regions, R must be directed to
Ip. When R moves toward d, there must be a gap that
get disappeared, otherwise P is not street. We claim that
there are at least one gap whose inflection-ray is perpen-
dicular to d. By contradiction, assume all inflection-rays
of all gaps are collinear with d. Then, the intersection
of the unexplored-regions of gaps must be null, and as a
result Ip = ∅, which is not possible. So, there must be
a gap that got disappeared while R moves toward d (see
Figure 4(b)).

• Case 3: In this case, Ip (for any p ∈ path(s, t′)) lies in
the middle quadrant q′. The strategy leads R to move
alternatively along two main directions adjacent to q′ (the
unexplored middle quadrant). So, R moves along an L1-
path toward Ip.

In all cases, we showed that R always pointed to Ip (p is a
point in path(s, t′)) and never got away from it. As a result,
R must finally find t, and this concludes the proof. �

B Competitive Ratio

In this section, we intend to prove that the strategy stated
in section 2 provides a competitive ratio of

√
10 for a simple

robot R.
During the robot’s movement, whenever t becomes visible,

R can detect it and move toward it. Let denote the last
intersection of all unexplored-regions that R may see in its
path (path(s, t)) by Ipf , where pf is a point on the boundary
of last unexplored Ip (for any p ∈ path(s, t′)).

Consider a situation where R lies on pf . In such a case, t
is located in Ipf and R moves directly toward t. Note that
if t is not in Ipf , R must have seen it before reaching pf .

In the following theorem, we show that all cases provide
an L1-shortest-path but Case 3. In fact, the competitive
ratio for the first two cases is

√
2, while it is

√
10 for case 3.

Theorem 2: Given a rectilinear-street polygon P (u, v),
and a simple robot R, the strategy presented in Section 2 is√

10-competitive.

Proof. When t is not visible to R, it is hidden behind a gap
g(r, q). Consider a situation where t is located on the line
containing an inflection-ray. Suppose R is not reached that
inflection-ray yet, and the target point t is on the hidden
edge g(r, q). In this situation, R cannot see t until it reaches
the inflection-ray of r. Regarding the positions of t and
r, in other situations R might see t before it reaches the
inflection-ray of r, and it will pass a shorter path to meet
t (see Figure 5(a)). Hence, when t is on the hidden edge
of a gap, R has to pass longer path concerning any other
position of t.

For the first two cases, we show that whenR reaches t, the
robot’s path length is at most equal to an L1-shortest-path
from s to t. This is because R approaches to quadrant(s) in
which there exist gap(s). Note that R never gets away from
gaps. We consider each case separately in the following.

(a) (b)

Shortest-Path

t′

r
t

p0

p1

p

p′

x

x

2x

p′′
yz

√
x2 + y2

t
r

Figure 5: Worst case for finding t.

• Case 1: In this case, t is behind one of the gaps. Since all
of the gaps are located in the same quadrant (q), and R
moves toward q (one step in each direction alternatively),
then its path length is equal to the L1-shortest-path (see
Figure 2(b)).

• Case 2: In this case, the gaps are in two adjacent quad-
rants q, q′, and R moves toward the main direction be-
tween them. Since t is behind one of the gaps when R
goes straight between q, q′, it guarantees an L1-path as R
will never go away from t, and then its length is equal to
the L1-shortest-path (see Figure 3(a)).

In the above cases, R passes through an xy-monotone path,
and the length of the path is equal to an L1-shortest-path.
If t is found during case 1 and 2, it can be showed the path
of R can be extended by an L1-shortest path to t. Hence, it
guarantees the competitive ratio of

√
2 concerning the L2-

shortest-path.
Regarding case 3 (see Figure 3(b)), since Ip is in the mid-

dle quadrant q′, R approaches to q′. If t is behind a gap
in q′, it will be similar to case 1, and the robot’s path is an
L1-shortest-path. However, if t is behind one of the crucial
gaps, R is getting away from t. So, the worst case is when
the case 3 arises and t is behind a crucial gap; we denote the
start point of such a case by p. After p, R may face many
case 3 continuously because of some disappearance events.
We consider all of them together and denote the endpoint
of the last one by p′. We denote by p′′ the point on the
inflection ray of the reflex vertex r related to that crucial
gap which is perpendicular to p. According to Figure 5(b),
R travels 2x+x+y+z while the length of the shortest-path
is
√

x2 + y2 + z. So, the competitive ratio is at most

max

{
2x + x + y + z√

x2 + y2 + z

}
.

If we set z = 0, by finding the function’s extremum point,
we get

√
10 as the maximum possible competitive ratio.

Please note that if t is not visible at p′, after p′ R may
face other cases until t is visible, but in those cases, the
competitive ratio is less and greatest deviation occurs when
t is found in a case 3. �

In the following theorem, we show that if the target point
t is located in the same position of v, then the presented
strategy guarantees an optimal competitive ratio.
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Theorem 5 If t = v, the competitive ratio is at most
√

2
and it is optimal.

Proof. The proof is coming from Theorem 2 and Observa-
tion 1. In other words, in Observation 1 we showed that v
always lies in Ip (for any p ∈ path(s, t′)), and in Theorem 2
we showed that the strategy guarantees an L1-shortest-path
toward Ip. Since t = v ∈ Ip Then it gives a competitive ratio
of at most

√
2, which is optimal [6]. �
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Efficient Algorithms for the k-colored Rainbow Sets

Hamidreza Keikha∗ Vahideh Keikha† Ali Mohades‡

Abstract

In this note, we introduce a variant of the minimum di-
ameter color spanning set (MDCSS) problem. Let P be
a set of n points of m colors in Rd. The MDCSS problem
is to find a subset of P that contains all the colors and
admits the minimum possible diameter. Such a subset
is called a rainbow set. Our objective is to find a rain-
bow set of size k < m (so-called a k-rainbow set). This
problem has application in weighted points, with the
objective of finding a maximum weight k-rainbow set.
First, we assume the points have similar weight and de-
sign an FPT algorithm, which we could generalize to the
weighted version. We also solve the decision version and
the reporting version of the problem by introducing a
reduction to all maximal independent sets of a bipartite
graph. We also provide almost 1.154-approximation al-
gorithms for this problem. In R2, our exact algorithms
have a complexity being near-linear to n.

1 Introduction

Let P = {p1, . . . , pn} be a set of n points in Rd, the
diameter of P is defined as max

pi,pj∈P
d(pi, pj), and can be

computed in O(n log n) time [12]. Now suppose each
pi ∈ P is assigned a color. The objective of the min-
imum diameter color spanning set (MDCSS) problem
is to find a subset P ∗ of P that contains one point
from each color, and P ∗ has the smallest possible di-
ameter among all choices of P ∗, where the diameter is
the maximum distance between any two points in P ∗.
See Figure 1 for an illustration. The set P ∗ is called
the color spanning set or the rainbow set. The fixed-
parameter tractability of MDCSS is posed as an open
problem in [6], in which they assume that the dimen-
sion d is fixed. Very recently, in [11] this question is
answered by proving that MDCSS is in W[1]-hard by
using a complicated reduction from multi-colored clique
graph problem [5], where the dimension d is not fixed.
Also, the author shows that the problem does not ad-
mit an FPTAS in arbitrarily high dimensional spaces.

∗Department of Computer Science, Sistan and Baluchestan
University, Iran, keikha.eng@gmail.com
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Figure 1: (left) The diameter of a set P of 12 points in
R2. (right) For a set P with 3 colors, the rainbow set
P ∗ = {p2, p7, p10}.

In the same paper, some algorithms with quadratic de-
pendencies to n are also supporting the result.

Minimum Color Spanning Circle (MCSC) For a
set of n colored points ofm colors, a closely related prob-
lem is the smallest color spanning circle, i.e. a circle of
the smallest radius that is covering m distinct colors [1].
In R2, the smallest color spanning circle of m colors can
be computed in O(nm log n) time by computing the up-
per envelope of some Voronoi surfaces [7, 1]. This prob-
lem becomes NP-hard in Rd, where d is in the input, but
admits a (1+ε)-approximation in O(dnd1/εe+1) time [8].

To the best of our knowledge the weighted version of
these problems are not studied so far.

Our Contribution. We study a closely related vari-
ant of the MDCSS problem. In the following, we for-
mally define our problems.

Definition 1 Minimum Diameter k-Colored
Spanning Set (MDkCSS) Let P be a set of n points
of m colors. The objective of the MDkCSS problem
is to find a subset P ∗ ⊂ P of size 1 < k < m of
distinct colors, such that P ∗ has the smallest possible
diameter among all possible choices of P ∗. We call P ∗

a k-rainbow set of P .
See Figure 2. The main application of this problem is

the case where the points have weight and the optimal
k-rainbow set has the maximum weight. We define a
maximum weight k-rainbow set P ∗ as a k-rainbow set
that minimizes a parameter d

W , where d is the diameter
and W is the total sum of the weighs of the points in
P ∗. These problems have also application in facility
location, spatial database queries and the environments
in which adjusting k goals of m goals suffices. In this
note, we focus on the case where all the points have a
similar weight. We achieve the following results:

• We introduce a relation between the MDCSS prob-
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Figure 2: Problem definition and optimal solutions with
k-rainbow sets for k = 2, 3, 4, 5.

lem and higher-order Voronoi diagrams. We design
an FPT algorithm that has near-linear dependency
on n in R2 (Theorem 2), which sounds to be helpful
to improve the existing quadratic FPT algorithm
for the MDCSS problem [11].

• We show that MDkCSS problem is fixed-parameter
tractable in d-dimensional space for any fixed d
(Theorem 3). This and previous result carry over
to the weighted version of the problem.

• We study the decision version and the reporting
version of MDkCSS problem for a given value q >
0 and introduce an O(n(tk)5.5α) time algorithm,
where α is the maximum number of the k-subsets
of diameter at most q (Section 4).

• In R2, a 1.154-approximation of the k-rainbow set
can be computed in O(n2mk2 log n) time. In Rd,
a (1.154 + ε)-approximation can be computed in
O(dnd1/εe+2kd) time (Section 5).

We also remark that in MDCSS problem if the number
of the existing colors in P is a small k (possibly con-
stant), we still do not have any exact algorithm with a
running time better than

(
n
k

)
. In R2, our FPT algorithm

is near-linear to n.

2 Preliminaries

Let t denote the maximum frequency of any color in P .
We first note that the proof in [6] shows NP-hardness
for t bounded by three, and can easily be extended to
also show NP-hardness if at most 5 colored points are
co-located (if we do a reduction by MAX-E3SAT(5)).
Consequently, the problem may get easier if the number
of colors is large, i.e., more than n/3. See Appendix 7
for the details.

Proposition 1 In MDCSS problem the maximum fre-
quency of the colors does not appear in the hardness of
the problem. Hence, the number of existing colors in P
is a parameter that determines the hardness.

Thereafter, one may assume t ∈ O(1) and parameter-
ize the complexity of the problem on other parameters,
including the number of the colors in the rainbow set.

3 MDkCSS is in FPT in Any Fixed Dimension

Recall that a k-rainbow set P ∗ ⊂ P is a set of points
of k colors, where P ∗ has the smallest possible diam-
eter among all color spanning subsets of size k. In [6]
it is posed as an open question that which value of k
is the threshold between easy and hard. We partially
answer that question, as we not need to cover all, but
only k colors that their instances realize the smallest
possible diameter. Our algorithm has a near-linear de-
pendency on the number of points, where its hardness
depends on k (and t, but we discussed above that t is
not a parameter to determine the hardness of the prob-
lem). Consequently, we answer the posed question in [6]
partially as follows: for any constant number of colors
which we need to cover in R2, the MDCSS problem can
be answered in near-linear time, but for large values of
k, the problem remains hard.
k-Order Voronoi Diagram. We recall that the

Voronoi diagram of order k of P is the partitioning of the
plane into a set of Voronoi cells, such that each Voronoi
cell c is associated with a set X ⊆ P of k points, and
for each point p in the cell c, the k nearest neighbors of
p are exactly the elements of X.

We denote this diagram by Vk. Such diagrams can
be computed in O(k2n+ n log n) time and has at most
O(nk) cells [9].

In the following, we will show that any set of k col-
ored points of smallest diameter is a subset of the points
which are associated to a Voronoi cell of a Voronoi dia-
gram of order t(k − 1) + 1, or 3t(k − 1) + 1.

Lemma 1 Let P be a set of n colored points with t as
the maximum frequency of a color, and let P ∗ be a k-
rainbow subset of P . Then P ∗ is a subset of the points
which are corresponding to a Voronoi cell of a Voronoi
diagram either of order t(k − 1) + 1, or 3t(k − 1) + 1.

Proof. Let c(P ) denote a subset of points of P that
are associated with only one cell c of a Voronoi diagram
Vt(k−1)+1, or V3t(k−1)+1. Recall that for each Voronoi
cell c, there exists a disk D having its center within c,
where D contains no other point of P − c(P ). The set
P ∗ also realizes a disk D∗ such that either two or three
points of P ∗ are located on its boundary.

Suppose by contradiction that the lemma is false, and
P ∗ of k colors is not associated with one cell of a Voronoi
diagram of order t(k − 1) + 1, or 3t(k − 1) + 1.

By definition, in Vt(k−1)+1, the points of each cell of
the diagram have the same t(k − 1) + 1 nearest neigh-
bours in P . Observe that in the case where there are
two points on the boundary of D∗, D∗ cannot contain
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Figure 3: Illustration of Lemma 1, the case where D∗

has two points on its boundary. On a set P of colored
points with t = 2, the optimal solution with k = 2 is
associated with a cell c (shown in gray) of Vt(k−1)+1,
and uses a pair of red and blue points (connected by a
dashed line segment). Observe that D∗ cannot contain
more than 3 points of P , otherwise, there must be two
points of different colors strictly within D∗, such that
they realize a smaller diameter than the diameter of D∗.

more than t(k − 1) + 1 points. If not, there always ex-
ist at least another set P ′ of k points from k distinct
colors, which they all are entirely located within D∗,
and the diameter of P ′ is strictly smaller than the di-
ameter of D∗ (i.e., P ∗). This gives a contradiction. It
follows that D∗ cannot contain more than t(k − 1) + 1
points and P ∗ is contained in some Voronoi cell of a
Voronoi diagram of order t(k − 1) + 1. See Figure 3 for
an illustration.

In the case where D∗ has three points of P ∗ on
its boundary, we partition D∗ into at most sectors by
connecting the centre of D∗ to the points of P ∗ on
its boundary. Then obviously each sector cannot con-
tain more than t(k − 1) points since otherwise there
would be k points from distinct colors in that sector so
that the determined diameter by those points is strictly
smaller than the diameter of P ∗. Then D∗ is con-
tained in some Voronoi cell of a Voronoi diagram of
order 3t(k − 1) + 1. �

3.1 Algorithm

From Lemma 1, the smallest diameter among each sub-
set of k points of distinct colors that is associated to
a Voronoi cell of Vt(k−1)+1 or V3t(k−1)+1 determines an
optimal solution. A similar idea is used in [2] to find a
k-subset with the smallest diameter.

In the algorithm, we first make two Voronoi diagrams
of orders t(k−1)+1 and 3t(k−1)+1, of all the n points
of P , without considering their colors in the construc-
tion. First consider the optimal solution on the Voronoi
diagram of orders 3t(k−1)+1. In each step of the algo-
rithm, we consider the associated points of each cell of
V3t(k−1)+1 independently. Let Pc denote the associated
points of a cell c. We use a brute force idea on Pc, to find
a subset P ∗c ⊆ Pc of k distinct colors with the smallest
possible diameter, and remember the P ∗c with the small-

est possible diameter among all the cells of V3t(k−1)+1.
We repeat the above algorithm also for Vt(k−1)+1, and
report a set P ∗c with the smallest diameter.

In Lemma 1 we observed that each set Pc has a rea-
sonable size with only a linear dependency to k and t,
which makes our algorithm works exponentially only in
k and t. Since the complexity of the number of the
cells of a Voronoi diagram of order tk is O(ntk), our
method gives an FPT algorithm. In Appendix 6, we
discuss the complexity of the algorithm. To generalize
our FPT to a higher dimension d, we first need to con-
struct the k-order voronoi diagram in that dimension.
A k-order voronoi diagram in Rd can be constructed in
O(ndd/2ekbd/2c+1) time [3]. The other commands of the
algorithm are the same as 2-D case.

Theorem 2 Let P be a set of n colored points. The
MDkCSS can be solved in O(n2O(tk) + n log n) time,
where k and t are the number of the colors in the rainbow
set and the maximum frequency of a color, respectively.

Proof. Computing a Voronoi diagram of order O(tk)
takes O((tk)2n+ n log n) time and has at most O(ntk)
cells [9]. By repeating the algorithm of Section 3.1 for
all the cells of the Voronoi diagrams Vtk and V3t(k−1)+1,

the algorithm takes O(n2O(tk) + n log n) time. �

Theorem 3 The MDkCSS problem is fixed-parameter
tractable in d-dimensional space for any fixed d.

Proof. A k-order voronoi diagram in the dimension d
can be constructed in O(ndd/2ekbd/2c+1) time [3]. If the
dimension d of the MDkCSS problem is fixed, the prob-
lem can be solved in O(n(2O(tk)+log n)+ndd/2ekbd/2c+1)
time, which implies that MDkCSS is in FPT, where the
frequency of the colors and the number of the colors are
the fixed parameters of the problem. �

Maximum Weight k-rainbow Set Let wi denote
the weight of pi ∈ P . A maximum weight k-rainbow set
P ∗ can also be computed with the same algorithm since
we consider all possible k-subsets. Instead of reporting
the k-rainbow set of the smallest diameter d, we report
the one which minimizes d

W , where W =
∑
pi∈P∗ wi.

4 Reporting all MDkCSS of diameter at most q

In this section, we study the following problems: for
a given P and q > 0, is there any k-rainbow set in P
of diameter at most q, and how much quicker we can
count or report all the k-rainbow sets of P of diameter
at most q. Let c be any cell of V3t(k−1)+1 that has at
most O(tk) points, and let X ⊆ P denote the associated
points of P to c. For any pair pi, pj ∈ X of distinct col-
ors, let z = d(pi, pj) denote their Euclidean distance.
Our objective is to determine whether is there any set
of k points of distinct colors in X, where the pairwise
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distances between the points are at most z ≤ q. Con-
sider two circles Ci and Cj of radius z, one is centered at
pi and the other at pj . Let X ′ denote the set of points
in Ci ∩ Cj ∩ P . Make a graph G on X ′ by connecting
any pair of points with a distance at most z, and let G
denote the complement of G. Observe that the vertices
of X ′ which are lying on exactly one side of pipj are at a
distance less than z. Consequently, in G, the connected
pair of vertices lie on opposite sides of pipj . This implies
that we can consider G as a bipartite graph, with ver-
tices at each side of pipj as one part. Observe that the
points of a distance smaller than z make a clique in G,
and an independent set in G. But now, the question is
to check whether is there any maximal independent set
(MIS) X∗ of size at least k in G, where at least k ver-
tices in X∗ has distinct colors. For each MSI, we check
whether is there any set of k distinct colors among the
reported vertices or not. By considering the freedom of
pi and pj in O(ntk) cells of V3t(k−1)+1 (resp. Vt(k−1)+1),
the algorithm takes O(ntk)×O(tk)2×O((tk)2.5α) time,
where α is the maximum number of the maximal subsets
of diameter at most q.

Theorem 4 Let P be a set of n colored points with t
as the maximum frequency of a color. The reporting
version of the MDkCSS can be answered in O(n(tk)5.5α)
time, where α is the maximum number of the maximal
subsets of P with a diameter at most q.

5 Approximation Algorithm

We design a simple but efficient approximation algo-
rithm. Observe that for any set X of points, the di-
ameter of X is longer than

√
3 times the radius of

the smallest enclosing circle (SEC) of X; consider the
configuration in which three points on the boundary
of the SEC make an equilateral triangle, and the side
of the triangle determines the diameter. If one trans-
lates any pair of these points on the boundary of the
SEC, to get closer, the size of the diameter can only
be increased. Let rX and dX denote the radius of the
SEC and the diameter of X, respectively. For a set P
of points, let X be the set realizing the smallest color
spanning circle with k colors, and let P ∗ denote the set
of points realizing the k-rainbow set of smallest diame-
ter. Using the fact that the radius rX is smaller than
the radius of the color spanning circle of P ∗, we have
dP∗ ≤ dX ≤ 2rP∗ ≤ 2/3

√
3(
√

3rP∗) ≤ 2/3
√

3dP∗ .
Consequently, the diameter of the setX approximates

the optimal k-rainbow set within a factor 2/3
√

3 ≈
1.154. A brute-force O(n4) time algorithm for comput-
ing the smallest color spanning circle of at least k colors
consider any pair or triple of points of distinct colors
that define a circle. But we can do better. According
to Theorem 1.2. of [10], for a set of n points, comput-
ing a circle of smallest radius that satisfies m constraint

(here covers m distinct colors) can be reformulated to
satisfy only k of m constraints, in O(nkd) time, where
d equals the geometric dimension of the original prob-
lem, and this would be performed by finding the opti-
mal solution of O(kd) independent LP-type problems.
Consequently, the presented algorithms for MCSC give
approximation algorithms for our problems.

Theorem 5 Let P be a set of n colored points of
m colors. In R2, a 1.154-approximation of the k-
rainbow set can be computed in O(n2mk2 log n) time.
In Rd, a (1.154 + ε)-approximation can be computed in
O(dnd1/εe+2kd) time.
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Appendix
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H = {p1, . . . , p12}
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Figure 4: Construction of an instance X of MDCSS
problem from a satisfying problem F , by a regular poly-
gon H. Note that in F , each variable must exactly occur
in 5 clauses, which here we omit this assumption for the
clarity. In a complete construction, we will have exactly
5 points of different colors at the vertices of H that con-
tribute to X.

6 Running Time Analysis

In the following, we consider the complexity of running the
algorithm on each cell of V3t(k−1)+1. The analyze of running
the algorithm on each cell of Vt(k−1)+1 is similar. To analyze
the running time, we use Stirling’s formula as below

(
3tk − 3t + 1

k

)
= 2log(3tk−3t+1)!−log k!−log(3tk−3t−k+1)!

log(3tk − 3t + 1)!− log k!− log(3tk − 3t− k + 1)! =

3tk ln(3tk − 3t + 1)− (3tk − 3t + 1) + O(ln(3tk − 3t + 1))

−k ln k + k −O(ln k)− (3tk − 3t + 1) ln(3tk − 3t− k + 1)

+(3tk − 3t− k + 1)−O(ln(3tk − 3t− k + 1)) ∈ O(tk)

Consequently, considering all possible k-rainbow sets cor-
responding to one cell of V3t(k−1)+1 takes O(2tk) time.

For each cell c of a Voronoi diagram of order V3t(k−1)+1, we
can find a k-rainbow set with the smallest possible diameter
among the corresponding points of c in O(k·k log k ·2tk) time,
in which, in O(k) time we determine whether the selected
set contains k distinct colors, and O(k log k) time is required
to find the diameter of a set of size k. Note that the first
and the second terms of the running time will be dominated
by the last term.

7 Discussion on the hardness of MDCSS

Theorem 6 MDCSS remains NP-Complete even if at most
5 colored points are co-located.

Proof. The proof is the same as the reduction in [6]. Here
we recall it by doing the reduction on a regular polygon to
avoid the careful placement of the points on the circle as
is required in [6]. We use a reduction from MAX-E3SAT(5)

that is a variant of MAX-3SAT, in which each clause contains
exactly 3 literals, every variable occurs in exactly 5 clauses
and a variable does not appear in a clause more than once,
which is known to be NP-hard [4].

For a MAX-E3SAT(5) instance F of n variables and m
clauses, we make an instance of MDCSS with a set X of m
colors, in which the diameter of the rainbow set of X will be
strictly smaller than 1 if F is satisfiable. We construct the
set X from the variables of F as below.

Consider a regular polygon H = {p1, . . . , p2n} of diameter
1 and with 2n vertices, where the antipodal points of each
vertex pi, which is pn+i also exists on H. We associate each
pi and pn+i to exactly one literal of F .

Each vertex and its antipodal vertex determine a positive
literal and the negative literal which is assigned to this pair
of antipodal vertices. We assign all the literals of F on the
vertices of H. We also assign a unique color rj to each clause
Cj . For each variable xi ∈ F , if xi appears in Cj , we place
a point of color rj at vertex pi, and if ¬xi appears in Cj , we
place a point of color rj at vertex pn+i. Then X is the set of
all the colored points which we have placed on the vertices
of H. See Figure 4 for an illustration.

If F is satisfiable, then we can find a correct assignment for
all the variables, such that for none of them, both of the true
and the false value appears in the assignment. Consequently,
this assignment has a diameter strictly smaller than 1, since
the diameter of H has the maximum possible value on the
antipodal pairs. Also, this assignment has satisfied all the
clauses, and consequently, introduces a color spanning set,
and also answers the decision version of the existence of a
MDCSS with a diameter strictly smaller than 1.

If X contains a rainbow set X∗ of m points of a diameter
strictly smaller than 1, then X∗ cannot contain both pi and
pn+i. We can use the set X∗ to find a correct satisfying
assignment for the literals of F . Consequently, F is satisfi-
able if and only if a rainbow set X∗ of m points of diameter
smaller than 1 exists. �

Remark. The reduction can be done in O(n + m) time.
When necessary, one can easily justify the assumption of
having exactly t copies of a color by considering dummy
points in the infinity distance.

Proof of Theorem 5

Proof. We use the algorithm of [7, 1] for the first result,
and the algorithm of [8] for the second result. �
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A lower bound on the stretch factor of Yao graph Y4

Davood Bakhshesh∗ Mohammad Farshi†

Abstract

In this paper, we provide a lower bound of 3.828 for the
stretch factor of Y4. This solves an open problem posed
by Barba et al (L. Barba et al., New and improved span-
ning ratios for Yao graphs. Journal of computational
geometry, 6(2):19–53, 2015.).

1 Introduction

Let S be a set of points in the plane. A weighted graph
G = (S,E) is called geometric, if every edge e = (p, q)
in G is a straight-line between p and q and the weight of
e is |pq|, the Euclidean distance between p and q. The
length of a path between two points p, q ∈ S is defined
as the sum of the weight of all edges of the path. For any
two points p, q ∈ S, the stretch factor of the pair p and
q is the ratio of the length of a shortest path between p
and q over |pq|. The stretch factor (or dilation) of G is
the maximum stretch factor between any pair of vertices
of G. For a real number t > 1, a geometric graph G is
called a t-spanner if the stretch factor of G is at most t.

One of the most popular graphs in computational
geometry are Yao graphs, denoted by Yk, introduced
by Flinchbaugh and Jones [10] and independently by
Yao [12]. For every point set S in the plane and an in-
teger k ≥ 2, the Yao graph Yk is constructed as follows.
Around each point p ∈ S, the plane is partitioned into
k regular cones with apex at p. We denote the set of all
these cones by Cp. Then, for each cone C ∈ Cp, we add
an edge (p, r) to Yk, where r is a closest point in C to
p. Throughout the paper, we call such a point r by the
nearest point to p in Cp. Another popular graphs are
theta-graphs (Θk) which were introduced by Clarkson [6]
and independently by Keil [11]. The construction of Θk

is similar to the construction of Yao graph Yk except
that we change the definition of nearest as follows: A
point r ∈ Cp is the nearest point to p if the orthogonal
projection of r, denoted by r′, onto the bisector of Cp
minimizes |pr′|. For any two vertices p and q, we de-
note by q ∈ Cp, if the cone with the angular diameter θ
and apex at p contains q, and the canonical triangle Tpq
is defined an isosceles triangle such that the angle of

∗Department of Computer Science, University of Bojnord, Bo-
jnord, Iran. d.bakhshesh@ub.ac.ir
†Combinatorial and Geometric Algorithms Lab., Depart-

ment of Mathematical Sciences, Yazd University, Yazd, Iran.
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its apex at p is θ and its base is perpendicular to the
bisector of Cp.

Clarkson [6] proved that Y12 is a (1 +
√

3)-spanner.
Then, Althöfer at al. [1] proved that there is an inte-
ger k such that Yk is a t-spanner for every t > 1. For
k > 8, Bose et al. [5] showed that Yk is a t-spanner
with t ≤ 1/(cos θ − sin θ), where θ = 2π

k Then, Bose et
al. [4] showed that for k > 6, Yk is a 1/(1− 2 sin(θ/2))-
spanner. Damian and Raudonis [8] proved Y6 has the
stretch factor at most 17.64. This was later improved
by Barba et al. to 5.8 [2]. The authors of [2] also im-
proved the stretch factor of Yk for all odd values of k ≥ 5
to 1/(1− 2 sin(3θ/8)). Bose et al. [4] proved that Y4 is
a 663-spanner. Damian et al. [7] improved the upper
bound of 663 on Y4 to 54.62. In [2], Barba et al. pro-
vided the lower bounds of 2.87 and 2 on the stretch
factor of Y5 and Y6, respectively. We summarized some
the previous results on the stretch factor of Yao graphs
in Table 1.

Yk Lower bound Upper bound
Y6 2 [2] 5.8 [2]
Y5 2.87 [2] 3.74 [2]
Y4 3.828 (this paper) 54.62 [7]
Y2, Y3 ∞ Not a spanner [9]

Table 1: Lower and upper bounds on the stretch factor
of Yk.

In this paper, we provide a lower bound of 3.828 on
the stretch factor of Y4. This solves an open problem
posed by Barba et al. [2].

2 Main Result

Here, we provide a lower bound of 3.828 for the stretch
factor of Y4. We present a point set S that the graph
Y4 on S has the stretch factor 3.828. The construc-
tion of S is a modification of the construction of the
point set S′ which was proposed by Barba et al. [3] for
Θ4. Let C0(a), C1(a), C2(a) and C3(a) be four regular
cones with apex at a of angle 90◦ that equally parti-
tion the plane. We assume that the first ray of C0(a)
is in the direction of positive x-axis. We assume that
the cones C0(a), C1(a), C2(a) and C3(a) are in counter-
clockwise order around a. Let Di(a, b) be a quarter of
a closed disk with center a and radius |ab| such that
cone Ci(a) contains Di(a, b) (see Figure 1(a)). The con-
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struction is started with S = {u,w}, where u and w
are two points such that C1(u) contains w and the dif-
ference of x-coordinates of u and w is arbitrarily small.
Now, it is clear that the graph Y4 on S has a single
edge (u,w). Then, the stretch factor of Y4 on S is 1.
The idea to obtain the lower bound 3.828 is that we
extend the shortest path between u and w by adding
some extra points to S. Now, let x be a point in the
plane such that x is inside D1(u,w) and lies at the cor-
ner of D1(u,w) (see Figure 1(b)). Now, we add x to
S. Let r be a point in the plane such that r is inside
D3(w, u) and lies at the corner of D3(w, u) as depicted
in Figure 1(b). Then, we add r to S. Now, we have
S = {u,w, x, r}. If we draw the graph Y4 on S, then
we have not the edge (u,w) and therefore the shortest
path between u and w has been extended. Now, by the
above technique, we extend the shortest path between u
and w as depicted in Figure 1(b). Note that y is a point
placed at a corner of D0(x,w) with |xy| < |xw|, and z is
a point placed at a corner of D3(y, w) with |yz| < |yw|
(see Figure 1(b)). Notably, we supposed that |uw| = 1.
Then, by the construction, we have

|ux| ≈ |uw| = 1

|xy| ≈ |xw| ≈
√

2

|yz| ≈ |ux| ≈ 1

|yw| ≈ 2
√

2 sin
π

8
(yw is the base side of 4xyw)

|zw| ≈
√
|yw|2 − |ux|2 =

√(
2
√

2 sin
π

8

)2
− 1 =

√
2− 1.

Then,

|ux|+ |xy|+ |yz|+ |zw|
|uw|

≈ 1 +
√

2 + 1 +
√

2− 1

1
= 2
√

2− 1 ≈ 3.828

Hence, we proved the following theorem.

Theorem 1 The stretch factor of Y4 is at least 3.828.

3 Conclusion

In this paper, we provided a lower bound of 3.828 for
the stretch factor of Y4 that solves an open problem. It
is an interesting open problem to know if 3.828 is the
best lower bound for the stretch factor of Y4.
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Local geometric spanners for points in convex position

Mohammad Ali Abam∗ Mohammad Sadegh Borouny†

Abstract

Let P be a set of n points in the plane that are in convex
position. For a geometric graph G on a point set P and
a region R belonging to a family R, G∩R is defined to
be the part of the graph G that is inside R. A local t-
spanner with respect to R is a geometric graph G on P
such that for any region R in R, the graph G∩R is a t-
spanner w.r.t. Gc(P )∩R, where Gc(P ) is the complete
geometric graph on P . We prove that the set P for any
constant ε > 0 admits a local (1+ε)-spanner of sizeO(n)
and a local (2+ε)-spanner of size O(n log2 n) w.r.t. ver-
tical slabs and squares, respectively. Moreover, if adding
Steiner points is allowed, a local (1 + ε)-spanners with
O(n log2 n) edges can be obtained for rectangle regions.
Also, if regions are arbitrary oriented squares, we can
obtain a local (1 + ε)-spanner of size O(n log2 n) using
O(n log n) Steiner points.

1 Introduction

Let G(P,E) be an edge weighted geometric graph on a
set P of n points in plane. The length of a shortest path
and Euclidean distance of any node p and q are denoted
by dG(p, q) and |pq| respectively. G is a t-spanner (for
the given t > 1) if for any two vertices p, q ∈ P we have
dG(p, q) ≤ t · |pq|. Also G is called local t-spanner with
respect to a family R of regions if for any region R ∈ R
and any two points p, q ∈ P ∩ R, the distance between
p and q in G ∩R is at most t · |pq|.

In this paper, we consider spanners for point sets that
are in a convex position. We focus on some specific
families, namely vertical slabs, squares, rectangles, and
present local t-spanners with near-linear sizes.

Even if the points are in convex position, G must have
O(n2) edges to be local with respect to some families of
regions such as slabs (see [2]). Hence, we shall consider
the case where we are allowed to add Steiner points to
the graph. In other words, instead of constructing a
geometric network for P , we are allowed to construct a
network for P ∪Q for some set Q of Steiner points. We
say that a graph G on P ∪Q is a local Steiner t-spanner
w.r.t. R for P , if for any R ∈ R and any two points
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p, q ∈ P ∩ R, the distance between p and q in G ∩ R is
at most t · |pq|.

Abam et al. in [2] prove that any point set of n points
in the plane for any constant ε > 0 admits a local (4+ε)-
spanner of size O(n log2 n) and a local (1 + ε)-spanner
of size Ω(n log n) w.r.t. axis-parallel squares and verti-
cal slabs, respectively. By adding Steiner points, they
obtained a local (1 + ε)-spanner w.r.t. disks of size
O(n log2 n) using O(n) Steiner points.

In section 2, we construct a local (1 + ε)-spanner of
size O(n) when regions are vertical slabs. In section
3, we consider square regions, and show it is possible
to construct a local (2 + ε)-spanner of size (n log2 n)
w.r.t. axis-parallel squares. Also, we consider arbitrary
oriented squares and we show if Steiner points are al-
lowed, we can construct a local (1 + ε)-spanner of size
O(n log2 n). We dedicate Section 4 to rectangle regions,
and show by adding O(n log n) Steiner points, we can
construct a local (1 + ε)-spanner of size O(n log2 n).

2 Local spanners w.r.t. vertical slabs

For arbitrary slabs (not necessarily vertical) and any
set of points in general position, we need Ω(n2) edges
to construct a local spanner because any edge of the
complete graph can introduce a narrow slab which con-
tains only its two endpoints [2]. Hence, we only focus
on vertical slabs (i.e. [a, b]× [−∞,∞] for some a and b).
Our method to construct local (1 + ε)-spanners w.r.t.
vertical slab is based on a well-separated-pair decompo-
sition of P defined below.

Definition 1 [4] Let P be a set of n points in the
plane and let s > 0 be a real number. Two point sets
A and B in the plane are well-separated w.r.t. s, if
there are two disjoint disks DA and DB of the same
radius, r, such that (I) DA and DB covers A and
B, respectively (II) the distance between DA and DB

is at least s · r. A well-separated pair decomposition
(WSPD) for P w.r.t. s (called s-WSPD) is a collection
Ψ := {(A1, B1), . . . , (Am, Bm)} of pairs of non-empty
subsets of P such that

1. Ai and Bi are well-separated w.r.t. s, for all i =
1, · · · ,m.

2. for any two distinct points p and q of P , there is
exactly one pair (Ai, Bi) ∈ Ψ, such that p ∈ Ai and
q ∈ Bi, or vice versa.
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Callahan and Kosaraju show that any set P admits a
WSPD of size m = O(s2n), where the number of pairs
is called the size of the WSPD.

We will show that any set P in convex position admits a
WSPD of sizem = O(s2n) such that for each pair (A,B)
of the WSPD both A and B are continuous pieces of the
lower hull or upper hull of P .

Our method is based on the WSPD construction by
Fisher and Har-Peled [5]. Their construction uses a
compressed quadtree, which is defined as follows. Let
U be the bounding square for P . Partition U into
four equal-sized squares. Continue recursively until each
square in the final subdivision contains a single point.
In our construction, we first rotate the axes such that
the x-axis is parallel to pq where p and q are the left-
most and rightmost points on the x-axis. This causes
that the lower and upper hulls get separated at the root
of the quadtree. Moreover, each cell of the quadtree
may contain a constant number of continuous pieces of
the lower or upper hulls of P , so we divide each cell
into a constant number of new cells; each containing
one continuous piece of P .

It is known by setting s := 4 + (8/ε), and select-
ing an edge per pair (A,B), we can construct (1 + ε)-
spanner. Unfortunately, this construction might not be
local spanner. Indeed, for a region R ∈ R, R ∩ A and
R∩B might not be empty but the selected edge for pair
(A,B) might not exist in R. To get a local spanner, for
each pair (p, q) where p ∈ A and q ∈ B, we add pq to
the spanner provided that there is a region R ∈ R just
containing p, q among points in A ∪B.

Now, after constructing our WSPD for point set P in
convex position, for each pair (p, q) where p ∈ A and
q ∈ B, we add pq to the spanner G provided that there
is a vertical slab just containing p and q among points
in A∪B. We will show that the number of edges of the
constructed graph is O(n).

Let (A,B) be a pair of the WSPD. If A and B can
be separated by a vertical line, it is easy to see we only
add one edge to G; meaning one edge per such a pair.
Otherwise, we add an edge for any p and q such that
p ∈ A and q ∈ B and p and q are consecutive on the x-
axis among all points in A ∪B. Since A and B contain
continuous pieces of the convex hull of P , so p and q
must be consecutive on the x-axis among all points in
P . This happens only O(n) times. Therefore, the total
edges added to G is O(n). For each point pair as (p, q)
there is a pair of WSPD as (Ai, Bi) such that p ∈ Ai and
q ∈ Bi or vice versa. So we get the following theorem.

Theorem 1 For a set P of n points in convex position
and any ε > 0, there exists a local (1 + ε)-spanner of
size O(n) w.r.t. vertical slabs.

Figure 1: A configuration of points in convex position
for which any local (1 + ε)-spanner w.r.t. arbitrary ori-
ented squares needs Ω(n2) edges [2].

3 Local spanners w.r.t. squares

For arbitrary squares (not necessarily axis-parallel),
there is an example showing that we may need Ω(n2)
edges to have a local spanner—see Fig. 1 [2]. Hence,
in the first part, we only focus on axis-parallel squares,
and in the second part, we consider the case where we
are allowed to add Steiner points to construct a local
spanner w.r.t. arbitrary oriented squares.

3.1 Local spanners w.r.t. axis-parallel squares

Our local spanner construction is based on the concept
of Cone Separated Pair Decomposition [1], CSPD, de-
fined next.

Let α-cone be a cone with angle α. Let C be a collec-
tion interior-disjoint α-cone whose apices are the origin
and also they together cover the whole plane.

Let P be a set of points in the plane. A pair (A,B)
(A,B ⊂ P ) is said to be cone separated if there exists a
translated cone σ ∈ C such that (i) all points of A are
inside σ (ii) all points of B are inside the reflection of σ
about its apex.

A CSPD of P with respect to α is a collection ψα :=
{(A1, B1), · · · , (Am, Bm)} of pairs of subsets for P such
that:

• Ai and Bi are cone separated, for all i = 1, · · · ,m.

• For any two distinct points p, q ∈ P , there exists
precisely one pair in (Ai, Bi) ∈ ψα such that (i)
p ∈ Ai and q ∈ Bi or (ii) q ∈ Ai and p ∈ Bi.

In [1] it has been shown that any set P of
n points and any angle α admit a CSPD ψα =
{(A1, B1), · · · , (Am, Bm)} such that

∑ |Ai| + |Bi| =
O(n log2 n).

First, we simply divide P into four sets P1, P2, P3 and
P4 such that each Pi is xy-monotone. It is easy to see
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Figure 2: p, p′ ∈ P1 and q, q′ ∈ P3; also, p, p′ ∈ A and
q, q′ ∈ B where (A,B) is a pair of α-CSPD. Blue path
show (2 + ε) path.

that each square intersects a continuous piece of the
convex hull of Pi. We can construct a local (1 + ε)-
spanner w.r.t. axis-parallel squares for each Pi of size
O(|Pi|) using the WSPD method as Pi is xy-monotone.
Then, for each pair (Pi, Pj), we construct an α-CSPD
where α depends on the given ε. Again we can construct
this α-CSPD such that for each pair (A,B), both A and
B are continuous pieces of the convex hull of P . For each
pair (A,B) of the α-CSPD, we add the Delaunay edges
A ∪ B w.r.t. squares. Note that the number of edges
added to the spanner is

∑
O(|A|+ |B|) = O(n log2 n).

We next show that for any two points p and q there
is a (2 + ε)-path inside any square S containing p and
q. If p and q belong to set Pi for some i, we can easily
show that there is a (1 + ε)-path inside S. Now, assume
p ∈ Pi and q ∈ Pj for some i 6= j. We know there is a
pair (A,B) of the α-CSPD of Pi ∪ Pj such that p ∈ A
and q ∈ B. There should be points p′ ∈ A ∩ S and
q′ ∈ B ∩ S such that there is an edge connecting p′ to
q′ in the spanner. We know that there are (1 + ε)-paths
inside S from p to p′ and from q to q′—see Fig 2. For
appropriate α (depending on ε) we can show that these
two paths together with edge p′q′ is a (2 + ε)-path.

Theorem 2 For any set P of n points in the convex
position and any ε > 1, one can construct a local (2+ε)-
spanner w.r.t. axis-parallel squares of size O(n log2 n).

3.2 Local spanners w.r.t. arbitrary oriented squares

Local spanners w.r.t. arbitrary squares are more chal-
lenging. Our method uses some definitions defined be-
low.

Definition 2 Let b(p, r) be the set of all points of P
whose distance to p ∈ P is at most r. Also, let
ring(p, r, R) is the set of all points of P whose distance
to p ∈ P is at most R and at least r.

Figure 3: Steiner points between Pin and Pouter. Blue
points show Steiner points.

Lemma 3 ([3]) Let P be a set of n points in Rd, t > 0
be a parameter, and let c be a sufficiently large constant.
Then, one can compute in linear time a ball b = b(p, r),
such that (i) |b ∩ P | ≥ n/c, (ii) ring(p, r, r(1 + 1/n)) is
empty, and (iii) |P\b(p, 2r)| ≥ n/2.

Based on Lemma 3, let Pin = b(p, r), Pout =
b(p, 2r)\b(p, r) and Pouter = P\b(p, 2r). We define an
angle θ = 2π/k depending on the given ε—note that k
is constant depending on ε. We select k points on the
circle centered at p and radius 3

2r such that for any two
consecutive such points q and q′, the angle qpq′ is θ—
see Fig 3. We look at all these points as Steiner points.
Then, we connect each Steiner point to all other original
points in our spanner; this in total adds O(n) edges to
the spanner. These edges guarantee that there is always
a (1 + ε)-path from a point in Pin to a point in Pouter

even we cut the spanner by a square.
In the first step of our construction, we connect each

Steiner point to all other points in our spanner. Since
the number of Steiner points is constant, then the num-
ber of edges added to the spanner is O(n). Moreover,
it is easy to show that there is always a (1 + ε)-path
from a point in Pin to a point in Pouter even we cut the
spanner by an oriented square. Next we explain how
to guarantee the existing a (1 + ε)-path from a point in
Pin to a point in Pout by adding O(n log n) edges. If we
succeed in doing that, then we can recursively continue
our construction over Pin and Pout ∪ Pouter and get a
O(n log2 n) spanner.

To obtain a spanner over (Pin, Pout) we add new
Steiner points. First, we construct an s-WSPD (s ≥ 2
depends on ε) over (Pin, Pout). For each pair (A,B) of
the WSPD, we add a constant number of Steiner points.
Let oA and r be the center and radius of the bounding
disk of A. As the last step, we select k points on the
circle centered at oA with radius 3

2r, and consider all
these points as Steiner points add edges between them
and all points in A∪B in our spanner—see Fig 4. Since
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Figure 4: Steiner points for each pair (A,B) of the
WSPD. Blue points show Steiner points.

s ≥ 2, it is clear that a square containing non-empty A
and B subsets must contain at least one Steiner point
defined above. Since the number of pairs is O(n) and
we add O(1) Steiner points per pair, the total number
of Steiner points is O(n). We show that the number of
edges that are added to the spanner is O(n log n).

We use the fact that in the WSPD construc-
tion method, which we presented in section 2, if
ring(p, r, r(1+1/n)) is empty, the depth of the quadtree
for Pin ∪ Pout should become O(log n)—note that we
just want to separate Pin from Pout by WSPD. As the
depth is O(log n), the sum O(|A|+ |B|) over all pairs is
O(n log n), and therefore, the total edges added to the
spanner is O(n log n). Putting all this together, we get
the following theorem.

Theorem 4 Suppose ε is a parameter and P is an ar-
bitrary point set in convex position. One can construct
a local (1 + ε)-spanner with respect to square that uses
O(n log n) Steiner point and has O(n log2 n) edges.

4 Local spanners w.r.t. rectangles

For axis-parallel rectangles, there is an example showing
that we may need Ω(n2) edges to have a local spanner—
see Fig. 5. Hence, we only consider the case where we
are allowed to add Steiner points to the spanner.

Our local spanner construction again is based on
CSPD. We construct an α-CSPD for α depending on
ε. For each pair (A,B) of the CSPD, let σ be an α-cone
that together with its reflex about its apex, separates A
and B. We consider the apex o of σ as a Steiner point
and connect o to all points in A ∪ B in the spanner,
giving us a spanner of size O(n log2 n) edges. For any
two points p and q, it is easy to see the path p, o, q is a
(1+ε)-path for appropriate α. As o is inside any square
containing p and q, then our spanner is a (1 + ε)-local
spanner.

Theorem 5 For a set P of n points in convex position
and any ε > 0, there exists a local (1 + ε)-spanner of
size O(n log2 n) w.r.t. axis-parallel rectangles by adding
at most O(n log2 n) Steiner points.

Figure 5: A configuration of points in convex position
for which any local (1 + ε)-spanner w.r.t. axis-parallel
rectangles needs Ω(n2) edges.
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Spanners on imprecise points

Abolfazl Poureidi∗† Mohammad Farshi†

Abstract

In this paper, we provide an imprecise point set R of n
straight-line segments in the plane such that any impre-
cise t-spanner for R has Ω(n2) edges. Then, we give an
algorithm that computes an imprecise t-spanner for a
set of n pairwise disjoint d-dimensional balls with arbi-
trary sizes. This imprecise t-spanner has O(n/(t− 1)d)
edges and can be computed in O(n log n/(t−1)d) time.

1 Introduction

A geometric network is a weighted undirected graph
whose vertices are points in Rd, and in which each edge
is a straight-line segment with weight equal to the Eu-
clidean distance between its endpoints. In a geomet-
ric network G = (P,E) on a set P of n points, the
graph distance of u, v ∈ P , denoted by dG(u, v), is the
length of the shortest path between u and v in G. Then,

δG(u, v) = dG(u,v)
|uv| is the dilation between u and v in G.

We say that there exists a t-path (t > 1) between two
vertices u, v ∈ P in G if δG(u, v) ≤ t and a network G is
called a t-spanner if δG(u, v) ≤ t for any pair of distinct
points u, v ∈ P .

We call any set R = {R1, . . . , Rn} of n regions in Rd
an imprecise point set. For a given imprecise point set
R, any set S = {p1, . . . , pn}, where pi ∈ Ri for each
1 ≤ i ≤ n, is called a precise instance from R. For a
given imprecise point set R, a graph G = (R,E), where
E is a set of unordered pairs of regions in R, is called
an imprecise geometric graph. Given an imprecise geo-
metric graph G = (R,E), and for each precise instance
S from R, we call the geometric graph GS = (S,ES),
where ES = {(pi, pj)|(Ri, Rj) ∈ E}, a precise instance
of G corresponding to S. Also, we call G an imprecise
t-spanner (t > 1), if GS , for all precise instances S from
R, is a t-spanner.

Abam et al. [1] considered the problem of construct-
ing a spanner for n pairwise disjoint balls in Rd. For a
given t > 1, Abam et al. [1] showed that there exists an
imprecise t-spanner withO(n/(t−1)d) edges that can be
computed in O(n log n/(t−1)d) time when all balls have
similar sizes. Their spanner construction was based on
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the Well-Separated Pair Decomposition (WSPD) [4] ap-
proach. When the balls sizes vary greatly, they used a
Semi-Separated Pair Decomposition (SSPD) [2, 5] to
solve the problem. Abam et al. [1] proved that there
is an imprecise t-spanner with O(n log n/(t− 1)d) edges
that can be computed in O(n log n/(t− 1)d) time.

Zeng and Gaoy [6] considered constructing an Eu-
clidean spanner for n balls in Rd with radius r in two
phases. In the first phase, they preprocessed balls in
time O(n(r+ 1/ε)d logα), where α is the ratio between
the farthest and the closest pair of centers of the balls.
In the second phase, they could compute (or update) a
(1+ε)-spanner for any precise instance of the balls with
O(n(r+1/ε)d) edges in time O(n(r+1/ε)d log(r+1/ε)).

In Section 2 of this paper, we give a set of pairwise
disjoint regions in the plane such that every imprecise t-
spanner for the regions is the complete graph. Next, in
Section 3 of this paper, we study the problem of comput-
ing an imprecise t-spanner for n pairwise disjoint balls
in Rd, given a real number t > 1. These balls have arbi-
trary sizes. We present an algorithm that computes an
imprecise t-spanner with O(n) edges in O(n log n) time,
when t and d are constants.

2 An imprecise spanner with quadratic size

In this section, we present a set of pairwise disjoint
convex regions in the plane such that any imprecise t-
spanner for the regions, for any given t > 1, must be
the complete graph. So, it is not interesting to study
imprecise spanners for any set of regions.

Let n ≥ 2 be an integer, and define θ := 2π/n. If we
rotate the positive x-axis by angles iθ, for each i with
0 ≤ i < n, then we get n rays. We number the rays
starting from the positive x-axis and in the counter-
clockwise direction. We denote the set of all these rays
by Ron.

Let us model an imprecise point as a line segment,
and let Otn be the set of pairwise disjoint line segments
in the plane that is constructed as follows. Let D1 and
D2 be two disks centered at the origin with radii 0.4
and (t + 1)/2, respectively. Let pi and qi, for each 0 ≤
i < n, be the intersections of the i-th ray in Ron with
the boundaries of D1 and D2, respectively. The line
segment between pi and qi, denoted by (pi, qi), is an
element of Otn, see Fig. 1. We have |piqi| > t/2.
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Figure 1: Illustrating Ot8.

Lemma 1 Every imprecise t-spanner of Otn is a com-
plete graph for each t > 1.

Proof. Assume that (pi, qi) and (pj , qj) are two
distinct line segments in Otn, where 0 ≤ i <
j < n − 1. Let G be an imprecise t-spanner
for Otn with no edge between (pi, qi) and (pj , qj).
Consider the precise instance S = {q0, . . . , qi−1,
pi, qi+1, . . . , qj−1, pj , qj+1, . . . , qn−1} from Otn, that is,
choose pi and pj on (pi, qi) and (pj , qj), respectively,
and qk on other line segments. It is clear that |pipj | < 1.
Since there is no edge between pi and pj in GS , the
shortest path between pi and pj in GS passes through
some qk. The Euclidean distance between pi and qk and
the Euclidean distance between pj and qk are at least t/2
and, hence, it follows that dGS

(pi, pj) ≥ |piqk|+|qkpj | >
t. Therefore, we get δGS

(pi, pj) > t, which is a con-
tradiction, because we assume that G is an imprecise
t-spanner for Otn. �

3 An imprecise spanner for balls

Let D = {D1, . . . , Dn} be a set of n pairwise disjoint
d-dimensional balls with arbitrary radii. In this section,
we present an algorithm that computes an imprecise
spanner for D with O(n) edges in O(n log n) time. The
algorithm uses the WSPD [4, 3] for computing the im-
precise spanner. For our purpose we need the following.

Let X be a bounded subset of Rd. We define
the bounding rectangle of X, denoted by R(X), as
the smallest axes-parallel d-dimensional hyperrectangle
that contains X. A d-dimensional hyperrectangle R is
the Cartesian product of d closed intervals. More for-
mally, R = [l1, r1]× [l2, r2]×· · ·× [ld, rd], where li and ri
are real numbers with li ≤ ri, for 1 ≤ i ≤ d. We denote
the length of R in the i-th dimension by Li(R) = ri− li.
We denote the maximum and minimum lengths of R
by Lmax(R) and Lmin(R), respectively. Let CX be a
d-dimensional ball that contains R(X). We denote the
distance between two disjoint d-dimensional balls C and
C ′ by d(C,C ′), i.e., d(C,C ′) = |cc′| − (r + r′), where c
and r are, respectively, the center and radius of C, and

c′ and r′ are the center and radius of C ′. Clearly, if C
or C ′ is a point, then its radius is zero.

Definition 1 [4, 3] Let s > 0 be a real number, and
let A and B be two finite sets of points in Rd. We
say that A and B are well-separated with respect to s if
there are two disjoint d-dimensional balls CA and CB,
such that (i) CA and CB have the same radius, and (ii)
d(CA, CB) ≥ s× radius(CA).

In the following, we define an s-well-separated pair for
sets A and B of balls. Assume that A or B contains at
least one nondegenerate ball, i.e., a ball with a positive
radius. Let D = {D1, . . . , Dn} be a set of n pairwise
disjoint d-dimensional balls with arbitrary sizes, and let
ci be the center of Di, for 1 ≤ i ≤ n. For any A ⊆ D,
let A′ = {ci|Di ∈ A}.
Definition 2 Let s > 0 be a real number, and let A
and B be two nonempty subsets of D. We say that A
and B are well-separated with respect to s if there are
two disjoint d-dimensional balls CA′ and CB′ with the
same radius, such that one of the following conditions
hold:

• |A| = |B| = 1,
• A = {Dk}, for some 1 ≤ k ≤ n, |B| > 1, and
d(ck, CB′)− rk ≥ (3s+ 4)× radius(CB′),
• |A| > 1, B = {Dk} for some 1 ≤ k ≤ n, and
d(ck, CA′)− rk ≥ (3s+ 4)× radius(CA′), or
• |A| > 1, |B| > 1, and d(CA′ , CB′) ≥ (3s + 4) ×
radius(CA′).

Note that if all balls in A and B are degenerate (i.e.,
balls with radius 0 or equivalently points), Definitions
1 and 2 are equivalent. Let S = {p1, . . . , pn}, where
pi ∈ Di for each i with 1 ≤ i ≤ n, be a precise instance
from D, and for any A ⊆ D, let AS = {pi ∈ S|Di ∈ A}.

Lemma 2 Let A and B be two nonempty subsets of D
that are a well-separated pair with respect to s, where
s > 0 is a real number and let S = {p1, . . . , pn} be an
arbitrary precise instance from D. Then, {A,B} is an
s-well-separated pair.

Proof. Refer to Appendix. �

Definition 3 A well-separated pair decomposi-
tion (WSPD) for D, with respect to s > 0, is a
set {{A1, B1}, {A2, B2}, . . . , {Am, Bm}} of pairs of
nonempty subsets of D, for some integer m, such that

1. for any i with 1 ≤ i ≤ m, Ai and Bi are a s-well-
separated pair (by Definition 2), and

2. for any two distinct balls Dp and Dq of D, where
1 ≤ p, q ≤ n, there is a unique index i with 1 ≤ i ≤
m, such that Dp ∈ Ai and Dq ∈ Bi, or Dp ∈ Bi
and Dq ∈ Ai.

32



ICCG 2021, Yazd, February 18, 2021

CB′

CB

≥ s′ × ρ
2ρ

Dk

ck

Figure 2: A′ = {ck} and B′, where |B′| > 1, are well-
separated with respect to s′ = 3s+ 4, but A = {Dk}
and B are not s-well-separated.

Lemma 3 Let S = {p1, . . . , pn} be an arbitrary precise
instance from D. If {{Ai, Bi}|1 ≤ i ≤ m} is a WSPD
for D with respect to s, then {{AiS , BiS}|1 ≤ i ≤ m} is
a WSPD for S = {p1, . . . , pn} with respect to s > 0.

Proof. By Lemma 2, the proof is straightforward. �

If we can compute a WSPD for D, then (by Lemma 3)
we can compute a WSPD for any precise instance from
D and, therefore, we can compute an imprecise spanner
for D. Callahan, and Kosaraju [4] used the split tree
to compute a WSPD for a point set in Rd. We also use
the split tree to compute a WSPD for D.

To compute a WSPD of D, we construct a split tree T
on the centers of the balls in D. Then, we build a WSPD
W ′ of the centers with respect to 3s+ 4 using T . Next,
we transform W ′ to a WSPD of D, denoted by W , in
the following way. For each pair {A′, B′} in W ′, if both
A′ and B′ are singletons or both sets contain more than
one element, then we add {A,B} to W , where X is the
set of all balls that their centers are in X ′. Note that,
by Lemma 2, A and B are well-separated with respect
to s. Otherwise, one of the A′ and B′ is a singleton and
the other one contains more than one element. In this
case, it is possible that {A,B} is not an s-well-separated
pair, see Fig. 2. Without loss of generality, we assume
that |A′| = 1 and |B′| > 1. We check the pair {A,B}
to see if it is an s-well-separated pair. If it is a well-
separated pair, then we add it to W and otherwise we
partition the set B′ to {B′i}i such that {A,Bi} are s-
well-separated pairs and then add them to W . For the
details of the algorithm, see Algorithm 3.1.

In the following, we explain the details of the way of
partitioning B′. For any node u of T , let Su be the set
of all points of S that are stored in the subtree of u. Let
{A′, B′} be a pair of W ′ such that A′ = {ck}, for some
1 ≤ k ≤ n, and |B′| > 1. Assume that v and w are the
nodes of T such that Sv = A′ and Sw = B′. Obviously,

Algorithm 3.1: ComputeWSPD(D, s)

Input: D = {D1, . . . , Dn} is a set of n balls in Rd
with arbitrary sizes and s is a positive real
number.

Output: A well-separated pair decomposition of D
with respect to s.

1 F = {c1, . . . , cn}, where ci is the center of Di;
2 T := split tree of F ;
3 W ′ := a WSPD of F with respect to 3s+ 4 using T ;
4 W := ∅;
5 foreach {A′, B′} ∈W ′ do
6 if (|A′| = 1 and |B′| = 1) or (|A′| > 1 and

|B′| > 1) then
7 Add {A,B} to W ;
8 else

/* assume |A′| = 1 and |B′| > 1 */

9 v := the leaf in T corresponding to A′;
10 w := the node in T corresponding to B′;
11 Add pairs generated by FindPairs(T, v, w)

to W ;

12 return W ;

v is a leaf and w is an internal node of T . Since the
bounding box of each node in the split tree is stored
in the node, the bounding box of w (that is, R(w))
is stored at w. So, we can test in O(1) time whether
there is a ball CB′ containing B′ such that d(ck, CB′)−
rk ≥ (3s + 4) × radius(CB′). To this end, let CB′ be
the d-dimensional ball of the radius (

√
d/2)×LmaxR(w)

centered at the center of R(w), where LmaxR(w) is the
length of the longest side of R(w). If d(ck, CB′)− rk ≥
(3s+4)×radius(CB′), then {A,B} is an s-well-separated
pair and so we add {A,B} to W . Otherwise, we follow
the above process by {v, wl} and {v, wr}, where wl and
wr are the left and the right children of w, respectively.

For details of the partition algorithm, denoted by
FindPairs(T, v, w), see algorithm 3.2. We may assume
without loss of generality that always |Sv| = 1, that is, v
is a leaf of T . Clearly, the algorithm FindPairs(T, v, w)
terminates. Now, we show that the algorithm generates
a WSPD of D with O(n) pairs.

Lemma 4 If A′ = {ck}, for some integer 1 ≤ k ≤ m,
and B′, where |B′| > 1, are well-separated with respect
to 3s + 4, but {A,B} are not a s-well-separated pair,
then rk = radius(Dk) >

√
d× Lmax(R(B′)).

Proof. Refer to Appendix. �

Lemma 5 Set W is a WSPD for D with respect to s.

Proof. It is easy to see that for all {A,B} ∈W , {A,B}
is an s-well-separated pair. By [4], the proof of the
second condition in Definition 3 is straightforward. �
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Algorithm 3.2: FindPairs(T, v, w)

Input: An split tree T and a pair {v, w}, where v
is a leaf and w is an internal node of the
split tree T .

Output: A collection of well-separated pairs
{A,B} with respect to s, where
A′ = Sv = {ck} and B′ ⊆ Sw.

1 if there is a ball CSw such that
d(ck, CSw)− rk ≥ (3s+ 4)× radius(CSw) then

2 return the pair {A,B}, where A′ = Sv and
B′ = Sw;

3 else
4 wl := left child of w;
5 wr := right child of w;
6 FindPairs(T, v, wl);
7 FindPairs(T, v, wr);

It remains to prove an upper bound on |W |. We can
partition the pairs in W into two categories. In the
first category, there are pairs {A,B} such that {A′, B′}
is in W ′. Since the size of W ′ is linear, obviously the
number of pairs in this category is linear. The pairs in
the second category are generated by partitioning the
sets in pairs of W ′. In the following lemma, we show
that the number of pairs in this category is also linear.
To this end, we show that any set B appears in at most
a constant number of pairs in this category. Note that
each pair in this category contains a singleton and a set
containing at least one element.

Let Z be the set of all pairs of W ′ that FindPairs
returns at least two pairs. More precisely, let

Z = {{A′i, B′i}|1 ≤ i ≤ q, {A′i, B′i} ∈W ′, |A′i| = 1, |B′i| > 1},

such that Sv = A′k, for some leaf v of T , and
Sw = B′k, for some node w of T , and algorithm
FindPairs(v, w) returns at least two pairs, for all k
between 1 and q. Let {Ak, B} be a pair returned by
algorithm FindPairs(v, w) such that B′ = Su ⊂ Sw,
for some node u of T . We represent each pair {Ak, B}
returned by an algorithm FindPairs as a directed pair
(Ak, B). In the following, we apply a packing argument
(similar to Lemma 9.4.3 of [3, Chapter 9]) to prove that
each B is involved in at most a constant number (de-
pendent only on s and d) of directed pairs. Let π(u)
be the parent of node u of T , except for the root. For
the rest, we assume that B is a fixed set with the above
description.

Lemma 6 The set B involved in at most
(3s+ 7)d × Γ(d/2 + 1)/πd/2 pairs in W , where Γ
denotes Euler’s gamma-function.

Proof. Refer to Appendix. �

To sum-up, we have the following result.

Corollary 7 The set W contains at most O(n) pairs.

Lemma 5 and Corollary 7 immediately imply the fol-
lowing result.

Theorem 8 Let D = {D1, . . . , Dn} be a set of n d-
dimensional pairwise disjoint balls with arbitrary sizes,
and let s > 0 be a real number. There is a WSPD for

D with respect to s of size O
(
sd×Γ(d/2+1)

πd/2 × n
)

. The

WSPD can be computed in O
(
sd×Γ(d/2+1)

πd/2 × n log n
)

time using O
(
sd×Γ(d/2+1)

πd/2 × n
)

space.

Theorem 9 Let D = {D1, . . . , Dn} be a set of n pair-
wise disjoint balls in Rd, and let t > 1 be a real number.
There is an imprecise t-spanner for D with O(n/(t−1)d)
edges. This imprecise t-spanner can be computed in
O(n log n+ n/(t− 1)d) time.

Proof. Refer to Appendix. �
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CB′
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Dk

≥ s′ × ρ

pk

3ρ

CAS

≥ (3s + 2) · ρ

Figure 3: Illustrating CAS
for A = {Dk} and B, where

|B| > 1, in the plane for the second case of Lemma 2.

Appendix

Lemma 2 Let A and B be two nonempty subsets of D that
are well-separated with respect to s, where s > 0 is a real
number and let S = {p1, . . . , pn} be an arbitrary precise
instance from D. Then, {A,B} is an s-well-separated pair.

Proof. Let s′ = 3s+4. Recall that for any A ⊆ D, we have
A′ = {ci|Di ∈ A}, where ci is the center of Di. Since A and
B are s-well-separated, by Definition 2, there are disjoint
d-dimensional balls CA′ and CB′ with the same radius, such
that one of the following cases holds for A and B. In each
case, we prove that AS and BS are s-well-separated.

• |A| = |B| = 1. Since both A and B are singletons, it is
clear that AS and BS are s-well-separated.

• A = {Dk} for some 1 ≤ k ≤ n, |B| > 1 and d(ck, CB′)−
rk ≥ s′ × radius(CB′). Let ρ = radius(CB′), and CB
be a d-dimensional ball with radius 3ρ co-centered with
CB′ . Since |B| > 1 and the balls in B are pairwise
disjoint, the radius of each ball in B is at most 2ρ. (If B
contains a ball with the radius greater than 2ρ, then B
is a singleton, contradicting our assumption that |B| >
1.) Hence, CB contains all balls in B and, as a result,
CB contains BS . On the other hand, d(ck, CB)− rk =
(d(ck, CB′)−2ρ)−rk ≥ s′×ρ−2ρ = (3s+2)×ρ. Since
A is a singleton, if we can pick the center of CAS on the
line passing through pk and the center of CB such that
pk is on the boundary of CAS and pk is between the
centers of CAS and CB , then d-dimensional ball CAS

with radius 3ρ contains pk ∈ Dk such that its distance
to CB is at least (3s + 2) × ρ. See Fig. 3. It follows
that

d(CAS , CB) ≥ (3s+ 2)ρ

≥ (3s)ρ

= s× (3ρ).

Therefore, AS and BS are a s-well-separated pair.

• |A| > 1, B = {Dk} for some 1 ≤ k ≤ n, and
d(ck, CA′)− rk ≥ s′× radius(CA′). The proof is similar
to the previous case.

• |A| > 1, |B| > 1, and d(CA′ , CB′) ≥ s′ × radius(CA′).
Let ρ = radius(CA′) = radius(CB′), and let CA and
CB be two d-dimensional balls with radii 3ρ co-centered
with CA′ and CB′ , respectively. Hence, CA contains all
balls in A and, as a result, CA contains all points of
AS , and CB contains all balls in B and, as a result,
CB contains all points of BS . The distance between
CA and CB is at least s′ × ρ − 4ρ, i.e., d(CA, CB) =
d(CA′ , CB′)−4ρ ≥ s′ρ−4ρ = 3sρ = s×(3ρ). Therefore,
AS and BS are s-well-separated.

This completes the proof. �

Lemma 4 If A′ = {ck}, for some integer 1 ≤ k ≤ m, and B′,
where |B′| > 1, are well-separated with respect to 3s+4, but
A and B are not s-well-separated, then rk = radius(Dk) >√
d× Lmax(R(B′)).

Proof. The proof is by contradiction. Assume that rk ≤√
d × Lmax(R(B′)). Let ρ = (

√
d/2) × Lmax(R(B′)). Since

A′ and B′ are well-separated with respect to 3s+ 4, we have
d(ck, CB′) ≥ (3s + 4) × ρ, where CB′ is a ball with radius
ρ that is centered at the center of R(B′). Let CB is a ball
with radius 3ρ co-centered with CB′ , and let CA is a ball with
radius 2ρ centered at ck. Clearly, CB contains all balls in B
and CA contains Dk. It follows that d(CA, CB) ≥ (3s) × ρ
and, therefore, A and B are s-well-separated, which is a
contradiction. �

Lemma 6 The set B involved in at most
(3s+ 7)d × Γ(d/2 + 1)/πd/2 pairs in W , where Γ de-
notes Euler’s gamma-function.

Proof. Let u be a node of T such that Su = B′, and let
B′p = Sπ(u). Let x be the center of R(Sπ(u)), and ρ :=

√
d×

Lmax(R(Sπ(u))). Without loss of generality, we assume that
{{Di}, B}1≤i≤r ∈ W are all pairs returned by algorithms
FindPairs. Assume ci and vi are the center and the leaf of
T corresponding to Di, respectively.

Let C be a hypercube centered at x and with side length
(3s+5)×ρ. We have C∩Di 6= ∅, because if C∩Di = ∅, then
d(Di, CB′

p
) = d(ci, CB′

p
)−ri > (3s+4)×(ρ/2), where CB′

p
is

a ball with center x and radius ρ/2. (Clearly, CB′
p

contains

all points in B′p.) Hence, {Di} and Bp are s-well-separated,
which is a contradiction because if these two sets are s-well-
separated, then FindPairs(T, vi, π(u)) finishes and does not
run FindPairs(T, vi, u).

Since each element of Z is a well-separated pair with
respect to (3s + 4), the pair {{ci}, Sπ(u)} is also a well-
separated pair with respect to (3s+ 4). Since {Di} and Bp
are not s-well-separated, by Lemma 4, for each i, 1 ≤ i ≤ r,
we have ri = radius(Di) >

√
d× Lmax(Sπ(u)) = ρ.

For each i, let Ci be a d-dimensional ball with radius ρ
such that Di contains Ci and C∩Ci 6= ∅. Since, the balls Di
are pairwise disjoint, the balls Ci are also pairwise disjoint.

Let C′ be a hypercube with sides of length (3s+ 5)ρ+ 2ρ
and with center x. The length of sides of C′ is the sum
of the length of sides of C and two times the radius of Ci.
Therefore, C′ contains all balls Ci, for each i with 1 ≤ i ≤ r.
The volumes of

⋃r
i=1 Ci and C′ are r×(πd/2/Γ(d/2+1))×ρd
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and ((3s + 7) × ρ)d, respectively. Therefore, we get r ×
(πd/2/Γ(d/2 + 1))× ρd ≤ ((3s+ 7)× ρ)d. It follows that

r ≤ (3s+ 7)d × Γ(d/2 + 1)/πd/2,

which completes the proof. �

Theorem 9 Let D = {D1, . . . , Dn} be a set of n pairwise
disjoint balls in Rd, and let t > 1 be a real number. There is
an imprecise t-spanner for D with O(n/(t−1)d) edges. This
imprecise t-spanner can be computed in O(n logn + n/(t −
1)d) time.

Proof. Let s = 4(t + 1)/(t − 1) and, by Theorem 8, let
{{Ai, Bi}|1 ≤ i ≤ m} be a WSPD for D with respect to

s of size m = O
(
sd×Γ(d/2+1)

πd/2 × n
)

. Initialize E = ∅. For

1 ≤ i ≤ m, we add edge {Dj , Dk} to E, where Dj ∈ Ai
and Dk ∈ Bi. Let G = (D,E) be the resulting graph. By
Theorem 8, G can be computed in O(n logn) time. Let
S = {p1, . . . , pn} be an arbitrary precise instance from D.
By Lemma 3, {{AiS , BiS}|1 ≤ i ≤ m} is a WSPD for S with
respect to s. It follows from [4] that GS = (S,ES) is a t-
spanner for S, that is, G = (D,E) is an imprecise t-spanner
for D. �

36



ICCG 2021, Yazd, February 18, 2021

On the Spanning Ratio of the Directed Θ6-Graph*

Hugo A. Akitaya� Ahmad Biniaz� Prosenjit Bose�

Abstract

The family of Θk-graphs is an important class of sparse
geometric spanners with a small spanning ratio. Al-
though this class of geometric graphs is well-studied, no
bound is known on the spanning and routing ratio of the
directed Θ6-graph. We show that the directed Θ6-graph

of a point set P , denoted
−→
Θ6(P ), is a 14

√
3

3 -spanner.

1 Introduction

A geometric graph G = (V,E) is a graph whose vertex
set V is a set of points in the plane and whose edge set E
are segments joining vertices. If the edges are weighted,
typically, their weight is the Euclidean distance between
their endpoints and we refer to such graphs as Euclidean
geometric graphs. A spanning subgraphH of a weighted
graph G is a t-spanner of G provided that the weight
of the shortest path in H between any pair of vertices
is at most t times the shortest path in G. The smallest
constant t for which H is a t-spanner of G is known as
the spanning ratio or the stretch factor of H.

There is a vast literature outlining different al-
gorithms for constructing various geometric (1 + ε)-
spanners of the complete Euclidean geometric graph
(see [11, 16] for a survey of the field). One can view
a t-spanner H of a graph G as an approximation of G.
From this perspective, there are many parameters that
can be used to measure how good the approximation is.
The obvious parameter is the spanning ratio, however,
many other parameters have been studied in addition to
the spanning ratio such as the size, the weight, the max-
imum degree, connectivity, and diameter to name a few.
The study of spanners is a rich subfield and many of the
challenges stem from the fact that these parameters are
sometimes opposed to each other. For example, a span-
ner with high connectivity cannot have low maximum
degree. As such, many different construction methods
have been proposed which outline trade-offs between the
various parameters.

A geometric graph H being a (1 + ε)-spanner of the
complete Euclidean geometric graph certifies the exis-
tence of a short path in H between every pair of ver-

*Research supported in part by NSERC.
�School of Computer Science, Carleton University, Ottawa,

ON, Canada.
�School of Computer Science, University of Windsor, Windsor,

ON, Canada.

tices. Finding such a short path is as fundamental a
problem as constructing a good spanner. Typically,
most path-planning or routing algorithms are assumed
to have access to the whole graph when computing a
short path [10, 13, 15]. However, in many settings,
the routing must be performed in an online manner.
This setting presents different challenges since the whole
graph is not available to the algorithm but the routing
algorithm must explore the graph as it attempts to find
a path. By providing the routing algorithm with a suf-
ficient amount of memory or a large enough stream of
random bits, one can successfully route online using a
random walk [12, 17] or Depth-First Search [13]. The
situation is more challenging if the online routing algo-
rithm is to be memoryless and local, i.e. the only
information available to the algorithm, prior to decid-
ing which edge to follow out of the current vertex, is the
coordinates of the current vertex, the coordinates of the
vertices adjacent to the current vertex and the coordi-
nates of the destination vertex. The main difficulty in
designing these types of algorithms is that deterministic
routing algorithms that are memoryless and local often
fail by cycling [7].

Θk-graphs, introduced independently by Clarkson [9]
and Keil and Gutwin [14], are an important class of
(1 + ε)-spanners of the complete Euclidean geometric
graph for ε > 0. Θk-graphs have bounded spanning
ratio [2, 3, 4, 9, 14, 18] for all k > 3 and unbounded
spanning ratio [1] for k = 2, 3. Informally, a Θk-graph
is constructed in the following way: the plane around
each vertex v is partitioned into k cones with apex v and
cone angle 2π/k. In each cone, v is joined to the point
whose projection on the bisector of the cone is closest to
v. Although this naturally gives rise to a directed graph
(where the previously described edges are directed away
from v), much of the literature on Θk-graphs has focused
on the underlying undirected graph. For example, the
tightest upper and lower bounds on the spanning ratio
for Θk-graphs are proven on the underlying undirected
graphs (see [4] for a survey). Given a planar point set
P , to avoid any confusion, we will denote the directed

version of the Θk-graph as
−→
Θk(P ) and the underlying

undirected graph as Θk(P ).

Note that the definition of
−→
Θk-graphs gives rise to

a simple, online, local routing algorithm referred to as
greedy Θ-routing: when searching for a path from a ver-
tex s to a vertex d, follow the edge from s in the cone
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that contains d. Repeat this procedure until the destina-
tion is reached. At each step, the only information used
to make the routing decision is the location of the desti-
nation and the edge out of the current vertex that con-
tains the destination. Thus, greedy Θ-routing is online,

local and memoryless. One main advantage of
−→
Θk(P )

over Θk(P ) is that each vertex needs to store at most
k outgoing edges whereas a linear number of edges may
need to be stored in Θk(P ). Ruppert and Seidel [18]
showed that greedy Θ-routing has a routing ratio (ra-
tio between the output path and the shortest path) of
1/(1 − 2 sin(π/k)) for k ≥ 7. Intuitively, it seems that
the routing ratio should be worse than the spanning ra-
tio for all values of k, since an online routing algorithm
must explore the graph while searching for a short path.
Indeed, this is true for all values of k ≥ 7, except when k
is a multiple of 4, in which case the routing ratio and the
spanning ratio are 1+2 sin(π/k)/(cos(π/k)− sin(π/k)),
and this bound is tight in the worst case. No tight
bounds are known for the spanning and routing ratios

in
−→
Θk. For the current best known spanning and rout-

ing ratios for Θk-graphs, we refer the reader to [4]. For
3 < k < 7, it was shown in [5] that greedy Θ-routing has
unbounded routing ratio. Recently, it was shown that
Θ4 has bounded (nongreedy) routing ratio [3]. Although
this is not claimed by the authors, a careful analysis of
their proof concludes that their result actually carries
over to the directed setting.

We focus on fundamental questions related to
−→
Θ6(P ).

Chew [8] showed that Θ6(P ) is a 2-spanner, which
matches the lower bound. Chew’s proof is constructive
and can be converted to a nongreedy routing algorithm
on the underlying undirected graph Θ6(P ). No bounds

are known for the spanning and routing ratio for
−→
Θ6(P ).

All that is known is that it is strongly-connected [5]. We

show that
−→
Θ6(P ) is a 14

√
3

3 -spanner.

2 Preliminaries

A convex polygon C is regular if all its edges are of the
same length. By ‖C‖, we refer to the side length of C.
The boundary of C is denoted as bd(C) and the inte-
rior of C is denoted as int(C). We call a triangle (resp.
hexagon) aligned if each of its edges is parallel to a line
of slope

√
3, slope 0 or slope −

√
3. Given two distinct

points u, v in the plane, the canonical triangle of u with
respect to v, denoted 5v

u is the regular aligned triangle
where u is one of the vertices and v is on the edge of the
triangle opposite u. Note that 5v

u is congruent to 5u
v .

Let u v be the regular aligned hexagon centered at u
that has v on its boundary. The lines through u having
slopes

√
3, slope 0 and slope −

√
3, respectively, parti-

tion the hexagon into 6 regular aligned triangles. Label
these triangles 40

uv, . . . ,45
uv in counter-clockwise order

with the convention that 40
uv is the triangle below u

with a horizontal base. When referring to these trian-
gles or sets related to these triangles, indices are manip-
ulated modulo 6. Note that 4i

uv for some i ∈ {0, . . . , 5}
which has v on its base is identical to 5v

u. This im-
plies that

∥∥4i
uv

∥∥ = ‖5v
u‖ =

∥∥ u v
∥∥. Finally, we note

that a regular aligned hexagon defines a distance met-
ric. Given two points u, v in the plane, the hexagonal
distance between u and v, d7(u, v) =

∥∥ u v
∥∥ =

∥∥ v u
∥∥.

Given a set of points P in the plane, the directed

Θ6-graph whose vertex set is P is denoted
−→
Θ6(P ). A

directed edge (a, b) exists in
−→
Θ6(P ) provided that 5b

a

does not contain any point of P \ {a, b}. We make the
following general position assumption on our point set
P : no two points lie on a line of slope

√
3, slope 0 or

slope −
√

3. Note that a slight rotation of the point set
removes this, as such, this assumption does not take
away from the generality of our results.

3 Upper Bound on the Spanning Ratio

Given a destination vertex d ∈ −→Θ6(P ), we define the
greedy edge of vertex v with respect to d to be the
outgoing edge of v in 5d

v. Recall that the routing strat-
egy of repeatedly following the greedy edge at every step
until the destination is reached is called greedy rout-
ing. The path found by the greedy routing algorithm is
called the greedy path. Thus, the greedy path from s

to d, denoted π(s, d), is the path in
−→
Θ6(P ) starting at s

and where at every step, the greedy edge with respect
to d is selected, until the destination d is reached.

Given a starting vertex s and a destination vertex d,
by construction, we have that the canonical triangle,
5d

s , is contained in the hexagon d s. Let (s, a) be the

first greedy edge in π(s, d). Then, since a is in 5d
s we

have that d7(a, d) < d7(s, d). The inequality is strict
since by our general position assumption a is contained
in int(5d

s). Therefore, at every step of the greedy rout-
ing algorithm, the hexagonal distance to the destination
decreases. Since there are a finite number of points in
P and the fact that the hexagonal distance to the des-
tination is strictly decreasing at every step, the greedy
algorithm terminates at d. We summarize this in the
following two lemmas.

Lemma 1 Given any pair of points s, d ∈ P , there al-

ways exists a greedy path from s to d in
−→
Θ6(P ).

Lemma 2 Let x be a vertex in π(s, d) different from s
and d. Then the following hold:

� d x is contained in int( d s)

� d7(x, d) < d7(s, d)

� π(x, d) is contained in d x
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Although the greedy routing algorithm always reaches
its destination, the spanning ratio of π(s, d) is not
bounded by a constant in the worst case [5]. The issue
is that π(s, d), although getting closer to d with respect
to the hexagonal distance, can spiral around d many
times. It is this observation that sparked our research.

We note that in the undirected version of
−→
Θ6(P ),

Chew [8] showed that there exists a path with spanning
ratio at most 2 between any pair of points. As noted
above, the reason that π(s, d) can have unbounded span-
ning ratio is that the path can spiral around d many
times. However, if there happens to be an edge from d

to s, i.e. (d, s) ∈ −→Θ6(P ), then π(s, d) can no longer spi-
ral around d since 5s

d is empty of points of P and acts
as a barrier. This prevents the path from cutting across

5s
d. We now prove that if (d, s) is an edge of

−→
Θ6(P )

then the spanning ratio of π(s, d) is at most 6 ‖5s
d‖.

For i ∈ {0, . . . , 5}, let Ti = {(a, b) ∈ π(s, d) | a ∈
4i

ds}. Ti is the set of all edges of π(s, d) whose tail
is in 4i. Define the weight of Ti, denoted ‖Ti‖, to be∑

(a,b)∈Ti

∥∥5b
a

∥∥. We show that the weight of Ti is an
upper bound on the sum of the lengths of all the edges
of π(s, d) whose tails are in 4i. This, in turn, allows us
to bound the length of π(s, d) since the tail of every edge
of the greedy path is in one of the 6 triangles. We begin
by showing that if (a, b) is an edge in Ti, then b can only
be in 4i−1

ds ,4i
ds or 4i+1

ds . For ease of reference, label
the sequence of vertices in π(s, d) as s = u0, . . . , uk = d
where k is the number of edges in the greedy path.

Lemma 3 If (ua, ua+1) is an edge of π(s, d) in Ti for
a ∈ {0, . . . , k−1} and i ∈ {0, . . . , 5}, then ua+1 can only
be in one of 4i−1

ds ,4i
ds or 4i+1

ds .

The proof is given in the Appendix. Note that Lemma
3 immediately implies that the greedy path cannot spi-
ral around d. Suppose that int(43

ds) is empty of points

of P , i.e. (d, s) is an edge of
−→
Θ6(P ), then there is no

edge of π(s, d) that has its head in 42 and its tail in 44

or vice versa. Thus, the greedy path cannot cross over
43. This property lets us bound the length of π(s, d).

ua

d

ua+1
ub−1ub−1 ub

Figure 1: Illustration of Lemma 4.

Lemma 4 Assume (d, s) is an edge of
−→
Θ6(P ) and let ua

be a vertex of π(s, d) in 4i
ds. Let ub be the next vertex in

π(s, d) after ua that appears in 4i
ds, i.e. b > a. Then,

int(5ua+1
ua ) ∩ int(5ub

d ) = ∅.

Proof. W.l.o.g., assume that ua is in40
ds. We have two

cases to consider. Either ub = ua+1 or ub 6= ua+1. We
begin with the former. If ub = ua+1 then the lemma
holds trivially since ua+1 is on the horizontal edge of
5ua+1

ua and on the horizontal edge of 5ua+1

d .
Refer to Fig. 1. We now consider the case where ub is

not ua+1, i.e. b > a+ 1. In this case, ua+1 must either
be in 41 or 45 since ub is the first vertex of π(s, d)
after ua that is in 40. W.l.o.g., assume that ua+1 is in
45. Consider the edge (ub−1, ub) of π(s, d). By Lemma
3, ub−1 must be in 45 since, by the existence of (d, s),
the path cannot spiral around d and enter 40 from 41.
By Lemma 2, ub−1 must be contained in 5ua+1

d . More-
over, since (ua, ua+1) is an edge of the path, we have
that 5ua+1

ua is empty, which means that ub−1 lies above
the horizontal line through ua+1. This implies that ub
also lies above the horizontal line through ua+1 since
the canonical triangle 5ub

ub−1
has a horizontal edge and

lies above the horizontal line through ub−1. Therefore,
int(5ua+1

ua ) ∩ int(5ub

d ) = ∅. �

Lemma 5 If (d, s) ∈ −→Θ6(P ), then for each Ti ⊆ π(s, d),
we have ‖Ti‖ ≤ ‖5s

d‖, for i ∈ {0, . . . , 5}.

We provide the proof in the Appendix. With Lemma
5 in hand, we are able to bound the length of π(s, d)

when (d, s) ∈ −→Θ6(P ).

Lemma 6 If (d, s) ∈ −→
Θ6(P ), then ‖π(s, d)‖ ≤

6 ‖5s
d‖ = 6

∥∥ d s
∥∥.

Proof. Since each edge of π(s, d) appears in only one
Ti, the bound follows from Lemma 5. �

We note that Lemma 6 implies that
−→
Θ6(P ) has a span-

ning ratio of 12. This follows from the fact that the un-
derlying undirected graph has spanning ratio at most 2
and for each edge e in the underlying undirected graph
there is a directed path of length at most 6 ‖e‖ from

one endpoint of e to the other in
−→
Θ6(P ). A more care-

ful analysis proves a better spanning ratio. To do so, we

uncover a structural property of greedy paths in
−→
Θ6(P ).

Lemma 7 Between any pair of points s, d ∈ P , there
exists an x ∈ P in 5d

s such that the following hold (note
that if the interior of 5d

s is empty then x = d):

1. π(s, x) and π(d, x) are both in 5d
s,

2. ‖π(s, x)‖ ≤
∥∥5d

s

∥∥,

3. ‖π(d, x)‖ ≤
∥∥5d

s

∥∥ .
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The proof is given in the Appendix and results from
a careful analysis of the proof by Bose et al. [6] of the
routing ratio of the half-Θ6-graph. We now prove the
main result of this section. We show that given any two
points s, d in P , there exists a directed path δ(s, d) in−→
Θ6(P ) such that the length of δ(s, d) is at most 7

∥∥5d
s

∥∥.

Theorem 8 Between any pair of points s, d ∈ P , there

exists a directed path δ(s, d) in
−→
Θ6(P ) such that the

length of δ(s, d) is at most 7
∥∥5d

s

∥∥.

Proof. Given a greedy path π(a, b), the reverse path,
denoted ρ(b, a), is the path where every edge (x, y) in
π(a, b) is replaced with π(y, x). Note that ρ(b, a) is a
directed path from b to a. By Lemma 6, ‖ρ(b, a)‖ ≤
6 ‖π(a, b)‖.

By Lemma 7, between any pair of points s, d ∈ P ,
there exists an x ∈ 5d

s such that π(s, x) and π(d, x)

are both in
−→
Θ6(P ), ‖π(s, x)‖ ≤

∥∥5d
s

∥∥, and ‖π(d, x)‖ ≤∥∥5d
s

∥∥.
Let δ(s, d) be the path resulting from the concatena-

tion of π(s, x) and ρ(x, d). By construction, δ(s, d) is a
directed path from s to d.

‖δ(s, d)‖ = ‖π(s, x)‖+ ‖ρ(x, d)‖
≤
∥∥5d

s

∥∥+ 6
∥∥5d

s

∥∥ by Lemmas 6 and 7

= 7
∥∥5d

s

∥∥

�

4 Conclusion

Since ‖sd‖ >
√
3
2

∥∥5d
s

∥∥, Theorem 8 implies a spanning

ratio of 14
√
3

3 . Although the proof is constructive, un-
fortunately, it does not provide an online routing algo-
rithm. There are three main obstacles. First, in the
proof, the path is constructed from both ends, where
we build a greedy path from s to x and another from
d to x. Second, the point x is not easily identifiable
locally. And third, when finding the reverse path of an
edge (a, b), one needs to know both a and b. However, if

we assume that each vertex in
−→
Θ6(P ) is aware of only its

outgoing edges, then finding the reverse path becomes
problematic. We address these obstacles and present an
online routing algorithm in an upcoming paper.
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Appendix

Submissions should not exceed four pages, must be submit-
ted electronically, and must be prepared using LaTeX, this
template.

Authors who feel that additional details are necessary
should include a clearly marked appendix, which will be read
at the discretion of the Program Committee.

Proof of Lemma 3.

Proof. W.l.o.g., assume that ua is in 40
ds. Let h+(d) be

the half-plane above the horizontal line through d. Since the
edge of 5d

ua
that contains d is horizontal and the interior of

the triangle lies below the horizontal line through d, we have
that int(5d

ua
) ∩ h+(d) = ∅. Therefore, ua+1 cannot be in

42,43 or 44, since the interiors of all those triangles are in
h+(d). The lemma follows. �

Proof of Lemma 5

Proof. W.l.o.g., we show the bound for T0. Let (a, b) be
an edge in T0. Let a′ (resp. b′) be the intersection of a
horizontal line through a (resp. b) with the left side of 40

ds.
Since 5b

a is equilateral, ‖a′b′‖ ≥ ‖ab‖. If (a, b) and (c, d) are
in T0, by Lemma 4, a′b′ and c′d′ do not overlap. Therefore,
the sum of the lengths of all the edges in T0 is at most
‖5s

d‖. �

Proof of Lemma 7

Proof. The proof proceeds by induction on the rank of the
canonical triangle 5d

s when the triangles are ordered by side
length. We actually prove something slightly stronger. Con-
sider an arbitrary pair of points s, d ∈ P . Refer to Fig. 2.

Notice that5d
s can be decomposed into three regions. Let

C = 5d
s∩5s

d be the quadrilateral and let A and B be the two
triangles that result from5d

s \5s
d. Our inductive hypothesis

states the following when the rank of
∥∥5d

s

∥∥ is at most k for
k ≥ 1:

1. If A does not contain any points of P , then there ex-
ists a point x in B such that ‖π(s, x)‖ ≤

∥∥5d
s

∥∥ and
‖π(d, x)‖ ≤ ‖B‖.

2. If B does not contain any points of P , then there ex-
ists a point x in A such that ‖π(s, x)‖ ≤

∥∥5d
s

∥∥ and
‖π(d, x)‖ ≤ ‖A‖.

3. If both A and B contain points of P , then then there
exists a point x in A ∪ B such that ‖π(s, x)‖ ≤

∥∥5d
s

∥∥
and ‖π(d, x)‖ ≤ max{‖A‖ , ‖B‖}.

s

d

C

A
B

s

d
C

A'

B'

x

s'

Figure 2: Illustrations for Lemma 7.

Base Case: (rank of
∥∥5d

s

∥∥ is 1): In this case, the theorem
and the conditions of the inductive hypothesis trivially hold
since the interior of 5d

s is empty of points of P , therefore,

the edge (s, d) is in
−→
Θ6(P ).

Inductive Step: We assume that the inductive hypothe-
sis holds for all pairs of points where the length of the canon-
ical triangle has rank at most k. Let

∥∥5d
s

∥∥ have rank k+ 1.

Let (s, s′) be the directed edge adjacent to s in 5d
s . In this

case, we consider the following 3 cases: s′ is in C, s′ is in A,
and s′ is in B. Since the last two cases are symmetric, we
only address the first two.

Case 1: s′ is in C. In this case, we need to address the
three different subcases in the inductive hypothesis, namely
A is empty of points, B is empty of points or neither is empty
of points.

Case 1a: s′ is in C and A is empty of points. Since s′

is in 5d
s , the rank of

∥∥5d
s′
∥∥ is at most k, which allows us

to apply the inductive hypothesis. Let C′ = 5d
s′ ∩5s′

d . Let
A′ ⊂ A and B′ ⊂ B be the two triangles that result from
5d

s′ \ 5s′
d . Since A is empty, A′ is also empty. Therefore,

by the inductive hypothesis there exists a point x in B′ such
that ‖π(s′, x)‖ ≤

∥∥5d
s′
∥∥ and ‖π(d, x)‖ ≤ ‖B′‖.

We now need to show that ‖π(s, x)‖ ≤
∥∥5d

s

∥∥ and
‖π(d, x)‖ ≤ ‖B‖. Since ‖B′‖ < ‖B‖, it follows that
‖π(d, x)‖ ≤ ‖B‖. Next we need to show that ‖π(s, x)‖ ≤∥∥5d

s

∥∥. By construction (s, s′) is the first edge in π(s, x).
Thus π(s, x) is (s, s′) followed by π(s′, x).

‖π(s, x)‖ =
∥∥(s, s′)

∥∥+
∥∥π(s′, x)

∥∥ (1)

≤
∥∥∥5s′

s

∥∥∥+
∥∥∥5d

s′

∥∥∥ (2)

≤
∥∥∥5d

s

∥∥∥ (3)

We have that (2) follows from the inductive hypothesis

and (3) follows since s′ is in 5d
s and int(5s′

s )∩ int(5d
s′) = ∅.

Case 1b: s′ is in C and B is empty of points. The
argument is identical to Case 1a except that we swap the
roles of B and B′ with A and A′, respectively.

Case 1c: s′ is in C and neither A nor B is empty of
points. The argument is fairly similar to the previous cases
but we outline the differences. Label s′, A′, B′ and C′ as
in Case 1a. The inductive hypothesis ensures the existence
of a point x in A′ ∪ B′ such that ‖π(s′, x)‖ ≤

∥∥5d
s

∥∥ and
‖π(d, x)‖ ≤ max{‖A′‖ , ‖B′‖}

We now need to show that ‖π(s, x)‖ ≤
∥∥5d

s

∥∥ and
‖π(d, x)‖ ≤ max{‖A‖ , ‖B‖}. Since max{‖A′‖ , ‖B′‖} <
max{‖A‖ , ‖B‖}, it follows that ‖π(d, x)‖ ≤
max{‖A‖ , ‖B‖}. The inequality ‖π(s, x)‖ ≤

∥∥5d
s

∥∥
follows using the same argument outlined in Case 1a.

Case 2: s′ is in A. In this case, we only need to address
2 subcases, namely when B is empty and when B is not
empty.

Case 2a: s′ is in A and B is empty of points. Since s′ is

in A, we focus on 5s′
d . The rank of

∥∥∥5s′
d

∥∥∥ is at most k since

s′ is in A.
Let C′ = 5s′

d ∩ 5d
s′ . Let A′ and B′ be the two trian-

gles that result from 5s′
d \ 5d

s′ . Let B′ be the one that is

contained in 5s′
s . The key observation that allows us to
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complete the proof is that B′ is empty of points. This is
because (s, s′) is an edge which implies that 5s′

s is empty of
points.

Therefore, by the inductive hypothesis there exists a point

x in A′ such that ‖π(d, x)‖ ≤
∥∥∥5s′

d

∥∥∥ and ‖π(s′, x)‖ ≤ ‖A′‖.
We now need to show that ‖π(s, x)‖ ≤

∥∥5d
s

∥∥ and

‖π(d, x)‖ ≤ ‖A‖. Because s′ is in A, we have that 5s′
d is

contained in A. Thus, it follows that ‖π(d, x)‖ ≤ ‖A‖. Next
we need to show that ‖π(s, x)‖ ≤

∥∥5d
s

∥∥. By construction
(s, s′) is the first edge in π(s, x). Thus π(s, x) is (s, s′) fol-
lowed by π(s′, x).

‖π(s, x)‖ =
∥∥(s, s′)

∥∥+
∥∥π(s′, x)

∥∥ (4)

≤
∥∥∥5s′

s

∥∥∥+
∥∥A′∥∥ (5)

≤
∥∥∥5d

s

∥∥∥ (6)

Case 2b: s′ is in A and B is not empty of points. The
argument is virtually identical to Case 2a and follows from
the fact that max{‖A′‖ , ‖B′‖} < max{‖A‖ , ‖B‖}. �
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The Minimum Moving Spanning Tree Problem∗
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Abstract

We investigate the problem of finding a spanning tree
of a set of moving points in the plane that minimizes
the maximum total weight (sum of Euclidean distances
between edge endpoints) or the maximum bottleneck
throughout the motion. The output is a single tree, i.e.,
it does not change combinatorially during the movement
of the points. We call these trees the minimum mov-
ing spanning tree, and the minimum bottleneck moving
spanning tree, respectively. We show that, although
finding the minimum bottleneck moving spanning tree
can be done in O(n2) time, it is NP-hard to compute
the minimum moving spanning tree. We provide a sim-
ple O(n2)-time 2-approximation and a O(n log n)-time
(2 + ε)-approximation for the latter problem.

1 Introduction

The Euclidean minimum spanning tree (EMST) of a
point set is the minimum weight graph that connects the
given point set, where the weight of the graph is given
by the sum of Euclidean distances between endpoints
of edges. EMST is a classic data structure in compu-
tational geometry and it has found many uses in net-
work design and in approximating NP-hard problems.
In the visualization community, a series of methods gen-
eralize Euler diagrams to represent spatial data [6, 14].
These approaches represent a set by a connected col-
ored shape containing the points in the plane that are
in the given set. In order to reduce visual clutter, ap-
proaches such as Kelp Diagrams [6] and Colored Span-
ning Graphs [11] try to minimize the area (or “ink”) of
such colored shapes. Each of the shapes can be consid-
ered generalizations of the EMST of the points in the
set.

Motivated by visualizations of time-varying spatial
data, we investigate a natural generalization of the mini-
mum spanning tree (MST) and the minimum bottleneck
spanning tree (MBST) for a set of moving points. In

∗Research supported in part by NSERC.
†School of Computer Science, Carleton University, Ottawa,

ON, Canada.
‡School of Computer Science, University of Windsor, Windsor,

ON, Canada.
§School of Electrical Engineering and Computer Science, Uni-

versity of Ottawa, Ottawa, ON, Canada.

general it is desirable that visualizations are stable, i.e.,
small changes in the input should produce small changes
in the output [15]. In this paper, we want to maintain
all points connected throughout the motion by the same
tree (the tree does not change topologically during the
time frame), thus obtaining a completely stable span-
ning tree. Consider points in the plane moving on a
straight line with constant speed over a time interval
[0, 1]. The weight of an edge pq between points p and q
is defined to be the Euclidean distance ‖pq‖. Note that
the weight of an edge changes over time. We define
the minimum moving spanning tree (MMST) of a set
of moving points to be a spanning tree that minimizes
the maximum sum of weights of its edges during the
time interval. Analogously, we define minimum bottle-
neck moving spanning tree (MBMST) of a set of moving
points to be a spanning tree that minimizes the maxi-
mum individual weight of edges in the tree during the
time interval.

Apart from this motivation, the concepts of MMST
and MBMST are relevant in the context of moving net-
works. Motivated by the increase in mobile data con-
sumption, network architecture containing mobile nodes
have been considered [12]. In this setting, the design of
the topology of the networks is a challenge. Due to
the mobility of the vertices, existing methods update
the topology dynamically and the stability becomes im-
portant since there are costs associated with establish-
ing new connections and handing over ongoing sessions.
The MMST and MBMST again offer complete stability
while minimizing a parameter.

Results and Organization. We study the problems
of finding a MMST and a MBMST of a set of points
moving linearly, each at constant speed. Section 2 pro-
vides formal definitions and proves that the distance
function between points is convex in this setting. We
use this property in an exact O(n2)-time algorithm for
the MBMST as shown in Section 3. Our algorithm com-
putes the minimum bottleneck tree in a complete graph
G between on the moving points in which the weight of
each edge is the maximum distance between the pairs of
points during the time frame. In Section 4 we present an
O(n2)-time 2-approximation for MMST by computing
the MST of G. In the full version of the paper we pro-
vide an example that shows our analysis for the approx-
imation ratio is tight. Also in the full version we show
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that the MMST is equal to the minimum spanning tree
of a point set in R4 with a non-Euclidean metric. Since
this metric space has doubling dimension O(1), we ob-
tain an O(n log n)-time (2+ε)-approximation algorithm.
In the full paper, we show that the MMST problem is
NP-hard, by reducing from the Partition problem.
Related work. Examples of other visualizations of
time-varying spatial data are space-time cubes [13], that
represent varying 2D data points with a third dimen-
sion, and motion rugs [4], that reduces the dimentional-
ity of the movement of data points to 1D, presenting a
2D static overview visualizations. The representation of
time-varying geometric sets were also the theme of a re-
cent Dagstuhl Seminar 19192 “Visual Analytics for Sets
over Time and Space” [7]. In the context of algorithms
dealing with time-varying data Meulemans et al. [15]
introduces a metric for stability, analysing the trade-off
between quality and stability of results, and applying it
to the EMST of moving points. Monma and Suri [16]
study the number of topological changes that occur in
the EMST when one point is allowed to move.

The problem of finding the MMST and MBMST of
moving points can be seen as a bicriteria optimization
problem if the points move linearly (as shown in Sec-
tion 2.2). In this context, the addition of a new cri-
terion could lead to an NP-hard problem, such as the
bi-criteria shortest path problem in weighted graphs.
Garey and Johnson show that given a source and target
vertices, minimizing both length and weight of a path
from source to target is NP-hard [9, p. 214]. Arkin et al.
analyse other criteria combined with the shortest path
problem [2], such as the total turn length and different
norms for path length.

Maintaining the EMST and other geometric struc-
tures of a set of moving points have been investigated
by several papers since 1985 [3]. Kinetic data structures
have been proposed to maintain the EMST [1]. Re-
search in this area have focused on bounds on the num-
ber of combinatorial changes in the EMST and efficient
algorithms. To the best of our knowledge, the problem
of finding the MMST and MBMST (a single tree that
does not change during the movement of points) has not
been investigated.

2 Preliminaries

In this section we formally define the minimum mov-
ing spanning tree and the minimum bottleneck moving
spanning tree of a set of moving points. We then prove
that, for points moving linearly, the distance function
between a pair of points is convex.

2.1 Definitions

A moving point p in the plane is a function p : [0, 1] →
R2. We say that p is at p(t) at time t. We are given

a set S = {p1, ..., pn} of moving points in the plane.
A moving spanning tree T of S has S as its vertex
set and weight function wT : [0, 1] → R defined as
wT (t) =

∑
pq∈T ‖p(t)q(t)‖. Let T (S) denote the set of

all moving spanning trees of S. Let w(T ) = supt wT (t)
be the weight of the moving spanning tree T . A min-
imum moving spanning tree (MMST) of S is a mov-
ing spanning tree of S with minimum weight. In other
words a MMST is in

argmin
T∈T (S)

(w(T )) .

Let bT (t) = suppq∈T ‖p(t)q(t)‖ denote the bottleneck of
a tree T at time t. A minimum bottleneck moving span-
ning tree (MBMST) of S is a moving spanning tree of
S that minimizes the bottleneck over all t ∈ [0, 1]. In
other words a MBMST is in

argmin
T∈T (S)

(
max

t
bT (t)

)
.

2.2 Convexity

Let p and q be two moving points in the plane. We
assume that these points move along (possibly different)
lines at (possibly different) constant velocities. Thus,
for any real number t, we can write the positions of p
and q at time t as

p(t) = (ap + upt, bp + vpt), q(t) = (aq + uqt, bq + vqt),

where ap, up, bp, vp are constants associated with the
point p. At time t = 0, p is at (ap, bp), and the velocity
vector of p is (up, vp). Let d(t) = ‖p(t)q(t)‖ denote the
Euclidean distance between p and q at time t.

Lemma 1 The function d is convex.

Proof. It suffices to prove that the second derivative of
d is non-negative for all real numbers t. We can write

d(t) =
√
At2 +Bt+ C,

where A, B, and C depend only on ap, up, bp, vp, aq,
uq, bq, and vq. Observe that A ≥ 0. Since d(t) repre-
sents a distance, At2 + Bt + C ≥ 0 for all t in R. It
follows that the discriminant of this quadratic function
is non-positive, i.e.,

B2 − 4AC ≤ 0. (1)

Let α = −B/2A and β = C/A−B2/(4A2). Then

d(t) =
√
A ·

√
(t− α)2 + β.

The second derivative of the function f(t) =
√
t2 + β is

given by
f ′′(t) =

β

(t2 + β)3/2
.

44



ICCG 2021, Yazd, February 18, 2021

It follows from (1) that β ≥ 0. Thus, f ′′(t) ≥ 0 for all t
in R. Since d(t) =

√
A · f(t− α), we have d′′(t) ≥ 0 for

all t in R, and in particular, for t ∈ [0, 1]. �

The convexity of the distance function (Lemma 1)
implies the following corollary.

Corollary 2 The largest distance between two moving
points is attained either at the start or at the finish time.

Let S be a set of n moving points in the plane. For
two points p and q in S, we denote by ‖p(0)q(0)‖ and
‖p(1)q(1)‖ the distances between p and q at times t = 0
and t = 1, respectively. Moreover, we denote by |pq|max
the largest distance between p and q during time interval
[0, 1]. By Corollary 2 we have

|pq|max = max{‖p(0)q(0)‖, ‖p(1)q(1)‖}. (2)

3 Minimum bottleneck moving spanning tree

Since by Corollary 2 the largest length of an edge is
attained is either at time 0 or at time 1, it might be
tempting to think that the MBMST of S is also attained
at times 0 or 1. However the example in Figure 1(a)
shows that this may not be true. In this example we
have four points a, b, c, and d that move from time 0
to time 1 as depicted in the figure. The MBST of these
points at time 0 is the red tree R, and their MBST
at time 1 is the blue tree B. Recall that bT (t) is the
bottleneck of tree T at time t. Let b(T ) = maxt bT (t)
be the bottleneck of a moving spanning tree T . In R the
weight of ab at time 0 is 1 while its weigh at time 1 is
3, and thus b(R) = 3. In B the weight of ad at time 1
is 1 while its weigh at time 0 is 3, and thus b(B) = 3.
However, for this point set the tree T = {ac, cb, cd} has
bottleneck 2.

a0 b0 c0 d0

a1 d1 c1 b1

1 1 1R

B

a b c d3 1 1

2

2

3

(a) (b)

Figure 1: Four points moving from time 0 to 1. (a) R is
the MBST at time 0, and B is the MBST at time 1. (b)
The graph G; green edges form a MBST of this graph.

Although the above example shows that the computa-
tion of the MBMST is not straightforward, we present a
simple algorithm for finding the MBMST. Let G be the
complete graph on points of S where the weight w(pq)
of every edge pq is the largest distance between p and q
during time interval [0, 1], that is, w(pq) = |pq|max; see
Figure 1(b).

Lemma 3 The bottleneck of a MBMST of S is not
smaller than the bottleneck of a MBST of G.

Proof. Our proof is by contradiction. Let T ∗ be a
MBMST of S and let T be a MBST of G. For the
sake of contradiction assume that b(T ∗) < b(T ), where
we abuse the notation for simplicity making b(T ) =
maxpq∈T w(pq) the bottleneck of T . Let pq be a bot-
tleneck edge of T , that is b(T ) = w(pq). Denote by
Tp and Tq the two subtrees obtained by removing pq
from T , and denote by Vp and Vq the vertex sets of
these subtrees. Since the vertex set of T is the same
as that of T ∗, there is an edge, say rs, in T ∗ that con-
nects a vertex of Vp to a vertex of Vq. Since the bot-
tleneck of T ∗ is its largest edge-length in time interval
[0, 1], we have that |rs|max 6 b(T ∗). Since in G we
have w(rs) = |rs|max, the following inequality is valid:
w(rs) = |rs|max 6 b(T ∗) < b(T ) = w(pq). Let T ′ be
the spanning tree of G that is obtained by connecting
Tp and Tq by rs. Then b(T ′) 6 b(T ∗). If we repeat this
process for all bottleneck edges of T , then we obtain a
tree T ′ whose bottleneck is strictly smaller than that of
T . This contradicts the fact that T is a MBST of G. �

It is implied from Lemma 3 that any MBST of G
is a MBMST of S. Since a MBST of a graph can be
computed in time linear in the size of the graph [5],
a MBST of G can be computed in O(n2) time. The
following theorem summarizes our result in this section.

Theorem 4 A minimum bottleneck moving spanning
tree of n moving points in the plane can be computed in
O(n2) time.

4 Minimum moving spanning tree

In this section we present a 2-approximation algorithm
for the problem. Our algorithm is simple and just com-
putes a MST of the graph G constructed in Section 3.

Lemma 5 The weight of any MST of G is at most two
times the weight of any MMST of S.

Proof. Let T be any MST of G and let T ∗ be any
MMST of S. Let w(T ∗) = supt wT (t) be the weight of
the moving spanning tree T ∗. We abuse the notation
for simplicity making w(T ) =

∑
pq∈T w(pq) the weight

of the spanning tree T . We are going to show that
w(T ) 6 2 ·w(T ∗). Let T ′ be a tree that is combinatori-
ally equivalent to T ∗. Assign to each edge pq of T ′ the
weight w(pq) = |pq|max. After this weight assignment,
T ′ is a spanning tree of G. Since T is a MST of G, we
have w(T ) 6 w(T ′).

By Corollary 2 the largest distance between two
points is achieved either at time 0 or at time 1. Let
E∗

0 be the set of edges of T ∗ whose endpoints largest
distance is achieved at time 0. Define E∗

1 analogously.

45



4th Iranian Conference on Computational Geometry

Then w(E∗
0 ) 6 w(T ∗) and w(E∗

1 ) 6 w(T ∗). Moreover,
w(T ′) = w(E∗

0 ) + w(E∗
1 ). By combining these inequali-

ties we get
w(T ) 6 w(T ′) = w(E∗

0 ) + w(E∗
1 )

6 w(T ∗) + w(T ∗) = 2 · w(T ∗).

�
A minimum spanning tree of G can be computed in
O(n2) time using Prim’s MST algorithm combined with
a Fibonacci heap [8]. The following theorem summa-
rizes our result in this section.

Theorem 6 There is an O(n2)-time 2-approximation
algorithm for computing the minimum moving spanning
tree of n moving points in the plane.

In the full version of the paper we show that our anal-
ysis of the approximation factor is tight, as we build a
set of moving points showing that the approximation
factor of our 2-approximation algorithm can be arbitrar-
ily close to 2. Moreover, we present an O(n log n)-time
(2 + ε)-approximation algorithm for the MMST prob-
lem. In the full version we also prove the NP-hardness
of the MMST problem by a reduction from the Partition
problem.
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Exploring the OT-graphs

Sergey Bereg∗ Mohammadreza Haghpanah∗

Abstract

Recently, we introduced OT-graphs [4] for visualizing
order types in the plane. The definition of OT-graphs
uses abstract order types and their axioms described in
the well-known book by Knuth [8]. Motivated by the
problem of minimizing OT-graphs, we implemented an
exhaustive search and explore the minimum OT-graphs
for order types with a small number of points.

1 Introduction

Goodman and Pollack [7] introduced order types in
1983. Three points in the plane are either collinear,
clockwise CW or counterclockwise CCW. In this paper
we assume that point sets in the plane are in general
position. Two finite point sets in the plane have the
same order type if there is a bijection between them
preserving orientation of any three distinct points. The
equivalence classes defined by this equivalence relation
are the order types [7].

Order type is a way of characterizing a finite point
configuration’s combinatorial properties. Order types
are studied extensively. We refer readers to the sur-
vey on pseudoline arrangements [6] and the survey on
oriented ma-troids [9].

1.1 Axioms and CC-systems

Knuth [8] introduced and studied CC-systems (short for
“counterclockwise systems”) axiomatizing order types.
A CC-system for n points assigns true/false value for
every ordered triple of points such that they satisfy the
following axioms.

Axiom 1 (cyclic symmetry). pqr =⇒ qrp.

Axiom 2 (antisymmetry). pqr =⇒ ¬prq.
Axiom 3 (nondegeneracy). Either pqr or prq.

Axiom 4 (interiority). tqr ∧ ptr ∧ pqt =⇒ pqr.

Axiom 5 (transitivity). tsp∧tsq∧tsr∧tpq∧tqr =⇒
tpr.

Knuth [8] proved that Axioms 1,2,3, and 5 imply an
axiom dual to Axiom 5.

Axiom 5’ (dual transitivity). stp ∧ stq ∧ str ∧ tpq ∧
tqr =⇒ tpr.

∗University of Texas at Dallas, Richardson, TX 75080, USA
besp@utdallas.edu, Mohammadreza.Haghpanah@utdallas.edu

Consider the counterclockwise relation over triples of
points in general position in the plane. It induces a CC-
system. Due to the 9-point theorem of Pappus [5, 8],
the converse is not valid. Knuth [8] proved that, given
orientations of fewer than

(
n
3

)
triples, it is NP-complete

to decide whether there exists a CC-system extending
them.

1.2 Visualization of order types

Recently, the problem of visualizing order types was
studied in [2, 4] using exit graphs [2] and OT-graphs
[4]. This problem is motivated by Aichholzer et al. [2]
“... suppose we have discovered an interesting order
type, and we would like to illustrate it in a publication.”
We also were facing this problem in [3] where we found
that the order type 1874 for 9 points from the database
[1] provides a (tight) lower bound for Tverberg parti-
tions with tolerance 2, see Fig. 2(a). An order type in
the plane can be represented by a corresponding point
set (or explicit coordinates of the points). However, it
might be difficult to recognize the orientations of some
point triples.

1.3 OT-graphs

We define an OT-graph on a point set S as follows. Ev-
ery edge (a, b) in an OT-graph is equipped with the par-
tition of S by line ab, i.e. S\{a, b} = S+

ab∪S−
ab where S+

ab

(S−
ab) contains points c ∈ S such that a, b, c has coun-

terclockwise (clockwise) orientation. Using these orien-
tations one can derive new orientations using the above
axioms. An OT-graph contains a sufficient number of
edges to decide the order type, i.e. to derive orienta-
tions of all triples of points.

It is easy to visualize the partitions of S for the edges
of an OT-graph by drawing lines through them. This
may result in a dense drawing, so we omit lines in the
drawing if the partitions can be easily seen.

Example. Consider an order type for n = 6 and
the graph G shown in Figure 1. There are 20 =

(
6
3

)

triples for n = 6 and 14 of them can be decided using
graph G (i.e., 14 triples have two points which are end-
points of an edge). The remaining 6 triples are (1, 3, 4),
(1, 3, 5),(1, 3, 6), (1, 4, 6), (2, 4, 6) and (3, 4, 6). We show
that these triples can be decided using the axioms. By
symmetry, it is sufficient to decide triples (1, 3, 4), (1,
3, 6), (2, 4, 6) and (3, 4, 6). Since (1, 2) and (2, 3) are
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the edges of G, triples (2, 4, 3), (1, 2, 3), and (1, 4, 2) are
counterclockwise (CCW). By axiom 4 for t = 2, p =
1, q = 4, r = 3, triple (1, 4, 3) is CCW. By axiom 4 for
t = 2, p = 1, q = 6, r = 3, triple (1, 6, 3) is CCW. By ax-
iom 5 for t = 3, s = 2, p = 4, q = 5, r = 6, triple (3, 4, 6)
is CCW. By axiom 5 for t = 2, s = 1, p = 4, q = 5, r = 6,
triple (2, 4, 6) is CCW.

1
2

3

4

5

6

Figure 1: An OT-graph with 4 edges for an order type
for n = 6.

The second example is the OT-graph for the order
type 1874 for 9 points from the database [1] shown in
Fig. 2(b). The graph has 10 edges and it can be checked
that it is an OT-graph.

Order type 1874

(a)

1

2
3 4

56

7
8

9

(b)

Figure 2: (a) The order type 1874 for 9 points from
the database [1]. (b) An OT-graph with 9 edges for the
order type 1874 (several OT-graphs with 9 edges were
computed by an extensive search).

1.4 Minimum OT-graphs

Aichholzer et al. [2] suggested requirements for a graph
representing an order type: “... we want to reduce the
number of edges in the drawing as much as possible,
but so that the order type remains uniquely identifi-
able.” Let T be an order type. We use the algorithms
from [4] to compute OT-graphs for T aiming to mini-
mize the number of edges. It is difficult to find a min-
imum OT-graph for T (with large number of points),
i.e. an OT-graph with minimum number of edges for
T . In this paper (Section 3) we use exhaustive search
for computing minimum OT-graphs. In Section 4, we
discuss the results and conjectures.

2 OT-graphs for small point sets

In this section we present OT-graphs for point sets of
size up to six. These graphs were computed using the
greedy algorithm from [4]. In each step, the greedy algo-
rithm chooses an edge (a, b) that maximizes the number
of new triples in its CC-closure (for a set of triples with
orientations, the CC-closure is the set of all triples that
can be derived using the axioms from Section 1.1). In
case of ties, the algorithm uses random tie-breaking.

For n = 3, there is only one order type and a single
edge can be used for an OT-graph. Figure 3 shows two
OT-graphs for n = 4 and three OT-graphs for n =
5. Figure 4 shows 16 OT-graphs for n = 6 which use
point sets from from the database [1]. Note that all
OT-graphs in Figures 3 and 4 are without crossings.

Figure 3: Order types for n = 4 and n = 5.

3 Minimum OT-graphs

In the previous section, we showed the OT-graphs for
order types of up to six points constructed using the
greedy algorithm. The greedy algorithm does not al-
ways find a minimum OT-graph for an order type, i.e.
an OT-graph with minimum number of edges for the
order type. Is it possible to verify that an OT-graph
for an order type is minimum? One way is to prove
lower bounds for the given order type using the axioms.

48



ICCG 2021, Yazd, February 18, 2021

Figure 4: OT-graphs for 16 order types for n = 6.

This is challenging even for points in convex position
[4]. In this paper we use computer aid to find minimum
OT-graphs.

We used ComputingCC-Closure algorithm devel-
oped in [4]. Given an order type as point set and a graph
G, the ComputingCC-Closure algorithm computes
the CC-closure of G. The ComputingCC-Closure
algorithm can be used for testing if a graph G is an
OT-graph or not. We apply an exhaustive search using
this testing algorithm. To prove that an OT-graph with
m edges is minimum OT-graph, we check exhaustively
every subset of m− 1 edges in the complete graph.

We implemented the exhaustive search and check or-
der types and OT-graphs shown in Figures 3 and 4. The
program finds that all the OT-graphs in Figures 3 and
4 are minimum OT-graphs. The running time for all or-
der type of up to six points was less than one seconds.

Next, we applied the exhaustive search for 135 order
types of size 7. The execution time was around 10 min-
utes. The running time for 3,315 order types of size 8
increases significantly and the program is still running.
For N OT-graphs with n vertices and m edges, the pro-
gram tests

N ·
( (

n
2

)

m− 1

)

graphs. This number grows as 2O(n2) even if we assume
that N and m are constants. We expect the search for
n = 8 to complete in one week.

Aichholzer et al. [1] provided the order types for n <
11 points publicly and for n = 11 upon request due
to huge number of the order types. It is necessary to
have more efficient search strategies to accomplish all
the order types in the database [1].
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Table 1: OT-graphs for n up to 9. Column i, i = 1, 2, . . . , 11 contains the number of OT-graphs with i edges. The
numbers shown in bold correspond to the minimum OT-graphs.

n\m 1 2 3 4 5 6 7 8 9 10 11 total

3 1 1
4 2 2
5 3 3
6 14 2 16
7 2 79 54 135
8 59 1,061 1,716 479 3,315
9 5 890 15,235 54,304 67,011 21,145 227 158,817

4 Discussion

We computed OT-graphs using the greedy approach for
the order types of size up to 10. The results are shown
in Table 1. The order types of size n are shown in the
corresponding row. The columns correspond to OT-
graphs withm edges. For each order type, we count only
one OT-graph with smallest number edges computed
using the greedy algorithms.

The exhaustive search from the previous section was
used to verify that the OT-graphs for n up to 7 are the
minimum OT-graphs (and the numbers are shown in
bold).

One edge less. Let T be an order type of size n ≤ 7
and let m be the number of edges in the OT-graph for
T . Recall that the exhaustive search checks every graph
G with m − 1 edges for T . Since m is the minimum,
and the number of triples in CC-closure for G is less
than

(
n
3

)
. It is interesting that sometimes the maximum

number of triples in CC-closure for all graphs is one
less than

(
n
3

)
. Therefore, these CC-closures are almost

complete and we believe that, for these order types, it
might be hard to prove that m is minimum. Figure 5
shows the minimum OT-graphs for n = 6, 7, and 8 of
such examples.

Smallest graphs. Let µ(n) be the minimum number
of edges in an OT-graph for n points. We conjectured
in [4] that µ(4) = 2, µ(5) = 3, µ(6) = µ(7) = 4, µ(8) =
µ(9) = 5. We confirm µ-values up to n = 7 using the
exhaustive search.

Convex position. Let cn be the minimum number of
edges in an OT-graph for n points in convex position.
The following upper bound for cn, n ≥ 4 is proved in [4]
cn ≤ b2n/3c.

It is interesting to find exact values of sequence cn.
Using the exhaustive search, we found that cn = b2n/3c
hold for n = 4, 5, 6, 7.

(a) (b) (c)

Figure 5: The minimum OT-graphs for some order
types for n = 6, 7, and 8 such that there exists a graph
with m− 1 edges (one less) with CC-closure of size 19,
34, and 55 in (a),(b), and (c), respectively.
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A short proof of the non-biplanarity of K9

Ahmad Biniaz∗

Abstract

Battle, Harary, and Kodama (1962) and independently
Tutte (1963) proved that the complete graph with nine
vertices is not biplanar. Aiming towards simplicity and
brevity, in this note we provide a short proof of this
claim.

1 Introduction

An embedding (or drawing) of a graph in the Euclidean
plane is a mapping of its vertices to distinct points in
the plane and its edges to smooth curves between their
corresponding vertices. A planar embedding of a graph
is a drawing of the graph such that no two edges cross.
A graph that admits such a drawing is called planar. A
biplanar embedding of a graph H = (V,E) is a decom-
position of H into two planar graphs H1 = (V,E1) and
H2 = (V,E2) such that E1 ∪ E2 = E and E1 ∩ E2 = ∅,
together with planar embeddings of H1 and H2. In this
case, H is called biplanar. In other words, a graph is
called biplanar if it is the union of two planar graphs;
that is, if its thickness is 1 or 2. The complete graph
with n vertices, denoted by Kn, is a graph that has an
edge between every pair of its vertices. Let G be a sub-
graph of Kn that has n vertices. The complement of
G, denoted by G, is the graph obtained by removing all
edges of G from Kn.

As early as 1960 it was known that K8 is biplanar
and K11 is not biplanar. There exist several biplanar
embeddings of K8; see e.g. [2] for a self-complementary
drawing. The non-biplanarity of K11 is easily seen, since
it has 55 edges while a planar graph with eleven ver-
tices cannot have more than 27 edges, by Euler’s for-
mula. Finding the smallest integer n, for which Kn is
non-biplanar, was a challenging question for some time
[4]. The following fundamental theorem due to Bat-
tle, Harary, and Kodama ([1], 1962) and independently
proved by Tutte ([8], 1963) answers this question and
implies that K9 is non-biplanar.

Theorem 1 Every planar graph with at least nine ver-
tices has a nonplanar complement.

Both proofs of Theorem 1 involve a thorough case
analysis. Battle, Harary, and Kodama gave an out-
line of a proof through six propositions. Some of these

∗School of Computer Science, University of Windsor, Windsor,
Canada, ahmad.biniaz@gmail.com. Supported by NSERC.

propositions require detailed case analysis, which are
not given, for example (in their words) “There are sev-
eral cases to discuss in order to establish Propositions
4 and 5. In each case, we can prove that G contains a
subgraph homemorphic to K3,3 or K5.” Tutte’s proof
appeared longer (it’s a 13-page paper), and enumerates
all simple triangulations (with no separating triangles)
with up to 9 vertices and verifies that the complement of
each triangulation is nonplanar. It seems that Harary
was not quite satisfied with any of these proofs as he
noted in his Graph Theory book [5] that “This result
was proved by exhaustion; no elegant or even reason-
able proof is known.” We are still unaware of any short
proof of this result. (See [6] for a recent attempt towards
a new proof.)

2 Our proof

In this section we present a short proof of Theorem 1.
Our proof is complete, self-contained, and only uses
Kuratowski’s theorem for non-planar graphs. Towards
our proof we show (in Theorem 2) that a particularly
restricted drawing of K8 cannot be biplanar; see Fig-
ure 1(a) for an illustration.

Theorem 2 Let H be an embedded planar graph with
eight vertices such that the boundary of its outerface is a
5-cycle and there are no edges between the three vertices
that are not on the outerface. Then the complement of
H is nonplanar.

Proof of Theorem 1. Consider a planar graph G
with nine vertices. For the sake of contradiction as-
sume that its complement G is also planar. Fix a planar
embedding of G and a planar embedding of G. For con-
venience we use G and G for referring to planar graphs
and to their planar embeddings. If there are two vertices
in G that lie on the same face and are not connected by
an edge, then we transfer the corresponding edge from
G to G and connect the two vertices by a curve in that
face. After this operation both G and G remain planar.
Repeating this process converts G to a triangulation in
which the boundary of every face (including the outer-
face) is a triangle (i.e. a 3-cycle). If all the three vertices
on the outerface of G are of degrees at most 4, then the
removal of these vertices results a graph with six vertices
whose outerface is a 3-cycle (observe that otherwise the
symmetric difference of this outerface and that of G is a
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Figure 1: Illustrations of (a) the staement of Theorem 2 and (b) the proof of Theorem 1.

polygon, with a hole of size at least four, that requires
at least seven edges to be triangulated). In this case the
three vertices in the interior of this 3-cycle together with
the three removed vertices form a K3,3 in G which con-
tradicts its planarity. Thus we assume that at least one
vertex, say r, on the outerface of G has degree k > 5.
Remove r from G and G and denote the resulting graphs
by H and H, respectively. Notice that (H,H) is a bi-
planar embedding of K8. Let f and f be the faces of H
and H, respectively, that contain the removed vertex r,
as in Figure 1(b). Observe that f is the outerface of H.
Each vertex of the resulting K8 lie on f or on f because
(G,G) was a biplanar embedding of K9. Since G was a
triangulation, the outerface of H is a k-cycle. Since G
was a simple graph (no multiedges and no loops), the
face f has at least three vertices; these vertices are not
necessarily connected.

If k > 5 then let s be a vertex of f that also lies on
f ; such a vertex exists because we have eight vertices in
total. Let x and y be the neighbors of s on f . If xy is an
edge of H then draw it as a curve in f . If xy is not an
edge of H then transfer it from H to H and draw it in f ,
as in Figure 1(b). Now, the new outerface f of H has k−
1 vertices. Repeat the above process until this outerface
has exactly 5 vertices. Let u, v, w be the vertices of K8

that are not on this outerface. These three vertices lie
on f because of our choices of s. If any of the edges
uv, uw, and vw is not in H then transfer it from H to
H and draw it in f without crossing other edges. To
this end we obtained a planar graph H that satisfies
the constraints of Theorem 2 and its complement H is
planar. This contradicts Theorem 2. �

To prove Theorem 2 we use the well-known Kura-
towski’s theorem on non-planar graphs [3, 7] that “a
finite graph is non-planar if and only if it contains a
subgraph that is homeomorphic to K5 or K3,3.” The
following theorem, given in [8], is an alternate state-
ment for Kuratowski’s theorem.

Theorem 3 A graph G is nonplanar if one of the fol-
lowing conditions hold: (i) G has six disjoint connected

subgraphs A1, A2, A3, B1, B2, B3 such that for each Ai

and Bj there is an edge edge with one end in Ai and
the other in Bj. (ii) G has five disjoint connected sub-
graphs A1, A2, A3, A4, A5 such that for each Ai and Aj,
with i 6= j, there is an edge with one end in Ai and the
other in Aj.

Proof of Theorem 2. Let the 5-cycle C = (a1, a2, a3,
a4, a5) be the boundary of the outerface of H, and let
u, v, and w be the three vertices that are not on the
outerface, i.e., lie on internal faces of H. For the sake
of contradiction assume that the complement H of H is
planar. By the statement of the theorem uv, uw, and vw
are edges of H. Except for the three pairs (u, v), (u,w),
(v, w), if a pair of vertices lie on the same internal face
of H and are not connected by an edge, then we transfer
the corresponding edge from H to H and connect the
two vertices by a curve in the face. After this operation
both H and H remain planar. Repeating this process
makes H edge-maximal (in the above sense).

Let H ′ be the embedded planar subgraph of H that is
induced by the five vertices of C. The graph H ′ consists
of the cycle C together with zero, one, or two chords as
in Figure 2. Consider any internal face f of H ′. If f
contains some vertices of {u, v, w} then by maximality
of H it holds that exactly one of these vertices is con-
nected to all boundary vertices of f in H (see e.g. vertex
v in Figures 2(a) and 2(b))—this holds as otherwise we
could add an edge between two vertices of C or between
a vertex of C and a vertex of {u, v, w}; contradicting the
maximality of H. Now we consider three cases depend-
ing on the number of chords of H ′. In each case we get
a contradiction to planarity of H.

• H ′ has no chords. Let v be the vertex of H that is
connected to each ai; see Figure 2(a). By planarity
of H, each of u and w can only be adjacent to
two consecutive vertices of C. Hence there exists a
vertex of C (say a1) that is adjacent to neither u nor
w. Therefore, the five connected subgraphs u, w,
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Figure 2: Black edges belong to H, bold black edges belong to H ′, and red edges belong to H.

a1, {a2, a4} and {a3, a5} from H satisfy condition
(ii) of Theorem 3. Thus H is not planar.

• H ′ has one chord. After a suitable relabelling
assume that this chord is (a2, a5). Let f de-
note the face of H ′ whose boundary is the 4-cycle
(a2, a3, a4, a5); this face is shaded in Figure 2(b).
This face contains some vertices of {u, v, w} be-
cause otherwise H ′ should have a chord in f (by
maximality of H) which contradicts our assump-
tion that H ′ has one chord. Let v be the vertex
in f that is connected to all its boundary vertices.
In this setting, regardless of where u and w lie, the
six connected subgraphs u, w, a1, v, {a2, a4}, and
{a3, a5} from H satisfy condition (i) of Theorem 3.
Thus H is not planar.

• H ′ has two chords. Let a1 be the vertex that is
incident to the two chords as in Figure 2(c). In this
setting, regardless of where u, v and w lie, the five
connected subgraphs u, v, w, {a2, a4}, and {a3, a5}
from H satisfy condition (ii) of Theorem 3. Thus
H is not planar.

�
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Spanning Trees in Geometric Graphs∗

Anil Maheshwari†

This talk is primarily geared towards graduate stu-
dents. We will discuss some recent results on spanning
trees in geometric graphs. A geometric graph is a graph
whose vertices are points in the plane and whose edges
are straight-line segments between the points. The talk
has three main parts.

In the first part, we will discuss the computation of
minimum and maximum spanning trees for a bichro-
matic set of points. Let R and B be two disjoint sets
of points in the plane where the points of R are col-
ored red, and the points of B are colored blue, and let
n = |R ∪ B|. A bichromatic spanning tree is a span-
ning tree in the complete bipartite geometric graph with
bipartition (R,B). The minimum (respectively maxi-
mum) bichromatic spanning tree problem is the prob-
lem of computing a bichromatic spanning tree of mini-
mum (respectively maximum) total edge length. In the
talk, we will discuss an algorithm running in O(n log3 n)
time for computing the required minimum and maxi-
mum spanning trees. We will also hint at how to obtain
an optimal algorithm running in Θ(n log n) time.

In the second part, we will discuss approximation al-
gorithms for the computation of α-spanning trees of a
point set. Let P be a set of points in the plane and let
α be an angle. An α-ST of P is a spanning tree of the
complete Euclidean graph on P with the property that
all the edges incident to each point p ∈ P lie in a wedge
of angle α centred at p. For α = 2π/3, the α − ST
problem is NP-Hard. In the talk, we will discuss a 6-
approximation and a 16/3-approximation algorithm.

In the last part, we will discuss approximation algo-
rithms for the computation of maximum plane spanning
trees in a bichromatic point set. A plane spanning tree
in a geometric graph is a spanning tree that is non-
crossing. Let R and B be two disjoint sets of points in
the plane such that R ∪ B is in general position, and
let n = |R ∪ B|. A bichromatic plane spanning tree
is a plane spanning tree in the complete bipartite ge-
ometric graph with bipartition (R,B). The maximum
bichromatic plane spanning tree is a bichromatic plane
spanning tree of the maximum total edge length. We
will present an approximation algorithm with a ratio
1/4 that runs in O(n log n) time. We will also highlight

∗Joint work with Ahmad Biniaz, Prosenjit Bose, Jean-Lou
De Carufel, Kimberley Crosbie, David Eppstein, Anna Lubiw,
Patrick Morin, and Michiel Smid
†School of Computer Science, Carleton University, Ottawa,

Canada, anil@scs.carleton.ca

what results are known for the computation of the max-
imum plane tree of a monochromatic point set and what
we can say about the computation of the plane spanning
tree of R ∪B that minimizes the maximum degree.
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